Finite element exterior calculus:

A new approach to the stability of finite elements

Douglas N. Arnold
joint with R. Falk and R. Winther

Institute for Mathematics and its Applications
University of Minnesota

July 25, 2007

Outline

(1) Motivating the search for stable finite elements: finding the right element for the job
(2) The mathematical framework: exterior calculus
(3) The star of the show: finite element differential forms
(9) Application to elasticity: the holy grail attained?

Steady heat conduction problem: finite elements in H^{1}

$$
\begin{gathered}
-\operatorname{div} C \operatorname{grad} u=f \\
\int_{\Omega} C \operatorname{grad} u \cdot \operatorname{grad} v d x=\int_{\Omega} f v d x \quad \forall v \\
\int_{\Omega}\left(\frac{1}{2} C \operatorname{grad} u \cdot \operatorname{grad} u-f u\right) d x \xrightarrow{u} \text { minimum }
\end{gathered}
$$

Steady heat conduction problem: finite elements in H^{1}

$-\operatorname{div} C \operatorname{grad} u=f$

$$
\begin{gathered}
\int_{\Omega} C \operatorname{grad} u \cdot \operatorname{grad} v d x=\int_{\Omega} f v d x \quad \forall v \\
\int_{\Omega}\left(\frac{1}{2} C \operatorname{grad} u \cdot \operatorname{grad} u-f u\right) d x \xrightarrow{u} \text { minimum }
\end{gathered}
$$

$$
\int_{\Omega}|\operatorname{grad} u|^{2} d x<\infty \Longleftrightarrow u \in H^{1}(\Omega) \quad \begin{aligned}
& H^{1}: u \in L^{2}(\Omega), \\
& \operatorname{grad} u \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)
\end{aligned}
$$

Steady heat conduction problem: finite elements in H^{1}

$$
\begin{gathered}
-\operatorname{div} C \operatorname{grad} u=f \\
\int_{\Omega} C \operatorname{grad} u \cdot \operatorname{grad} v d x=\int_{\Omega} f v d x \quad \forall v \\
\int_{\Omega}\left(\frac{1}{2} C \operatorname{grad} u \cdot \operatorname{grad} u-f u\right) d x \xrightarrow{u} \text { minimum } \\
\int_{\Omega}|\operatorname{grad} u|^{2} d x<\infty \Longleftrightarrow u \in H^{1}(\Omega) \quad \begin{array}{l}
H^{1}: u \in L^{2}(\Omega), \\
\operatorname{grad} u \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)
\end{array}
\end{gathered}
$$

The right FE spaces: Lagrange elements: $\left\{v \in H^{1}(\Omega)|v|_{T} \in \mathcal{P}_{r}(\Omega)\right\}$

Elasticity in displacement formulation

$u: \Omega \rightarrow \mathbb{R}^{n}$ displacement field

$$
\int_{\Omega}\left(\frac{1}{2} C \epsilon(u): \epsilon(u) d x-f \cdot u\right) d x \xrightarrow{u} \text { minimum }
$$

$\int|\epsilon(u)|^{2} d x \sim \int|\operatorname{grad} u|^{2} d x \quad$ Korn's inequality $\quad u \in\left[H^{1}(\Omega)\right]^{n}$

Again, Lagrange elements have the right stuff.

Thermal

$$
A \sigma=\operatorname{grad} u, \quad-\operatorname{div} \sigma=f
$$

$$
\begin{gathered}
\int\left(\frac{1}{2} A \sigma \cdot \sigma+\operatorname{div} \sigma u+f u\right) d x \xrightarrow{\sigma, u} \text { stationary point } \\
\sigma \in H(\operatorname{div}, \Omega), \quad u \in L^{2}(\Omega)
\end{gathered}
$$

Thermal $\quad A \sigma=\operatorname{grad} u, \quad-\operatorname{div} \sigma=f$

$$
\begin{gathered}
\int\left(\frac{1}{2} A \sigma \cdot \sigma+\operatorname{div} \sigma u+f u\right) d x \xrightarrow{\sigma, u} \text { stationary point } \\
\sigma \in H(\operatorname{div}, \Omega), \quad u \in L^{2}(\Omega)
\end{gathered}
$$

Elasticity

$$
A \sigma=\epsilon(u), \quad-\operatorname{div} \sigma=f
$$

$$
\begin{gathered}
\int\left(\frac{1}{2} A \sigma: \sigma+\operatorname{div} \sigma \cdot u+f \cdot u\right) d x \xrightarrow{\sigma, u} \text { stationary point } \\
\sigma \in H(\operatorname{div}, \Omega ; \mathbb{S}), \quad u \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)
\end{gathered}
$$

Lagrange elements?

Thermal $\quad A \sigma=\operatorname{grad} u, \quad-\operatorname{div} \sigma=f$

$$
\begin{gathered}
\int\left(\frac{1}{2} A \sigma \cdot \sigma+\operatorname{div} \sigma u+f u\right) d x \xrightarrow{\sigma, u} \text { stationary point } \\
\sigma \in H(\operatorname{div}, \Omega), \quad u \in L^{2}(\Omega)
\end{gathered}
$$

Elasticity

$$
A \sigma=\epsilon(u), \quad-\operatorname{div} \sigma=f
$$

$$
\begin{gathered}
\int\left(\frac{1}{2} A \sigma: \sigma+\operatorname{div} \sigma \cdot u+f \cdot u\right) d x \xrightarrow{\sigma, u} \text { stationary point } \\
\sigma \in H(\operatorname{div}, \Omega ; \mathbb{S}), \quad u \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right)
\end{gathered}
$$

Lagrange elements? Unstable!

$$
\begin{gathered}
\sigma=u^{\prime}, \quad-\sigma^{\prime}=f \quad \text { on }(-1,1) \\
\frac{1}{2} \int_{-1}^{1}\left(\sigma^{2}+\sigma^{\prime} u+f u\right) d x \xrightarrow[H^{1} \times L^{2}]{\sigma, u} \text { stationary point }
\end{gathered}
$$

Thermal problem in 1D

$$
\sigma=u^{\prime}, \quad-\sigma^{\prime}=f \quad \text { on }(-1,1)
$$

$$
\frac{1}{2} \int_{-1}^{1}\left(\sigma^{2}+\sigma^{\prime} u+f u\right) d x \xrightarrow[H^{1} \times L^{2}]{\sigma, u} \text { stationary point }
$$

$\mathcal{P}_{1}-\mathcal{P}_{1}(20$ elts)

Thermal problem in 1D
Babuška-Narasimhan

$$
\sigma=u^{\prime}, \quad-\sigma^{\prime}=f \quad \text { on }(-1,1)
$$

$$
\frac{1}{2} \int_{-1}^{1}\left(\sigma^{2}+\sigma^{\prime} u+f u\right) d x \xrightarrow[H^{1} \times L^{2}]{\sigma, u} \text { stationary point }
$$

$\mathcal{P}_{1}-\mathcal{P}_{1}(20$ elts)

$\mathcal{P}_{1}-\mathcal{P}_{1}$ (40 elts)

Thermal problem in 1D
Babuška-Narasimhan

$$
\sigma=u^{\prime}, \quad-\sigma^{\prime}=f \quad \text { on }(-1,1)
$$

$$
\frac{1}{2} \int_{-1}^{1}\left(\sigma^{2}+\sigma^{\prime} u+f u\right) d x \xrightarrow[H^{1} \times L^{2}]{\sigma, u} \text { stationary point }
$$

$\mathcal{P}_{1}-\mathcal{P}_{1}(20$ elts)

$\mathcal{P}_{1}-\mathcal{P}_{1}$ (40 elts)

$\mathcal{P}_{1}-\mathcal{P}_{0}$ (40 elts)

$$
\sigma=\operatorname{grad} u, \quad-\operatorname{div} \sigma=f
$$

$$
\int_{\Omega}\left(\frac{1}{2}|\sigma|^{2}+\operatorname{div} \sigma u+f u\right) d x \xrightarrow[H(\operatorname{div}) \times L^{2}]{\sigma, u} \text { stationary point }
$$

$$
\sigma=\operatorname{grad} u, \quad-\operatorname{div} \sigma=f
$$

$$
\int_{\Omega}\left(\frac{1}{2}|\sigma|^{2}+\operatorname{div} \sigma u+f u\right) d x \xrightarrow[H(\operatorname{div}) \times L^{2}]{\sigma, u} \text { stationary point }
$$

Thermal problem in 2D

$$
\sigma=\operatorname{grad} u, \quad-\operatorname{div} \sigma=f
$$

$$
\int_{\Omega}\left(\frac{1}{2}|\sigma|^{2}+\operatorname{div} \sigma u+f u\right) d x \xrightarrow[H(\operatorname{div}) \times L^{2}]{\sigma, u} \text { stationary point }
$$

Raviart-Thomas - \mathcal{P}_{0}

Raviart-Thomas elements

A mixed FEM for 2nd order elliptic problems, Proc. conf. Math'l Aspects of the FEM, Rome 1975. Springer Lect. Notes in Math \#606, 1977.

