Algorithm Class ARODE
Adaptive stochastic Galerkin Runge-Kutta methods for Random Ordinary Differential Equations
Florian Augustin

Governing Equations and Stochastic Galerkin Method:

\[\frac{\partial}{\partial t} U(t, \xi) = f(U(t, \xi), \xi) \]
with \(\xi \in L_2(0, T, P) \).

Finite Dimensional Approximation Space

\[S = \text{span} \{ \Phi_n : n \leq \theta \} \]

Multi-Element Approach

- Partition of \(\Omega \) and restriction of stochastic weak form to elements of the partition.

Convergence Properties:

Local Error

\[\| \frac{\partial}{\partial t} U(t, \xi) - \sigma_{\tilde{U}} (U(t, \xi)) \|_{L^2} \leq O(\Delta^k h^p) \]

Global Error

\[\| U(T, \xi) - \sigma (U(T, \xi)) \|_{L^2} \leq O(\Delta^{k+1}) + O(h^p) \]

- RK4 of order \(p \) and stepsize \(h \)
- \(k \) is the order of the approximation within \(S \)
- \(\sigma \) denotes the projection \(L_2 \rightarrow S \)
- \(U \) denotes the numerical approximation of \(U \)
- \(\tilde{U} \) is the order of the approximation within \(S \)

Numerical Results:

Random Van-Deer-Pol Oscillator

<table>
<thead>
<tr>
<th>Parameter Setting for ARODE</th>
<th>Numerical Results: (without/with (left/middle) refinement of (\Omega) and number of elements (right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial^2}{\partial t^2} U(t, \xi) = \lambda (1 - U(t, \xi)) \frac{\partial}{\partial t} U(t, \xi) - U(t, \xi))</td>
<td>(\lambda = 1), (\Delta t = 1), (\xi = \text{uniform})</td>
</tr>
<tr>
<td>Order of RK4</td>
<td>(p = 3)</td>
</tr>
<tr>
<td>Degree of approximation</td>
<td>(\theta = 3)</td>
</tr>
<tr>
<td>Inferences</td>
<td>(\lambda = 10^{-1}, \xi = 10^{-1})</td>
</tr>
<tr>
<td>Inferences (elements)</td>
<td>(\lambda = 10^{-2}, \xi = 10^{-2})</td>
</tr>
<tr>
<td>Refinement threshold</td>
<td>(\mu_1 = 1)</td>
</tr>
<tr>
<td>Refinement threshold</td>
<td>(\mu_2 = 6)</td>
</tr>
<tr>
<td>(2) (4) (8) (16) (32) (64) (128) (256) (512) (1024)</td>
<td>(\xi = \text{uniform})</td>
</tr>
</tbody>
</table>

Statistics

- Rejected coarsenings (\(\rho_2 = 6 \)): 31
- Rejected coarsenings (\(\rho_2 = 10 \)): 0
- Rejected timestep 184
- Moments computed by MCS (square markers)
 - \(\times 10^3 \) samples
 - \(\times 10^{-5} \) error below plotting accuracy (\(10^{-7} \) to \(10^{-3} \))

Literature: