Computational analysis for organ bio-fabrication in tissue engineering

Xinfeng Liu, Qi Wang and Xiaofeng Yang
Department of Mathematics
University of South Carolina

Motivation and Background

Road map for organ printing

Tissue fusion of vascular tissue spheroids

Mathematical models

We use a phase variable to label each fluid,

\[\phi = \begin{cases}
1, & \text{in fluid 1 (Cell-aggregates)}, \\
0, & \text{in fluid 2 (Ambient fluid)}.
\end{cases} \]

We denote the average velocity by \(\mathbf{v} \).
The transport equation for the mass and momentum of the mixture system is given by

\[\nabla \cdot \mathbf{v} = 0, \]

\[\frac{D \mathbf{v}}{Dt} = \nabla \cdot \left(\mu \nabla \mathbf{v} + \mathbf{f} \right), \]

where

\[f = \frac{1}{2} \kappa \nabla \phi^2 + \kappa_{0} \phi (1 - \phi)^2 \]

\[\tau_1 = 2 \eta_1 \mathbf{D}, \quad \tau_2 = 2 \eta_2 \mathbf{D}, \quad \mathbf{D} = \frac{1}{2} (\nabla \mathbf{v} + \nabla \mathbf{v}^T) \]

where \(\eta_1, \eta_2 \) are the viscosity for fluid 1 and 2, respectively.

Boundary conditions:

\[\nabla \phi \cdot \mathbf{n} |_{\Omega_1} = 0, \quad [\mathbf{v} - \lambda \nabla \phi^{\|}] \cdot \mathbf{n} |_{\Omega_2} = 0, \quad \mathbf{v} |_{\partial \Omega} = 0. \]

Numerical Simulations

Front tracking simulations of the fusion of two tissue spheroids. The two components are the cellular material and the surrounding tissue culture medium.

Morphogenesis of a branching vascular construct made of layer-by-layer deposition in a designed Y-shape pattern.

Morphogenesis of a tubular construct made from the layer-layer deposition of bio-inks (spheroidal cell-aggregates). The computation is done on a 129x129x129 grid using a Galerkin spectral method.

Acknowledgement

Vladimir Mironov
Department of Cell Biology and Anatomy
Medical University of South Carolina

NSF Grant DMS-1019544