Shape functions: $\binom{1}{0},\binom{0}{1},\binom{x}{y}$ DOFs:
Generalizes to all degrees, and all dimensions ($n=3$: Nédélec '80)

Citations to Raviart-Thomas 1977

Math \& CS
SIAM J. Numerical Analysis Numerische Mathematik Mathematics of Computation RAIRO - M^{2} AN
Num. Methods for PDEs
Eng. \& Apps
CMAME
Computational Geosciences
J. Computational Physics IJNME
COMPEL

Maxwell eigenvalue problem, unstructured mesh

$$
\int_{\Omega} \mu^{-1} \operatorname{curl} E \cdot \operatorname{curl} \tilde{E}=\omega^{2} \int_{\Omega} \epsilon E \cdot \tilde{E} \quad \forall \tilde{E}
$$

Right space is H (curl)

$$
\lambda=m^{2}+n^{2}=0,1,1,2,4,4,5,5,8, \ldots
$$

Maxwell eigenvalue problem, unstructured mesh

$$
\int_{\Omega} \mu^{-1} \operatorname{curl} E \cdot \operatorname{curl} \tilde{E}=\omega^{2} \int_{\Omega} \epsilon E \cdot \tilde{E} \quad \forall \tilde{E}
$$

Right space is H (curl)

$$
\lambda=m^{2}+n^{2}=0,1,1,2,4,4,5,5,8, \ldots
$$

$\left(\text { Lag. } \mathcal{P}_{1}\right)^{2}$

Maxwell eigenvalue problem, unstructured mesh

$$
\int_{\Omega} \mu^{-1} \operatorname{curl} E \cdot \operatorname{curl} \tilde{E}=\omega^{2} \int_{\Omega} \epsilon E \cdot \tilde{E} \quad \forall \tilde{E}
$$

Right space is H (curl)

$$
\lambda=m^{2}+n^{2}=0,1,1,2,4,4,5,5,8, \ldots
$$

$\left(\text { Lag. } \mathcal{P}_{1}\right)^{2}$

\longrightarrow
$\mathcal{P}_{1}^{-} \wedge^{1}$

Maxwell eigenvalue problem, regular mesh

$$
\lambda=m^{2}+n^{2}=1,1,2,4,4,5,5,8, \ldots
$$

Maxwell eigenvalue problem, regular mesh
$\lambda=m^{2}+n^{2}=1,1,2,4,4,5,5,8, \ldots$

254	574	1022	1598
1.0043	1.0019	1.0011	1.0007
1.0043	1.0019	1.0011	1.0007
2.0171	2.0076	2.0043	2.0027
4.0680	4.0304	4.0171	4.0110
4.0680	4.0304	4.0171	4.0110
5.1063	5.0475	5.0267	5.0171
5.1063	5.0475	5.0267	5.0171
5.9229	5.9658	5.9807	5.9877
8.2713	8.1215	8.0685	8.0438
Boffi-Brezzi-Gastaldi ${ }^{\prime} 99$			

Vector Laplacian

curl curl $u-\operatorname{grad} \operatorname{div} u=f$ in Ω
$u \cdot t=0, \quad \operatorname{div} u=0$ on $\partial \Omega$

Vector Laplacian

curl curl $u-\operatorname{grad} \operatorname{div} u=f$ in Ω

$$
u \cdot t=0, \quad \operatorname{div} u=0 \text { on } \partial \Omega
$$

$$
\int_{\Omega} \frac{1}{2}\left(|\operatorname{curl} u|^{2}+|\operatorname{div} u|^{2}\right)-f \cdot v \xrightarrow{u} \text { minimum }
$$

Lagrange finite elements will converge

Vector Laplacian

curl curl $u-\operatorname{grad} \operatorname{div} u=f$ in Ω
$u \cdot t=0, \quad \operatorname{div} u=0$ on $\partial \Omega$

$$
\int_{\Omega} \frac{1}{2}\left(|\operatorname{curl} u|^{2}+|\operatorname{div} u|^{2}\right)-f \cdot v \xrightarrow{u} \text { minimum }
$$

Lagrange finite elements will converge to the wrong solution!

Vector Laplacian

curl curl $u-\operatorname{grad} \operatorname{div} u=f$ in Ω

$$
u \cdot t=0, \quad \operatorname{div} u=0 \text { on } \partial \Omega
$$

$$
\int_{\Omega} \frac{1}{2}\left(|\operatorname{curl} u|^{2}+|\operatorname{div} u|^{2}\right)-f \cdot v \xrightarrow{u} \text { minimum }
$$

Lagrange finite elements will converge to the wrong solution! In fact same holds for any conforming finite elements.

Vector Laplacian

curl curl $u-\operatorname{grad} \operatorname{div} u=f$ in Ω
$u \cdot t=0, \quad \operatorname{div} u=0$ on $\partial \Omega$

$$
\int_{\Omega} \frac{1}{2}\left(|\operatorname{curl} u|^{2}+|\operatorname{div} u|^{2}\right)-f \cdot v \xrightarrow{u} \text { minimum }
$$

Lagrange finite elements will converge to the wrong solution! In fact same holds for any conforming finite elements.

A mixed formulation based on appropriate finite elements works just fine
$\int_{\Omega}\left(\frac{1}{2}\left|\sigma^{2}\right|-\operatorname{curl} \sigma \cdot u-\frac{1}{2}|\operatorname{div} u|^{2}-f v\right) d x \xrightarrow[H(\text { curl }) \times H(\text { div })]{\sigma, u}$ stationary point

EM calculations based on the generalized RT elements
Schöberl, Zaglmayr 2006, NGSolve

The Mathematical Framework: Exterior Calculus

Differential forms

An algebraic k-form F on \mathbb{R}^{n} is a skew-symmetric k-linear form: it takes k vectors and delivers a number.

$$
\underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{k} \rightarrow \mathbb{R}
$$

$$
\left(v_{1}, \ldots, v_{k}\right) \mapsto F\left(v_{1}, \ldots, v_{k}\right)
$$

Differential forms

An algebraic k-form F on \mathbb{R}^{n} is a skew-symmetric k-linear form: it takes k vectors and delivers a number.

$$
\underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}} \rightarrow \mathbb{R}, \quad\left(v_{1}, \ldots, v_{k}\right) \mapsto F\left(v_{1}, \ldots, v_{k}\right)
$$

For example if $\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right)$ denotes a vector $d x(\mathbf{u}):=u_{x}$ is a 1-form, $\quad d x \wedge d y(\mathbf{u}, \mathbf{v}):=u_{x} v_{y}-u_{y} v_{x}$ is a 2-form

Differential forms

An algebraic k-form F on \mathbb{R}^{n} is a skew-symmetric k-linear form: it takes k vectors and delivers a number.

