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Linearized plane elasticity

displacement u : Ω → R2 Aσ = ε u := [∇u + (∇u)T ]/2

stress σ : Ω → S:= R2×2
sym div σ = f

σ ∈ H(div,Ω, S), u ∈ L2(Ω, R2) satisfy∫
Ω

Aσ : τ dx +
∫

Ω

div τ · u dx = 0 ∀τ ∈ H(div,Ω, S)∫
Ω

div σ · v dx =
∫

Ω

f · v ∀v ∈ L2(Ω, R2)

(σ, u) ∈ H(div,Ω, S)× L2(Ω, R2) saddle point of

L(τ, v) =
∫

Ω

(1
2
Aτ : τ + div τ · v − f · v

)
dx
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Mixed finite elements for elasticity

Mixed methods seek a saddle point over finite dimensional

subspaces.

The question is:

How can we construct finite element spaces

Σh ⊂ H(div,Ω, S), Vh ⊂ L2(Ω, R2)

with good stability and convergence properties?
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Vector/scalar mixed methods

(σ, u) ∈ H(div,Ω, R2)× L2(Ω, R) is a critical point of∫
Ω

(1
2
Aτ · τ + div τ v − fv

)
dx

�
�

�
��

vector
A

A
A
AK

scalar

A variety of stable choices of space exist, most notably the

Raviart–Thomas and Brezzi–Douglas–Marini families.

RT0 RT1 BDM1
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Stability properties

The spaces used for vector/scalar problems have two key

properties that are used to establish stability and

convergence.

div Σh ⊂ Vh

There exists a projection operator Πh onto Σh, bounded in

L(H1, L2) uniformly in h, and satisfying the

commutativity property div Πhσ = Ph div σ where Ph is the

L2 projection onto Vh

A beautiful convergence theory results: Raviart–Thomas,

Falk–Osborn, Douglas–Roberts, . . .
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Previous tensor/vector mixed elements

Efforts to obtain similarly nice stress–displacement mixed

finite elements had produced no stable elements using

polynomial shape functions.

Composite elts: Johnson–Mercier ’78

cf. Fraeijs de Veubeke ’65;Watwood–Hartz ’68

Arnold–Douglas–Gupta ’84 . . .

Modified variational forms:

Amara–Thomas ’79, Arnold–Brezzi–Douglas ’84 (PEERS),

Stenberg ’86 . . . , Stein and Rolfes ’90;

Mignot–Surrey ’81; Arnold–Falk ’88; . . .
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A new family of triangular elements

Pick any polynomial degree k ≥ 1

For the displacement in L2(Ω, R2) we simply use

discontinuous p.w. polynomials of degree ≤ k.

k = 1

k = 2
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A new family of triangular elements

For the stress in H(div,Ω, S) the shape functions are

ΣT = { τ ∈ Pk+2(T, S) | div τ ∈ Pk(T, R2)}. k = 1 DOF are

the values of three components at each vertex (9)

the values of the moments of degree 0 and 1 of the normal

components on each edge (12)

the value of the moment of degree 0 on the triangle (3)

24 stress DOF
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Basic properties

Theorem. 1. The DOF are unisolvent.

2. The assembled finite element space belongs to

H(div,Ω, S) and satisfies div Σh = Vh.

3. The associated operator Πh : C(Ω, S) → Σh satisfies

div Πhτ = Ph div τ for all τ ∈ C(Ω, S) ∩H(div,Ω, S).
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Convergence

Theorem.

‖σ − σh‖L2 ≤ Chk+2‖σ‖Hk+2

‖u− uh‖L2 ≤ Chk+1‖u‖Hk+2

Lowest order element is O(h3) for stress in L2, O(h2) for

displacement.
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Vertex DOF

Unlike the usual H(div,Ω, R2)
finite elements, our H(div,Ω, S)
elements involve vertex degrees of

freedom.

These are not required for

conformity with H(div,Ω, S), and

may complicate implementation.

