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Motivations
Why do we need more theory for finite elements?



Why do we need FEEC?

The finite element method
is incredibly successful.

FEM often amenable to
mathematical analysis,
allowing validation and
comparison of methods.

But plenty of challenges remain, for algorithms and analysis!

Approximability, consistency, and stability =⇒ convergence

Stability, like well-posedness, can be extremely subtle

Well-posedness + approximability + consistency 6=⇒ stability

Exterior calculus, de Rham cohomology, Hodge theory,. . . ,
are geometric tools to get at well-posedness.

FEEC adapts these tools to the discrete level to get at stability.
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Steady heat conduction problem: finite elements in H1

− div C grad u = f strong

∫
Ω

C grad u · grad v dx =

∫
Ω

f v dx ∀v weak

∫
Ω

(
1

2
C grad u · grad u − f u

)
dx

u−−→ minimum variational

∫
Ω
| grad u|2 dx <∞ ⇐⇒ u ∈ H1(Ω)

H1 : u ∈ L2(Ω),
grad u ∈ L2(Ω; Rn)

The right FE space:
Lagrange elements { v ∈ H1(Ω) : v |T ∈ Pr (T ) ∀T ∈ Th }
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Lagrange finite elements

Shape fns: P2

DOFs: vertex vals.
& edge averages

P1 P2 P3
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First order (mixed) formulation

Aσ = grad u, −divσ = f strong

∫
Ω

Aσ · τ dx = −
∫

Ω
div τ u dx ∀τ,

−
∫

Ω
div σ v dx =

∫
Ω

f v dx ∀v

weak

∫
Ω

(
1

2
Aσ · σ + div σ u + f u) dx

σ, u−−−→ stationary pt. variational

σ ∈ H(div,Ω), u ∈ L2(Ω)

Lagrange elements? Unstable!
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Thermal problem in 1D

Babuška–Narasimhan

σ = u′, −σ′ = f on (−1, 1)

1

2

∫ 1

−1
(σ2 + σ′u + f u) dx

σ, u−−−−→
H1×L2

stationary point

P1-P1 (20 elts) P1-P1 (40 elts) P1-P0 (40 elts)
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Thermal problem in 2D

σ = grad u, − div σ = f∫
Ω

(
1

2
|σ|2 + div σ u + f u) dx

σ, u−−−−−−→
H(div)×L2

stationary point

P1–P0
P−1 Λ1–P0
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Raviart–Thomas elements (P−r Λ1)

Shape functions P−1 Λ1: span
[(1

0

)
,
(0

1

)
,
(x
y

)]
DOFs:

A mixed FEM for 2nd order elliptic problems, Proc. conf. Math’l Aspects

of the FEM, Rome 1975. Springer Lect. Notes in Math #606, 1977.

Generalizes to all degrees, and all dimensions (n = 3: Nédélec ’80)

Math & CS
SIAM J. Numerical Analysis
Numerische Mathematik
Mathematics of Computation
RAIRO – M2AN
Num. Methods for PDEs

Eng. & Apps
CMAME
Computational Geosciences
J. Computational Physics
IJNME
COMPEL
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Maxwell eigenvalue problem, unstructured mesh∫
Ω

µ−1 curl E · curl Ẽ = ω2

∫
Ω

εE · Ẽ ∀Ẽ

Right space is H(curl)

λ = m2 + n2 = 0, 1, 1, 2, 4, 4, 5, 5, 8, . . .

0

1

2

3

4

5

6

7

8

9

10

(Lag.P1)2 P−1 Λ1
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Maxwell eigenvalue problem, regular mesh

λ = m2 + n2 = 1, 1, 2, 4, 4, 5, 5, 8, . . .

0

1

2

3

4

5

6

7

8

9

10
254 574 1022 1598

1.0043 1.0019 1.0011 1.0007
1.0043 1.0019 1.0011 1.0007
2.0171 2.0076 2.0043 2.0027
4.0680 4.0304 4.0171 4.0110
4.0680 4.0304 4.0171 4.0110
5.1063 5.0475 5.0267 5.0171
5.1063 5.0475 5.0267 5.0171
5.9229 5.9658 5.9807 5.9877
8.2713 8.1215 8.0685 8.0438

Boffi-Brezzi-Gastaldi ’99
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Vector Laplacian

curl curl u − grad div u = f in Ω
u · n = 0, rot u = 0 on ∂Ω∫

Ω

1

2
(| curl u|2 + | div u|2)− f · u u−−→ minimum

Lagrange finite elements converge nicely
but not to the solution!
(same problem with any conforming FE)

A mixed formulation based on appropriate finite elements works fine∫
Ω

(
1

2
|σ2|−curlσ·u−1

2
| div u|2−f u) dx

σ,u−−−−−−−−−→
H(curl)×H(div)

stationary point
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EM calculations based on the generalized RT elements

Schöberl, Zaglmayr 2006, NGSolve

2K tets, P−6 Λ1

Also: White EMSolve,
Demkowicz 3Dhp90,
Durufle Montjoie,. . .