$$
\underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}} \rightarrow \mathbb{R}, \quad\left(v_{1}, \ldots, v_{k}\right) \mapsto F\left(v_{1}, \ldots, v_{k}\right)
$$

For example if $\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right)$ denotes a vector $d x(\mathbf{u}):=u_{x}$ is a 1-form, $\quad d x \wedge d y(\mathbf{u}, \mathbf{v}):=u_{x} v_{y}-u_{y} v_{x}$ is a 2-form A differential k-form on $\Omega \subset \mathbb{R}^{n}$ is a field of algebraic k-forms:

$$
\left(v_{1}, \ldots, v_{k}\right) \mapsto \omega_{x}\left(v_{1}, \ldots, v_{k}\right) \in \mathbb{R} \quad \forall x \in \Omega
$$

0 -form $=$ function, 1 -form $=$ covector field

$$
f(x, y) d x+g(x, y) d y
$$

Differential forms

An algebraic k-form F on \mathbb{R}^{n} is a skew-symmetric k-linear form: it takes k vectors and delivers a number.

$$
\underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}} \rightarrow \mathbb{R}, \quad\left(v_{1}, \ldots, v_{k}\right) \mapsto F\left(v_{1}, \ldots, v_{k}\right)
$$

For example if $\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right)$ denotes a vector
$d x(\mathbf{u}):=u_{x}$ is a 1-form, $\quad d x \wedge d y(\mathbf{u}, \mathbf{v}):=u_{x} v_{y}-u_{y} v_{x}$ is a 2-form
A differential k-form on $\Omega \subset \mathbb{R}^{n}$ is a field of algebraic k-forms:

$$
\left(v_{1}, \ldots, v_{k}\right) \mapsto \omega_{x}\left(v_{1}, \ldots, v_{k}\right) \in \mathbb{R} \quad \forall x \in \Omega
$$

0 -form $=$ function, 1 -form $=$ covector field $\quad f(x, y) d x+g(x, y) \mathrm{dy}$
0 -forms: temperature, electric field potential
1-forms: electric field, magnetic field
2-forms: electric flux, magnetic flux, heat flux
3-forms: charge density, heat density, mass density

Exterior calculus and the de Rham complex

- A k-form ω can be naturally integrated over a k-dimensional surface: $\int_{S} \omega \in \mathbb{R}$

Exterior calculus and the de Rham complex

- A k-form ω can be naturally integrated over a k-dimensional surface: $\int_{S} \omega \in \mathbb{R}$
- A k-form can be differentiated to get a $(k+1)$-form $d \omega$: take the directional derivative of $\omega_{x}\left(v_{1}, \ldots, v_{k}\right)$ in the direction v_{k+1} and skew-symmetrize. This is the exterior derivative.

Exterior calculus and the de Rham complex

- A k-form ω can be naturally integrated over a k-dimensional surface: $\int_{S} \omega \in \mathbb{R}$
- A k-form can be differentiated to get a $(k+1)$-form $d \omega$: take the directional derivative of $\omega_{x}\left(v_{1}, \ldots, v_{k}\right)$ in the direction v_{k+1} and skew-symmetrize. This is the exterior derivative.
- The finite energy k-forms are

$$
H \wedge^{k}(\Omega)=\left\{\omega \in L^{2} \Lambda^{k}(\Omega) \mid d \omega \in H \Lambda^{k}(\Omega)\right\}
$$

Exterior calculus and the de Rham complex

- A k-form ω can be naturally integrated over a k-dimensional surface: $\int_{S} \omega \in \mathbb{R}$
- A k-form can be differentiated to get a $(k+1)$-form $d \omega$: take the directional derivative of $\omega_{x}\left(v_{1}, \ldots, v_{k}\right)$ in the direction v_{k+1} and skew-symmetrize. This is the exterior derivative.
- The finite energy k-forms are

$$
H \wedge^{k}(\Omega)=\left\{\omega \in L^{2} \Lambda^{k}(\Omega) \mid d \omega \in H \Lambda^{k}(\Omega)\right\}
$$

- They connect via the exterior derivative to form the de Rham complex:

$$
0 \rightarrow H \wedge^{0}(\Omega) \xrightarrow{d^{0}} H \wedge^{1}(\Omega) \xrightarrow{d^{1}} \cdots \xrightarrow{d^{n-1}} H \wedge^{n}(\Omega) \rightarrow 0
$$

Exterior calculus and the de Rham complex

- A k-form ω can be naturally integrated over a k-dimensional surface: $\int_{S} \omega \in \mathbb{R}$
- A k-form can be differentiated to get a $(k+1)$-form $d \omega$: take the directional derivative of $\omega_{x}\left(v_{1}, \ldots, v_{k}\right)$ in the direction v_{k+1} and skew-symmetrize. This is the exterior derivative.
- The finite energy k-forms are

$$
H \wedge^{k}(\Omega)=\left\{\omega \in L^{2} \Lambda^{k}(\Omega) \mid d \omega \in H \Lambda^{k}(\Omega)\right\}
$$

- They connect via the exterior derivative to form the de Rham complex:

$$
0 \rightarrow H \wedge^{0}(\Omega) \xrightarrow{d^{0}} H \wedge^{1}(\Omega) \xrightarrow{d^{1}} \cdots \xrightarrow{d^{n-1}} H \wedge^{n}(\Omega) \rightarrow 0
$$

- $d^{k+1} \circ d^{k}=0$,

Exterior calculus and the de Rham complex

- A k-form ω can be naturally integrated over a k-dimensional surface: $\int_{S} \omega \in \mathbb{R}$
- A k-form can be differentiated to get a $(k+1)$-form $d \omega$: take the directional derivative of $\omega_{x}\left(v_{1}, \ldots, v_{k}\right)$ in the direction v_{k+1} and skew-symmetrize. This is the exterior derivative.
- The finite energy k-forms are

$$
H \wedge^{k}(\Omega)=\left\{\omega \in L^{2} \Lambda^{k}(\Omega) \mid d \omega \in H \Lambda^{k}(\Omega)\right\}
$$

- They connect via the exterior derivative to form the de Rham complex:

$$
0 \rightarrow H \wedge^{0}(\Omega) \xrightarrow{d^{0}} H \wedge^{1}(\Omega) \xrightarrow{d^{1}} \cdots \xrightarrow{d^{n-1}} H \wedge^{n}(\Omega) \rightarrow 0
$$

- $d^{k+1} \circ d^{k}=0, \quad$ range $\left(d^{k}\right) \subseteq \operatorname{ker}\left(d^{k}\right)$,

Exterior calculus and the de Rham complex

- A k-form ω can be naturally integrated over a k-dimensional surface: $\int_{S} \omega \in \mathbb{R}$
- A k-form can be differentiated to get a $(k+1)$-form $d \omega$: take the directional derivative of $\omega_{x}\left(v_{1}, \ldots, v_{k}\right)$ in the direction v_{k+1} and skew-symmetrize. This is the exterior derivative.
- The finite energy k-forms are

$$
H \wedge^{k}(\Omega)=\left\{\omega \in L^{2} \Lambda^{k}(\Omega) \mid d \omega \in H \Lambda^{k}(\Omega)\right\}
$$

- They connect via the exterior derivative to form the de Rham complex:

$$
0 \rightarrow H \wedge^{0}(\Omega) \xrightarrow{d^{0}} H \wedge^{1}(\Omega) \xrightarrow{d^{1}} \cdots \xrightarrow{d^{n-1}} H \wedge^{n}(\Omega) \rightarrow 0
$$

- $d^{k+1} \circ d^{k}=0, \quad$ range $\left(d^{k}\right) \subseteq \operatorname{ker}\left(d^{k}\right)$, cohomology: ker/range

The case of $\Omega \subset \mathbb{R}^{3}$
For $\Omega \subset \mathbb{R}^{3}$, the de Rham complex boils down to

$$
0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\text { curl }, \Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \rightarrow 0
$$