However: any H(div,Ω, S)
element employing continuous

shape functions must have vertex

values among the DOF. �
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e2

n1

n2

HHH
HHY

-

xv
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The plane elasticity complex

Key structural aspects of the plane elasticity system are

encoded in the exact differential complex

P1(Ω) ↪→C∞(Ω)
airy−−→ C∞(Ω, S) div−−→ C∞(Ω, R2) −→ 0yIh

yΠh

yPh

P1(Ω) ↪→ Qh
airy−−→ Σh

div−−→ Vh −→ 0

The stability conditions are encoded in the exactness and

commutativity of a related discrete short exact sequence.
Introducing Qh = airy−1(Σh)
and defining an interpolant Ih

by commutativity we get a

discrete differential complex

resolving P1.

airy φ :=

 ∂2φ

∂y2 − ∂2φ
∂x∂y

− ∂2φ
∂x∂y

∂2φ

∂x2


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The related H2 finite element

For our elements with k = 1, Qh = airy−1 Σh is exactly the

Hermite quintic (Argyris) finite element, the simplest H2

element with polynomial trial functions.

P1(Ω) ↪→ airy−−→ div−−→ −→ 0

P1(Ω) ↪→ airy−−→ div−−→ −→ 0

P1(Ω) ↪→ airy−−→ div−−→ −→ 0

The implication mixed elasticity element =⇒ H2 element

is a major obstruction.
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Summary

We have constructed a family of mixed finite elements for

elasticity

stable

conforming in H(div,Ω, S)

high order (third order and up for stress)

Potential disadvantages are

slightly over-smooth

vertex degrees of freedom

relativity complicated
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A simplified conforming element

ṼT = {
(
a−cy
b+cx

)
| a, b, c ∈ R }, Σ̃T = { τ ∈ ΣT | div τ ∈ ṼT }

21 stress DOF

‖σ − σh‖L2 ≤ Ch2‖σ‖H2

‖u− uh‖L2 ≤ Ch‖u‖H2
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Nonconforming elements

Again, displacement we use discontinuous p.w. linears.

Stress: ΣT = { τ ∈ P2(T, S) |n · τn ∈ P1(e, R) ∀ edges e }
DOF are

the values of the moments of degree 0 and 1 of the normal

components on each edge (12)

the value of the moment of degree 0 on the triangle (3)

15 stress DOF

same DOF as Watwood–Hartz/Johnson Mercier

15



16

Consistency error

Consistency error:

Eh(u, τ) =
∫

Ω

(Aσ : τ + divh τ · u) dx, τ ∈ Σh

=
∑

e

∫
e

[t · τn]u · t ds

We need to bound this in terms of ‖τ‖0.
Even though [t · τn] ⊥ P1 we only get O(h):

|Eh(u, τ)| ≤ Ch‖τ‖0‖u‖2

‖σ − σh‖0 ≤ ch‖u‖H2, ‖u− uh‖0 ≤ ch‖u‖H2
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A simplified version

ṼT = {
(
a−cy
b+cx

)
| a, b, c ∈ R }, Σ̃T = { τ ∈ ΣT | div τ ∈ ṼT }

12 stress DOF

‖σ − σh‖L2 ≤ Ch‖u‖H2

‖u− uh‖L2 ≤ Ch‖u‖H2
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The associated H2 element

The associated H2 element is a nonconforming element due

to Nilsen, Tai, and Winther. The shape functions are

quartics which reduce to cubic on the edges, and the DOF

are the same as for the HCT elements.

P1(Ω) ↪→ airy−−→ div−−→ −→ 0

P1(Ω) ↪→ airy−−→ div−−→ −→ 0
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Conclusions

We have devised a variety of stable mixed finite elements

for plane elasticity.

Conforming elements are of order 3, 4, . . . for stress,

2, 3 . . . for displacement

A slightly simpler element is of order 2 for stress, 1 for

displacement

Besides composite elements, these are the only ones

known to be stable for the stress–displacement formulation

of elasticity.

Vertex DOF are unavoidable for conforming H(div,Ω, S)
elements with continuous shape functions.

Two simple nonconforming methods are first order in

stress and displacement

Every element pair is related to an H2 element and a

discrete exact sequence
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