Fast Chemical Reactions in Chaotic Flows: Reaction Rate and Mixdown Time
Yue-Kin Tsang
Scripps Institution of Oceanography, University of California, San Diego

Fast Chemical Reactions
We consider infinitely fast bimolecular reactions in fluid flows:

\[A + B \rightarrow 2P \]

e.g. NaOH(aq) + HCl(aq) → NaCl(aq) + H₂O(ℓ)

Advection-Diffusion-Reaction Equations

\[
\begin{align*}
\frac{\partial a}{\partial t} + \mathbf{u} \cdot \nabla a &= \kappa \nabla^2 a - \gamma ab \\
\frac{\partial b}{\partial t} + \mathbf{u} \cdot \nabla b &= \kappa \nabla^2 b - \gamma ab \\
\frac{\partial b}{\partial t} + \mathbf{u} \cdot \nabla b &= \kappa \nabla^2 b + 2\gamma ab
\end{align*}
\]

- **Fast reactions:** reaction time \(\ll \) advection time \(\ll \) diffusion time
- **Goal:** time dependence of product concentration \(\langle p \rangle = 1 - 2\langle a \rangle \)

Progress of Reaction

- **Initial slow phase** \(t < 10\tau \): very little fine structure in the concentration fields \(a \) and \(b \)
- **Exponential phase** \(10\tau < t < 40\tau \): filamentary structure developed, \(\langle p \rangle \) reaches 90% of its ultimate value
- **Classical chemical kinetics** \(t > 60\tau \): system is fairly homogeneous, advection and diffusion become unimportant

Relation to Decaying Passive Scalars

Consider the quantity:

\[
\phi = a - b
\]

\[
\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \kappa \nabla^2 \phi
\]

\(\Rightarrow \phi \sim \text{decaying passive scalar} \)

For **infinitely fast reactions** the fields \(a(x, t) \) and \(b(x, t) \) never overlap

\[
|\phi| = |a - b| = a + b
\]

\[
\langle a \rangle = \langle b \rangle = \frac{|\phi|}{2}
\]

Strangeness of Decaying Passive Scalars

\[
\phi(x, t) = \phi(x, 0) e^{-|\phi|/2} t
\]

where \(\phi(x, t) \) is statistically stationary, hence

\[
\langle |\phi|^n \rangle \sim e^{-n|\phi|/2} t
\]

Decay of Scalar Variance

\[
\langle \phi^2 \rangle \sim e^{-\lambda t} \text{ as } \kappa \rightarrow 0
\]

- **With Scale Separation**, \(k_f L \gg 1 \\
\]

- **Without Scale Separation**, \(k_f L \approx 1 \\
\]

Theory of Decaying Passive Scalar

Finite-time Lyapunov Exponent, \(h \)

\[
h(x, t) = \frac{1}{t} \log \frac{|\delta x(t)|}{|\delta x(0)|}
\]

\[
\hat{h} = \lim_{t \rightarrow \infty} h(x, t)
\]

- **Probability density function of** \(h, \rho(h, t) \) with **large time asymptotic form**

\[
\rho(h, t) \sim e^{-4G(h)}
\]

- **Local stretching theory predicts**

\[
s = \min(h + G(h))
\]

Predicting \(\lambda \)

\[
1 - \langle |\phi| \rangle = 2\langle a \rangle \sim e^{-\lambda t}
\]

\[
\langle a \rangle \sim \langle |\phi| \rangle \sim e^{-|\phi|/2} t
\]

\[
\lambda = \frac{\hat{h}}{2}
\]

Theory vs. Simulations

For \(k_f L = 5 \), using \(\kappa_{\text{eff}} = U^2\tau/8 \) with \(U = 0.25 \) and \(\tau = 10 \), we get \(\lambda_{\text{theory}} = 0.0031 \). Numerical simulation gives \(\lambda = 0.0033 \).

Initially Isolated Reactants

- **Broadcast spanning** (Crandall, Cawdwell and Weiss 2008)
- **Parameterization in atmospheric chemical transport models** (Thuburn and Tan 1997)

Reaction does not start until the separation \(2\tau \) is reduced to the diffusion length scale \(L \) by the action of the fluid. The time taken to do so is the **mixdown time**, \(\tau_{\text{mix}} \).