The case of $\Omega \subset \mathbb{R}^{3}$
For $\Omega \subset \mathbb{R}^{3}$, the de Rham complex boils down to

$$
0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\text { curl }, \Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0
$$

```
        div
grad an
curl informal
    and on
        all vector
    that
        third edition
h.m.schey
```

The case of $\Omega \subset \mathbb{R}^{3}$
For $\Omega \subset \mathbb{R}^{3}$, the de Rham complex boils down to

$$
0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\text { curl }, \Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0
$$

The case of $\Omega \subset \mathbb{R}^{3}$
For $\Omega \subset \mathbb{R}^{3}$, the de Rham complex boils down to

$$
0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\text { curl }, \Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0
$$

$\operatorname{dim}(\mathrm{ker} /$ range $)= \begin{cases}\# \text { components of } \Omega, & k=0 \\ \# \text { tunnels thru } \Omega, & k=1 \\ \# \text { voids in } \Omega, & k=2\end{cases}$

The case of $\Omega \subset \mathbb{R}^{3}$
For $\Omega \subset \mathbb{R}^{3}$, the de Rham complex boils down to

$$
0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\text { curl }, \Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \rightarrow 0
$$

third edition
h.m.schey

d

é. cartan
$\operatorname{dim}($ ker $/$ range $)= \begin{cases}\# \text { components of } \Omega, & k=0 \\ \# \text { tunnels thru } \Omega, & k=1 \\ \# \text { voids in } \Omega, & k=2\end{cases}$

PDEs closely connected to the de Rham sequence

- - divgrad $u=f$
- (curl curl - grad div) $u=f$
- curl curl $u=f, \operatorname{div} u=0$
- $\operatorname{div} u=f, \operatorname{curl} u=0$
- dynamic problems, eigenvalue problems, lower order-terms
- Maxwell's equations
- variable coefficients, nonlinearities...
- - divgrad $u=f$
- (curl curl - grad div) $u=f$
- curl curl $u=f, \operatorname{div} u=0$
- $\operatorname{div} u=f, \operatorname{curl} u=0$
- dynamic problems, eigenvalue problems, lower order-terms
- Maxwell's equations
- variable coefficients, nonlinearities...

The well-posedness of these PDEs is intimately tied to the cohomology of the de Rham complex.

- - divgrad $u=f$
- (curl curl - grad div) $u=f$
- curl curl $u=f, \operatorname{div} u=0$
- $\operatorname{div} u=f, \operatorname{curl} u=0$
- dynamic problems, eigenvalue problems, lower order-terms
- Maxwell's equations
- variable coefficients, nonlinearities...

The well-posedness of these PDEs is intimately tied to the cohomology of the de Rham complex.

To get a stable numerical method, our discretization must capture the essential structure of the de Rham complex, in particular the cohomology.

Design principles for discretizing PDEs related to de Rham

- Treat things for what they are: treat 1-forms as 1-forms, 2-forms as 2 -forms, ...
- A finite element subspace Λ_{h}^{k} of some $H \Lambda^{k}$ should fit together with finite element subspaces of all $H \Lambda^{j}$
- $d \wedge_{h}^{k-1}$ should be contained in Λ_{h}^{k} so we get a discrete de Rham subcomplex

$$
\longrightarrow \Lambda_{h}^{k-1} \xrightarrow{d} \Lambda_{h}^{k} \xrightarrow{d} \Lambda_{h}^{k+1}
$$

- The subcomplex should relate to the full complex via commuting projections

$$
\pi_{h} d=d \pi_{h}
$$

Design principles for discretizing PDEs related to de Rham

- Treat things for what they are: treat 1-forms as 1-forms, 2-forms as 2 -forms, ...
- A finite element subspace Λ_{h}^{k} of some $H \Lambda^{k}$ should fit together with finite element subspaces of all $H \wedge^{j}$
- $d \Lambda_{h}^{k-1}$ should be contained in Λ_{h}^{k} so we get a discrete de Rham subcomplex

- The subcomplex should relate to the full complex via commuting projections

$$
\pi_{h} d=d \pi_{h}
$$

Design principles for discretizing PDEs related to de Rham

- Treat things for what they are: treat 1-forms as 1-forms, 2-forms as 2 -forms, ...
- A finite element subspace Λ_{h}^{k} of some $H \Lambda^{k}$ should fit together with finite element subspaces of all $H \wedge^{j}$
- $d \Lambda_{h}^{k-1}$ should be contained in Λ_{h}^{k} so we get a discrete de Rham subcomplex

$$
\cdots \longrightarrow \Lambda_{h}^{k-1} \xrightarrow{d} \Lambda_{h}^{k} \xrightarrow{d} \Lambda_{h}^{k+1} \longrightarrow \cdots
$$

- The subcomplex should relate to the full complex via commuting projections

Design principles for discretizing PDEs related to de Rham

- Treat things for what they are: treat 1-forms as 1-forms, 2-forms as 2 -forms, ...
- A finite element subspace Λ_{h}^{k} of some $H \Lambda^{k}$ should fit together with finite element subspaces of all $H \wedge^{j}$
- $d \Lambda_{h}^{k-1}$ should be contained in Λ_{h}^{k} so we get a discrete de Rham subcomplex

$$
\cdots \longrightarrow \Lambda_{h}^{k-1} \xrightarrow{d} \Lambda_{h}^{k} \xrightarrow{d} \Lambda_{h}^{k+1} \longrightarrow \cdots
$$

- The subcomplex should relate to the full complex via commuting projections
$\cdots \longrightarrow \Lambda^{k-1} \xrightarrow{d^{k-1}} \Lambda^{k} \longrightarrow \cdots$

$$
\begin{gathered}
\downarrow_{h}^{k-1} \\
\downarrow \pi_{h}^{k} \\
\cdots \longrightarrow \Lambda_{h}^{k-1} \xrightarrow{d^{k-1}} \Lambda_{h}^{k} \longrightarrow \cdots
\end{gathered}
$$

$$
\pi_{h} d=d \pi_{h}
$$

The payoff

A finite element method based on these principles generally captures all the essential structure:

- dimension of the cohomology spaces
- the cohomology classes
- Hodge decomposition (Helmoltz decomposition)
- Poincaré inequality

If the continuous problem is well-posed, the discretization inherits this, i.e., is stable.

The Star of the Show:
Finite Element Differential Forms

Constructing spaces of finite element differential forms

To construct a finite element space of differential forms, we have to specify for a given simplex $T \subset \mathbb{R}^{n}$:

- Shape functions: a finite dimensional space of polynomial forms on the simplex
- Degrees of freedom: grouped into subspaces associated to the subsimplices

Constructing spaces of finite element differential forms

To construct a finite element space of differential forms, we have to specify for a given simplex $T \subset \mathbb{R}^{n}$:

- Shape functions: a finite dimensional space of polynomial forms on the simplex
- Degrees of freedom: grouped into subspaces associated to the subsimplices
Prototypical case: Lagrange finite elements
Shape functions:

$$
V(T)=\mathcal{P}_{r}(T)
$$

DOFs associated to a subsimplex f :
$W(T, f)=\left\{u \mapsto \int_{f} \operatorname{tr}_{T, f} u v d x: v \in \mathcal{P}_{r-1-\operatorname{dim} f}(f)\right\}$

The assembled space is then precisely

$$
\left\{u \in H^{1}(\Omega):\left.u\right|_{T} \in V(T) \quad \forall T\right\}
$$

The spaces $\mathcal{P}_{r} \Lambda^{k}$ and $\mathcal{P}_{r}^{-} \Lambda^{k}$

For general form degree k there are two families of spaces of polynomial differential forms, $\mathcal{P}_{r} \Lambda^{k}$ and $\mathcal{P}_{r}^{-} \Lambda^{k}$, which, when assembled lead to the natural finite element subspaces of $H \Lambda^{k}(\Omega)$.

They assemble into complexes with commuting projections in numerous ways.

The two families are inter-related and should be studied together.

