Noise Removal: Consider a grey scale image as a scalar valued function taking integer values in \([0,255]\).

\[
 u_0(i) = u(i) + n(i), \quad i = 1, \ldots, N
\]

Problem: recover the true image \(u\) from the observed image \(u_0\).
Diffusion PDEs for Image Processing

Noise Removal: Consider a grey scale image as a scalar valued function taking integer values in $[0,255]$.

$$\ u_0(i) = u(i) + n(i), \ i = 1, \ldots, N$$

Problem: recover the true image u from the observed image u_0.

Linear Diffusion: Convolve the noisy image with smooth kernels (i.e., a Gaussian) on a scale of variances. Or, equivalently, solve the linear heat equation

$$u_t = \gamma \Delta u, \ t > 0,$$

$$u(\cdot, 0) = u_0.$$
Diffusion PDEs for Image Processing

Noise Removal: Consider a grey scale image as a scalar valued function taking integer values in $[0,255]$.

$$u_0(i) = u(i) + n(i), \quad i = 1, \ldots, N$$

Problem: recover the true image u from the observed image u_0.

Linear Diffusion: Convolve the noisy image with smooth kernels (i.e., a Gaussian) on a scale of variances. Or, equivalently, solve the linear heat equation

$$u_t = \gamma \Delta u, \quad t > 0,$$

$$u(\cdot, 0) = u_0.$$

Perona-Malik: Identify edges using $|\nabla u|$, and inhibit diffusion near edges.

$$u_t = \nabla \cdot (g(|\nabla u|) \nabla u), \quad g(s) = \frac{1}{1 + c^2 s^2}, \quad c > 0$$
Fourth Order Denoising Models

Perona-Malik has two main drawbacks: ill-posedness and numerical artifacts. Suggestions for fixing these problems include second order regularizations and fourth order models.
Fourth Order Denoising Models

Perona-Malik has two main drawbacks: ill-posedness and numerical artifacts. Suggestions for fixing these problems include second order regularizations and fourth order models. Fourth order models introduce a new artifact: splotchiness.
Fourth Order Denoising Models

Perona-Malik has two main drawbacks: ill-posedness and numerical artifacts. Suggestions for fixing these problems include second order regularizations and fourth order models. Fourth order models introduce a new artifact: splotchiness

My work combines a novel regularization $|\nabla^{1-\epsilon} u|$ with a fourth order model to create a denoising PDE which is well-posed and avoids the artifacts associated with Perona-Malik, as well as the splotchiness observed with other fourth order models.