The spaces $\mathcal{P}_{r} \Lambda^{k}$ and $\mathcal{P}_{r}^{-} \Lambda^{k}$

For general form degree k there are two families of spaces of polynomial differential forms, $\mathcal{P}_{r} \Lambda^{k}$ and $\mathcal{P}_{r}^{-} \Lambda^{k}$, which, when assembled lead to the natural finite element subspaces of $H \Lambda^{k}(\Omega)$.

They assemble into complexes with commuting projections in numerous ways.

The two families are inter-related and should be studied together. Special cases:

- $\mathcal{P}_{r} \Lambda^{0}=\mathcal{P}_{r}^{-} \Lambda^{0}$, the Lagrange finite elements
- $\mathcal{P}_{r} \Lambda^{n}(\mathcal{T})=\mathcal{P}_{r+1}^{-} \Lambda^{n}$, all piecewise polynomials of degree r
- $\mathcal{P}_{1}^{-} \Lambda^{k}(\mathcal{T})$ is the space of Whitney k-forms (1 DOF per k-face)

Whitney, 1957

- $\mathcal{P}_{r}^{-} \Lambda^{0}(\mathcal{T})=\mathcal{P}_{r} \Lambda^{0}(\mathcal{T}) \subset H^{1} \quad$ Lagrange elts
- $\mathcal{P}_{r}^{-} \Lambda^{n}(\mathcal{T})=\mathcal{P}_{r-1} \Lambda^{n}(\mathcal{T}) \subset L^{2}$ discontinuous elts
- $n=2: \mathcal{P}_{r}^{-} \Lambda^{1}(\mathcal{T}) \subset H($ curl $) \quad$ Raviart-Thomas elts

$$
\mathcal{P}_{r} \Lambda^{1}(\mathcal{T}) \subset H(\text { curl }) \quad \text { Brezzi-Douglas-Marini elts }
$$

- $n=3: \mathcal{P}_{r}^{-} \Lambda^{1}(\mathcal{T}) \subset H($ curl $)$ Nedelec 1st kind edge elts $\mathcal{P}_{r} \wedge^{1}(\mathcal{T}) \subset H($ curl $) \quad$ Nedelec $2 n d$ kind edge elts $\mathcal{P}_{r}^{-} \Lambda^{2}(\mathcal{T}) \subset H($ div $) \quad$ Nedelec 1st kind face elts $\mathcal{P}_{r} \Lambda^{2}(\mathcal{T}) \subset H($ div $) \quad$ Nedelec 2 nd kind face elts

The Koszul complex

The key to the construction is the Koszul differential $\kappa: \Lambda^{k} \rightarrow \Lambda^{k-1}$:

$$
(\kappa \omega)_{x}\left(v^{1}, \ldots, v^{k-1}\right)=\omega_{x}\left(X, v^{1}, \ldots, v^{k-1}\right), \quad X=x-x_{0}
$$

The Koszul complex

The key to the construction is the Koszul differential $\kappa: \Lambda^{k} \rightarrow \Lambda^{k-1}$:

$$
\begin{aligned}
& (\kappa \omega)_{x}\left(v^{1}, \ldots, v^{k-1}\right)=\omega_{x}\left(X, v^{1}, \ldots, v^{k-1}\right), \quad X=x-x_{0} \\
& 0 \longleftarrow \mathcal{P}_{r} \Lambda^{0} \stackrel{\kappa}{\longleftarrow} \mathcal{P}_{r-1} \Lambda^{1} \stackrel{\kappa}{\longleftarrow} \cdots \kappa^{\kappa} \mathcal{P}_{r-n} \Lambda^{n} \longleftarrow 0
\end{aligned}
$$

The Koszul complex
The key to the construction is the Koszul differential $\kappa: \Lambda^{k} \rightarrow \Lambda^{k-1}$:

$$
\begin{aligned}
& (\kappa \omega)_{x}\left(v^{1}, \ldots, v^{k-1}\right)=\omega_{x}\left(X, v^{1}, \ldots, v^{k-1}\right), \quad X=x-x_{0} \\
& 0 \longleftarrow \mathcal{P}_{r} \Lambda^{0} \stackrel{\kappa}{\longleftarrow} \mathcal{P}_{r-1} \Lambda^{1} \stackrel{\kappa}{\longleftarrow} \cdots \kappa^{\kappa} \mathcal{P}_{r-n} \Lambda^{n} \longleftarrow 0
\end{aligned}
$$

C.f., the polynomial de Rham complex
$0 \longrightarrow \mathcal{P}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n} \longrightarrow 0$

The Koszul complex
The key to the construction is the Koszul differential $\kappa: \Lambda^{k} \rightarrow \Lambda^{k-1}$:

$$
\begin{aligned}
& (\kappa \omega)_{x}\left(v^{1}, \ldots, v^{k-1}\right)=\omega_{x}\left(X, v^{1}, \ldots, v^{k-1}\right), \quad X=x-x_{0} \\
& 0 \longleftarrow \mathcal{P}_{r} \Lambda^{0} \stackrel{\kappa}{\longleftarrow} \mathcal{P}_{r-1} \Lambda^{1} \stackrel{\kappa}{\longleftarrow} \cdots \kappa^{\kappa} \mathcal{P}_{r-n} \Lambda^{n} \longleftarrow 0
\end{aligned}
$$

C.f., the polynomial de Rham complex

$$
0 \longrightarrow \mathcal{P}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n} \longrightarrow 0
$$

For $\Omega \subset \mathbb{R}^{3}$
$0 \leftarrow \mathcal{P}_{r}(\Omega) \stackrel{\bullet X}{\longleftarrow} \mathcal{P}_{r-1}\left(\Omega ; \mathbb{R}^{3}\right) \stackrel{x X}{\longleftarrow} \mathcal{P}_{r-2}\left(\Omega ; \mathbb{R}^{3}\right) \stackrel{X}{\longleftarrow} \mathcal{P}_{r-3}(\Omega) \leftarrow 0$

The Koszul complex
The key to the construction is the Koszul differential $\kappa: \Lambda^{k} \rightarrow \Lambda^{k-1}$:

$$
\begin{aligned}
& (\kappa \omega)_{x}\left(v^{1}, \ldots, v^{k-1}\right)=\omega_{x}\left(X, v^{1}, \ldots, v^{k-1}\right), \quad X=x-x_{0} \\
& 0 \longleftarrow \mathcal{P}_{r} \Lambda^{0} \stackrel{\kappa}{\longleftarrow} \mathcal{P}_{r-1} \Lambda^{1} \stackrel{\kappa}{\longleftarrow} \cdots \kappa^{\kappa} \mathcal{P}_{r-n} \Lambda^{n} \longleftarrow 0
\end{aligned}
$$

C.f., the polynomial de Rham complex

$$
0 \longrightarrow \mathcal{P}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n} \longrightarrow 0
$$

For $\Omega \subset \mathbb{R}^{3}$
$0 \leftarrow \mathcal{P}_{r}(\Omega) \stackrel{\bullet X}{\longleftarrow} \mathcal{P}_{r-1}\left(\Omega ; \mathbb{R}^{3}\right) \stackrel{x X}{\longleftarrow} \mathcal{P}_{r-2}\left(\Omega ; \mathbb{R}^{3}\right) \stackrel{X}{\longleftarrow} \mathcal{P}_{r-3}(\Omega) \leftarrow 0$

Key relation: $(d \kappa+\kappa d) \omega=(r+k) \omega \quad \forall \omega \in \mathcal{H}_{r} \Lambda^{k}$ (homogeneous polys)

The Koszul complex
The key to the construction is the Koszul differential $\kappa: \Lambda^{k} \rightarrow \Lambda^{k-1}$:

$$
\begin{aligned}
& (\kappa \omega)_{x}\left(v^{1}, \ldots, v^{k-1}\right)=\omega_{x}\left(X, v^{1}, \ldots, v^{k-1}\right), \quad X=x-x_{0} \\
& 0 \longleftarrow \mathcal{P}_{r} \Lambda^{0} \stackrel{\kappa}{\longleftarrow} \mathcal{P}_{r-1} \Lambda^{1} \stackrel{\kappa}{\longleftarrow} \cdots \kappa^{\kappa} \mathcal{P}_{r-n} \Lambda^{n} \longleftarrow 0
\end{aligned}
$$

C.f., the polynomial de Rham complex

$$
0 \longrightarrow \mathcal{P}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n} \longrightarrow 0
$$

For $\Omega \subset \mathbb{R}^{3}$
$0 \leftarrow \mathcal{P}_{r}(\Omega) \stackrel{\bullet X}{\longleftarrow} \mathcal{P}_{r-1}\left(\Omega ; \mathbb{R}^{3}\right) \stackrel{x X}{\longleftarrow} \mathcal{P}_{r-2}\left(\Omega ; \mathbb{R}^{3}\right) \stackrel{X}{\longleftarrow} \mathcal{P}_{r-3}(\Omega) \leftarrow 0$

Key relation: $(d \kappa+\kappa d) \omega=(r+k) \omega \quad \forall \omega \in \mathcal{H}_{r} \Lambda^{k}$ (homogeneous polys)

$$
\mathcal{H}_{r} \Lambda^{k}=d \mathcal{H}_{r+1} \Lambda^{k-1} \oplus \kappa \mathcal{H}_{r-1} \Lambda^{k+1}
$$

Definition of $\mathcal{P}_{r}^{-} \Lambda^{k}$

Using this decomposition, we define the space $\mathcal{P}_{r}^{-} \Lambda^{k}$ contained between $\mathcal{P}_{r} \Lambda^{k}$ and $\mathcal{P}_{r-1} \Lambda^{k}$:

$$
\mathcal{P}_{r} \Lambda^{k}:=\mathcal{P}_{r-1} \Lambda^{k}+\kappa \mathcal{H}_{r-1} \Lambda^{k+1}+d \mathcal{H}_{r+1} \Lambda^{k-1}
$$

Definition of $\mathcal{P}_{r}^{-} \wedge^{k}$

Using this decomposition, we define the space $\mathcal{P}_{r}^{-} \Lambda^{k}$ contained between $\mathcal{P}_{r} \Lambda^{k}$ and $\mathcal{P}_{r-1} \Lambda^{k}$:

$$
\mathcal{P}_{r}^{-} \Lambda^{k}:=\mathcal{P}_{r-1} \Lambda^{k}+\kappa \mathcal{H}_{r-1} \Lambda^{k+1}+d \mathcal{H}_{\mathbf{r}} \mathbf{X} \Lambda^{k-1}
$$

Note

$$
\begin{aligned}
& \mathcal{P}_{r}^{-} \Lambda^{0}=\mathcal{P}_{r} \Lambda^{0} \\
& \mathcal{P}_{r}^{-} \Lambda^{n}=\mathcal{P}_{r-1} \Lambda^{n} \\
& \mathcal{P}_{r-1} \Lambda^{k} \subsetneq \mathcal{P}_{r}^{-} \Lambda^{k} \subsetneq \mathcal{P}_{r} \Lambda^{k} \text { otherwise }
\end{aligned}
$$

Definition of $\mathcal{P}_{r}^{-} \wedge^{k}$

Using this decomposition, we define the space $\mathcal{P}_{r}^{-} \Lambda^{k}$ contained between $\mathcal{P}_{r} \Lambda^{k}$ and $\mathcal{P}_{r-1} \Lambda^{k}$:

$$
\mathcal{P}_{r}^{-} \Lambda^{k}:=\mathcal{P}_{r-1} \Lambda^{k}+\kappa \mathcal{H}_{r-1} \Lambda^{k+1}+d \mathcal{H}_{\mathbf{r}} \mathbf{X} \Lambda^{k-1}
$$

Note

$$
\begin{aligned}
& \mathcal{P}_{r}^{-} \Lambda^{0}=\mathcal{P}_{r} \Lambda^{0} \\
& \mathcal{P}_{r}^{-} \Lambda^{n}=\mathcal{P}_{r-1} \Lambda^{n} \\
& \mathcal{P}_{r-1} \Lambda^{k} \subsetneq \mathcal{P}_{r}^{-} \Lambda^{k} \subsetneq \mathcal{P}_{r} \Lambda^{k} \text { otherwise }
\end{aligned}
$$

God made $\mathcal{P}_{r} \Lambda^{k}$ and $\mathcal{P}_{r}^{-} \Lambda^{k}$, all the rest is the work of man.

Degrees of freedom

The other ingredient of a finite element space are the degrees of freedom, i.e., a decomposition of the dual spaces $\left(\mathcal{P}_{r} \Lambda^{k}(T)\right)^{*}$ and $\left(\mathcal{P}_{r}^{-} \Lambda^{k}(T)\right)^{*}$, into subspaces associated to subsimplices f of T.

Degrees of freedom

The other ingredient of a finite element space are the degrees of freedom, i.e., a decomposition of the dual spaces $\left(\mathcal{P}_{r} \Lambda^{k}(T)\right)^{*}$ and $\left(\mathcal{P}_{r}^{-} \Lambda^{k}(T)\right)^{*}$, into subspaces associated to subsimplices f of T.

DOF for $\mathcal{P}_{r} \Lambda^{k}(T)$: to a subsimplex f of $\operatorname{dim} . d \geq k$ we associate

$$
\omega \mapsto \int_{f} \operatorname{Tr}_{f} \omega \wedge \eta, \quad \eta \in \mathcal{P}_{r+k-d}^{-} \wedge^{d-k}(f)
$$

Degrees of freedom

The other ingredient of a finite element space are the degrees of freedom, i.e., a decomposition of the dual spaces $\left(\mathcal{P}_{r} \Lambda^{k}(T)\right)^{*}$ and $\left(\mathcal{P}_{r}^{-} \Lambda^{k}(T)\right)^{*}$, into subspaces associated to subsimplices f of T.

DOF for $\mathcal{P}_{r} \Lambda^{k}(T)$: to a subsimplex f of $\operatorname{dim} . d \geq k$ we associate

$$
\omega \mapsto \int_{f} \operatorname{Tr}_{f} \omega \wedge \eta, \quad \eta \in \mathcal{P}_{r+k-d}^{-} \wedge^{d-k}(f)
$$

DOF for $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$:

$$
\omega \mapsto \int_{f} \operatorname{Tr}_{f} \omega \wedge \eta, \quad \eta \in \mathcal{P}_{r+k-d-1} \wedge^{d-k}(f) \quad \text { Hiptmair }
$$

Degrees of freedom

The other ingredient of a finite element space are the degrees of freedom, i.e., a decomposition of the dual spaces $\left(\mathcal{P}_{r} \Lambda^{k}(T)\right)^{*}$ and $\left(\mathcal{P}_{r}^{-} \Lambda^{k}(T)\right)^{*}$, into subspaces associated to subsimplices f of T.

DOF for $\mathcal{P}_{r} \Lambda^{k}(T)$: to a subsimplex f of $\operatorname{dim} . d \geq k$ we associate

$$
\omega \mapsto \int_{f} \operatorname{Tr}_{f} \omega \wedge \eta, \quad \eta \in \mathcal{P}_{r+k-d}^{-} \wedge^{d-k}(f)
$$

DOF for $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$:

$$
\omega \mapsto \int_{f} \operatorname{Tr}_{f} \omega \wedge \eta, \quad \eta \in \mathcal{P}_{r+k-d-1} \wedge^{d-k}(f) \quad \text { Hiptmair }
$$

The resulting FE spaces have exactly the continuity required by $H \wedge^{k}$: Theorem. $\quad \mathcal{P}_{r} \Lambda^{k}(\mathcal{T})=\left\{\omega \in H \Lambda^{k}(\Omega):\left.\omega\right|_{T} \in \mathcal{P}_{r} \Lambda^{k}(T) \quad \forall T \in \mathcal{T}\right\}$. Similarly for \mathcal{P}_{r}^{-}.

Bases for $\mathcal{P}_{r} \wedge^{k}$ and $\mathcal{P}_{r}^{-} \Lambda^{k}$

As a basis for $\mathcal{P}_{r} \Lambda^{k}(\mathcal{T})$ and $\mathcal{P}_{r}^{-} \Lambda^{k}(\mathcal{T})$ we may take the dual basis to the degrees of freedom.

For $k=0$ this is the standard Lagrange basis.
For $\mathcal{P}_{1}^{-} \Lambda^{k}(\mathcal{T})$ there is one basis element for each k-simplex, the Whitney form

$$
\phi_{\sigma_{0} \cdots \sigma_{k}}:=\sum_{i=0}^{k}(-1)^{i} \lambda_{\sigma_{i}} d \lambda_{\sigma_{0}} \wedge \cdots \wedge \widehat{d \lambda}_{\sigma_{i}} \wedge \cdots \wedge d \lambda_{\sigma_{k}}
$$

Geometric bases

A useful alternative to the Lagrange basis for the Lagrange finite elements is the Bernstein basis, given by monomials in the barycentric coords.

$$
\begin{aligned}
& \mathcal{P}_{r}(T)=\bigoplus_{f \text { subsimplex }} \mathcal{P}_{r}(T, f) \\
& \mathcal{P}_{r}(T, f) \underset{\text { trace }}{\cong} \stackrel{\mathcal{P}}{r}(f) \cong \mathcal{P}_{r-\operatorname{dim} f-1}(f)
\end{aligned}
$$

Geometric bases

A useful alternative to the Lagrange basis for the Lagrange finite elements is the Bernstein basis, given by monomials in the barycentric coords.

$$
\mathcal{P}_{r}(T)=\bigoplus_{f \text { subsimplex }} \mathcal{P}_{r}(T, f)
$$

$$
\mathcal{P}_{r}(T, f) \underset{\text { trace }}{\cong} \dot{\mathcal{P}}_{r}(f) \cong \mathcal{P}_{r-\operatorname{dim} f-1}(f)
$$

$$
\mathcal{P}_{r} \Lambda^{k}(T)=\bigoplus_{\operatorname{dim} f \geq k} \mathcal{P}_{r} \Lambda^{k}(T, f), \mathcal{P}_{r} \Lambda^{k}(T, f) \underset{\text { trace }}{\cong} \dot{\mathcal{P}}_{r} \Lambda^{k}(f) \cong \mathcal{P}_{r+k-\operatorname{dim} f}^{-} \Lambda^{\operatorname{dim} f-k}(f)
$$

Geometric bases

A useful alternative to the Lagrange basis for the Lagrange finite elements is the Bernstein basis, given by monomials in the barycentric coords.

$$
\mathcal{P}_{r}(T)=\bigoplus_{f \text { subsimplex }} \mathcal{P}_{r}(T, f)
$$

$$
\mathcal{P}_{r}(T, f) \underset{\text { trace }}{\cong} \dot{\mathcal{P}}_{r}(f) \cong \mathcal{P}_{r-\operatorname{dim} f-1}(f)
$$

$$
\mathcal{P}_{r} \Lambda^{k}(T)=\bigoplus_{\operatorname{dim} f \geq k} \mathcal{P}_{r} \Lambda^{k}(T, f), \mathcal{P}_{r} \Lambda^{k}(T, f) \underset{\text { trace }}{\cong} \dot{\mathcal{P}}_{r} \Lambda^{k}(f) \cong \mathcal{P}_{r+k-\operatorname{dim} f}^{-} \Lambda^{\operatorname{dim} f-k}(f)
$$

$$
\begin{aligned}
\mathcal{P}_{r}^{-} \Lambda^{k}(T)= & \bigoplus_{\operatorname{dim} f \geq k} \mathcal{P}_{r}^{-} \Lambda^{k}(T, f), \\
& \mathcal{P}_{r}^{-} \Lambda^{k}(T, f) \xrightarrow[\text { trace }]{\cong} \grave{\mathcal{P}}_{r}^{-} \Lambda^{k}(f) \cong \mathcal{P}_{r+k-\operatorname{dim} f-1} \Lambda^{\operatorname{dim} f-k}(f)
\end{aligned}
$$

Finite element de Rham subcomplexes

We don't only want spaces, we also want them to fit together into discrete de Rham complexes.

- One such FEdR subcomplex uses the $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces of constant degree r :

$$
0 \rightarrow \mathcal{P}_{r}^{-} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{n}(\mathcal{T}) \rightarrow 0
$$

Finite element de Rham subcomplexes

We don't only want spaces, we also want them to fit together into discrete de Rham complexes.

- One such FEdR subcomplex uses the $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces of constant degree r :

$$
0 \rightarrow \mathcal{P}_{r}^{-} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{n}(\mathcal{T}) \rightarrow 0
$$

- Another uses the $\mathcal{P}_{r} \wedge^{k}$ spaces with decreasing degree:

$$
0 \rightarrow \mathcal{P}_{r} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n}(\mathcal{T}) \rightarrow 0
$$

Finite element de Rham subcomplexes

We don't only want spaces, we also want them to fit together into discrete de Rham complexes.

- One such FEdR subcomplex uses the $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces of constant degree r :

$$
0 \rightarrow \mathcal{P}_{r}^{-} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{n}(\mathcal{T}) \rightarrow 0
$$

- Another uses the $\mathcal{P}_{r} \wedge^{k}$ spaces with decreasing degree:

$$
0 \rightarrow \mathcal{P}_{r} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n}(\mathcal{T}) \rightarrow 0
$$

- These are extreme cases. For every r there are 2^{n-1} such FEdR subcomplexes.

The 4 FEdR subcomplexes ending with $\mathcal{P}_{0} \wedge^{3}$ in 3 D

Application to Elasticity:
The Holy Grail Attained?

Stress-displacement mixed finite elements for elasticity

The search for such elements dates back to Fraeijs de Veubeke, Pian, Watwood and Hartz, Zienkiewicz, ... in the 1960's.

It is, of course, possible to derive elements that exhibit complete continuity of the appropriate components along interfaces and indeed this was achieved by Raviart and Thomas in the case of the heat conduction problem discussed previously. Extension to the full stress problem is difficult and as yet such elements have not been successfully noted.

- Zienkiewicz, Taylor, Zhu

The Finite Element Method: Its Basis \& Fundamentals, 6th ed., vol. 1

Stress-displacement mixed finite elements for elasticity

The search for such elements dates back to Fraeijs de Veubeke, Pian, Watwood and Hartz, Zienkiewicz, ... in the 1960's.

It is, of course, possible to derive elements that exhibit complete continuity of the appropriate components along interfaces and indeed this was achieved by Raviart and Thomas in the case of the heat conduction problem discussed previously. Extension to the full stress problem is difficult and as yet such elements have not been successfully noted.

- Zienkiewicz, Taylor, Zhu

The Finite Element Method: Its Basis \& Fundamentals, 6th ed., vol. 1

Thanks to FEEC, it is time to retire that statement!

Mixed formulation with weak symmetry

Idea goes back to Fraeijs de Veubeke 1975, Amara-Thomas 1979 In the classical Hellinger-Reissner principle, symmetry of the stress tensor (balance of angular momentum) is assumed to hold exactly. Instead we impose it weakly with a Lagrange multiplier (the rotation).

Mixed formulation with weak symmetry

Idea goes back to Fraeijs de Veubeke 1975, Amara-Thomas 1979 In the classical Hellinger-Reissner principle, symmetry of the stress tensor (balance of angular momentum) is assumed to hold exactly. Instead we impose it weakly with a Lagrange multiplier (the rotation).
$\int_{\Omega}\left(\frac{1}{2} A \sigma: \sigma+\operatorname{div} \sigma \cdot u+f \cdot u\right) d x \xrightarrow[H(\operatorname{div} ; \mathbb{S}) \times L^{2}\left(\mathbb{R}^{n}\right)]{\sigma, u}$ stationary point

Mixed formulation with weak symmetry

Idea goes back to Fraeijs de Veubeke 1975, Amara-Thomas 1979 In the classical Hellinger-Reissner principle, symmetry of the stress tensor (balance of angular momentum) is assumed to hold exactly. Instead we impose it weakly with a Lagrange multiplier (the rotation).
$\int_{\Omega}\left(\frac{1}{2} A \sigma: \sigma+\operatorname{div} \sigma \cdot u+f \cdot u\right) d x \xrightarrow[H(\operatorname{div} ; S) \times L^{2}\left(\mathbb{R}^{n}\right)]{\sigma, u}$ stationary point $\int_{\Omega}\left(\frac{1}{2} A \sigma: \sigma+\operatorname{div} \sigma \cdot u+\sigma: p+f \cdot u\right) d x \xrightarrow[H(\operatorname{div} ; \mathbb{M}) \times L^{2}\left(\mathbb{R}^{n}\right) \times L^{2}(\mathbb{K})]{\sigma, u, p}$ S.P.

Mixed formulation with weak symmetry

Idea goes back to Fraeijs de Veubeke 1975, Amara-Thomas 1979 In the classical Hellinger-Reissner principle, symmetry of the stress tensor (balance of angular momentum) is assumed to hold exactly. Instead we impose it weakly with a Lagrange multiplier (the rotation).
$\int_{\Omega}\left(\frac{1}{2} A \sigma: \sigma+\operatorname{div} \sigma \cdot u+f \cdot u\right) d x \xrightarrow[H(\operatorname{div} ; S) \times L^{2}\left(\mathbb{R}^{n}\right)]{\sigma, u}$ stationary point
$\int_{\Omega}\left(\frac{1}{2} A \sigma: \sigma+\operatorname{div} \sigma \cdot u+\sigma: p+f \cdot u\right) d x \xrightarrow[H(\operatorname{div} ; \mathbb{M}) \times L^{2}\left(\mathbb{R}^{n}\right) \times L^{2}(\mathbb{K})]{\sigma, u, P}$ S.P.
Arnold-Brezzi-Douglas '84: PEERS element

The elasticity complex

There is a complex for elasticity analogous to the de Rham complex. It has versions both for strong symmetry and weak symmetry.

$$
\begin{aligned}
& \text { displacement rotation } \\
& \downarrow \downarrow \\
& 0 \rightarrow H^{1}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{2}(\Omega, \mathbb{K}) \xrightarrow{(\text { grad },-l)} H(J, \Omega ; \mathbb{M}) \xrightarrow{J} \\
& \xrightarrow{J} H(\operatorname{div}, \Omega ; \mathbb{M}) \xrightarrow{\binom{\text { div }}{\text { skw }}} L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{2}(\Omega ; \mathbb{K}) \rightarrow 0 \\
& \text { stress } \\
& \text { load } \\
& \text { couple }
\end{aligned}
$$

J is second order!

New mixed finite elements for elasticity

The elasticity complex can be derived from the de Rham complex by an intricate construction. Mimicking this construction on the discrete level we have derived stable mixed finite elements for elasticity. (Arnold-Falk-Winther 2006, 2007).

Main result

Choose two discretizations of the de Rham complex:

$$
\begin{aligned}
& 0 \longrightarrow \Lambda_{h}^{0} \xrightarrow{\text { grad }} \Lambda_{h}^{1} \xrightarrow{\text { curl }} \Lambda_{h}^{2} \xrightarrow{\text { div }} \Lambda_{h}^{3} \longrightarrow 0 \\
& 0 \longrightarrow \tilde{\Lambda}_{h}^{0} \xrightarrow{\text { grad }} \tilde{\Lambda}_{h}^{1} \xrightarrow{\text { curl }} \tilde{\Lambda}_{h}^{2} \xrightarrow{\text { div }} \tilde{\Lambda}_{h}^{3} \longrightarrow 0
\end{aligned}
$$

Surjectivity Hypothesis: (roughly) for each DOF of Λ_{h}^{2} there is a corresponding DOF of $\tilde{\Lambda}_{h}^{1}$.
Then $\left\{\begin{array}{ll}\text { stress: } & \tilde{\Lambda}_{h}^{2}\left(\mathbb{R}^{3}\right) \\ \text { displacement: } & \tilde{\Lambda}_{h}^{3}\left(\mathbb{R}^{3}\right) \\ \text { rotation: } & \Lambda_{h}^{3}(\mathbb{K})\end{array}\right\}$ is a stable element choice.

The simplest choice

σ

u

p

- Based on HR formulation with weak symmetry; very natural
- Lowest degree element is very simple: full \mathcal{P}_{1} for stress, \mathcal{P}_{0} for displacement and rotation
- Works for every polynomial degree
- Works the same in 2 and 3 (or more) dimensions
- Robust to material constraints like incompressibility
- Provably stable and convergent

Conclusions

- Exterior calculus clarifies the nature of physical quantities and the structure of the PDEs involving them.

Conclusions

- Exterior calculus clarifies the nature of physical quantities and the structure of the PDEs involving them.
- Capturing the right structure on the discrete level can be essential to get stable methods.

Conclusions

- Exterior calculus clarifies the nature of physical quantities and the structure of the PDEs involving them.
- Capturing the right structure on the discrete level can be essential to get stable methods.
- FEEC provides a very natural framework for the design and understanding of subtle stability issues that arise in the discretization of a wide variety of PDE systems. It brings to bear tools from geometry, topology, and algebra to develop discretizations which are compatible with the geometric, topological, and algebraic structure of the PDE system, and so obtain stability.
- Exterior calculus clarifies the nature of physical quantities and the structure of the PDEs involving them.
- Capturing the right structure on the discrete level can be essential to get stable methods.
- FEEC provides a very natural framework for the design and understanding of subtle stability issues that arise in the discretization of a wide variety of PDE systems. It brings to bear tools from geometry, topology, and algebra to develop discretizations which are compatible with the geometric, topological, and algebraic structure of the PDE system, and so obtain stability.
- FEEC has been used to unify, clarify, and refine many known finite element methods. It is a mathematically rigorous theory.
- Exterior calculus clarifies the nature of physical quantities and the structure of the PDEs involving them.
- Capturing the right structure on the discrete level can be essential to get stable methods.
- FEEC provides a very natural framework for the design and understanding of subtle stability issues that arise in the discretization of a wide variety of PDE systems. It brings to bear tools from geometry, topology, and algebra to develop discretizations which are compatible with the geometric, topological, and algebraic structure of the PDE system, and so obtain stability.
- FEEC has been used to unify, clarify, and refine many known finite element methods. It is a mathematically rigorous theory.
- The $\mathcal{P}_{r} \Lambda^{k}$ and $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces are the natural finite element discretizations for differential forms and the de Rham complex.
- Exterior calculus clarifies the nature of physical quantities and the structure of the PDEs involving them.
- Capturing the right structure on the discrete level can be essential to get stable methods.
- FEEC provides a very natural framework for the design and understanding of subtle stability issues that arise in the discretization of a wide variety of PDE systems. It brings to bear tools from geometry, topology, and algebra to develop discretizations which are compatible with the geometric, topological, and algebraic structure of the PDE system, and so obtain stability.
- FEEC has been used to unify, clarify, and refine many known finite element methods. It is a mathematically rigorous theory.
- The $\mathcal{P}_{r} \Lambda^{k}$ and $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces are the natural finite element discretizations for differential forms and the de Rham complex.
- Through FEEC we believe we have completed the long search for "just the right" mixed finite elements for elasticity.

everything is at www.ima.umn.edu/~arnold

Finite element exterior calculus, homological techniques, and applications, Acta Numerica 2006

Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comp. 2007

Differential complexes and stability of finite element methods.
I. The de Rham complex
II. The elasticity complex
in: Compatible Spatial Discretizations,
IMA Volumes in Mathematics and its Applications 142