26K tets, P−3 Λ1
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Exterior calculus and PDE
The continuous problem



Differential forms

For Ω ⊂ Rn, Λk(Ω) consists of functions Ω→ AltkRn

so if ω ∈ Λk(Ω), ωx(v1, . . . , vk) ∈ R, x ∈ Ω, vi ∈ Rn

Λ0(Ω): real-valued functions on Ω

Λ1(Ω): covector fields, ω =
∑n

i=1 fidxi , fi functions (dxi (ej) = δij)

Λ2(Ω): ω =
∑
i<j

fijdxi∧dxj , (dxi∧dxj := dxi⊗dxj − dxj⊗dxi )

dk : Λk(Ω)→ Λk+1(Ω) d(f dxj∧ · · · ∧dxk) =
∑

i

∂f

∂xi
dxi∧dxj∧ · · · ∧dxk

∫
f
ω ∈ R ω ∈ Λk , dim f = k
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De Rham complex and cohomology

0→ Λ0(Ω)
d0

−→ Λ1(Ω)
d1

−→ · · · dn−1

−−→ Λn(Ω)→ 0

Zk := ker(dk)
Bk := range(dk−1)

dim Zk/Bk =


# of components, i = 0,

# of holes, i = 1,

# of voids, i = 2,

· · ·

vector proxies in R3:
∑

fidxi ↔ (f1, f2, f3),
∑

fijdxidxj ↔ (f23,−f13, f12)

0→ C∞(Ω)
grad−−→ C∞(Ω; R3)

curl−−→ C∞(Ω; R3)
div−−→ C∞(Ω)→ 0

�Physical vector quantities may be divided
into two classes, in one of which the quantity
is de�ned with reference to a line, while in the
other the quantity is de�ned with reference to
an area.�

� James Clerk Maxwell,
Treatise on Electricity & Magnetism, 1891
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Hodge theory

Making use of the inner product:

Hodge star: ∗ : Λk(Ω)
∼=−→ Λn−k(Ω)

formal adjoint: δ = ± ∗ d∗ : Λk(Ω)→ Λk−1(Ω)

Λk−1(Ω)
d
�
δ

Λk(Ω)
d
�
δ

Λk+1(Ω)

Hodge Laplacian: dδ + δd : Λk → Λk

harmonic forms: Hk := { ζ ∈ Zk | ζ ⊥ Bk } ∼= Zk/Bk

Hodge decomposition: L2Λk(Ω) = Bk ⊕ Hk ⊕ (Zk)⊥

Poincaré’s inequality: ‖ω‖L2 ≤ c ‖dω‖L2 , ω ∈ (Zk)⊥

Sobolev spaces: HΛk(Ω) = {ω ∈ L2Λk(Ω) | dω ∈ L2Λk+1(Ω) }

0→ HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ · · · d−→ HΛn(Ω)→ 0

0→ H1(Ω)
grad−−→ H(curl,Ω)

curl−−→ H(div,Ω)
div−−→ L2(Ω)→ 0
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Some applications

Physical quantities:
0-forms: temperature; electric field potential
1-forms: temperature gradient; electric field
2-forms: heat flux; magnetic flux

stress is a covector-valued 2-form
3-forms: heat density; charge density; mass density

PDEs:

− div grad u = f
(curl curl− grad div)u = f
curl curl u = f , div u = 0
div u = f , curl u = 0
Maxwell’s equations
elasticity
dynamic problems, eigenvalue problems, lower order-terms
variable coefficients, nonlinearities. . .
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Hodge Laplace problem

Given f ∈ Λk (0 ≤ k ≤ n), find u ∈ Λk with (dδ + δd)u = f (plus BC)

Harmonic functions determine well-posedness:
∃u ⇐⇒ f ⊥ Hk , u is determined only mod Hk

This mixed formulation is always well-posed: Given f ∈ L2Λk(Ω), find

σ ∈ HΛk−1, u ∈ HΛk , p ∈ Hk :

〈σ, τ〉 − 〈dτ, u〉 = 0 ∀τ ∈ HΛk−1

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f , v〉 ∀v ∈ HΛk

〈u, q〉 = 0 ∀q ∈ Hk

Equivalently 1
2 〈σ, σ〉 −

1
2 〈du, du〉 − 〈dσ, u〉 − 〈u, p〉+ 〈f , u〉 → saddle point
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Well-posedness of the Hodge Laplacian

σ ∈ HΛk−1, u ∈ HΛk , p ∈ Hk :

〈σ, τ〉 − 〈dτ, u〉 = 0 ∀τ ∈ HΛk−1

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f , v〉 ∀v ∈ HΛk

〈u, q〉 = 0 ∀q ∈ Hk

Need to control ‖σ‖HΛ + ‖u‖HΛ + ‖p‖ by a bounded choice of τ , v , and q.

τ = σ controls ‖σ‖, v = dσ controls ‖dσ‖, v = p controls ‖p‖
v = u controls ‖du‖, How to control ‖u‖??

Hodge decomp.: u = dη+ s + z , η ∈ HΛk−1, s ∈ Hk , z ∈ (Zk)⊥

τ = η controls ‖dη‖ and q = s controls ‖s‖. To bound ‖z‖ we use
Poincaré’s inequality:

‖z‖ ≤ c‖dz‖ = c‖du‖ (which is under control)
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Discretization
We have a well-posed variational PDE problem. How do we
discretize it stably?

Abstract setting

· · · −→ Λk−1 dk−1

−−→ Λk dk

−→ Λk+1 −→ · · ·x∪ x∪ x∪
· · · −→ Λk−1

h
dk−1

−−→ Λk
h

dk

−→ Λk+1
h −→ · · ·

Complex of Hilbert spaces with dk bounded and closed range.

For discretization, construct a finite dimensional subcomplex.

Define Hk
h = (Bk

h)⊥ ∩ Zk
h .

Discrete Hodge decomp. follows: Λk
h = Bk

h ⊕ Hk
h ⊕ (Zk

h)⊥

Galerkin’s method: Λk−1, Λk , Hk −→ Λk−1
h , Λk

h , Hk
h

When is it stable?
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Bounded cochain projections

Key property: The finite dimensional subcomplex admits a
bounded cochain projection.

· · · −−→ Λk−1 dk−1

−−−→ Λk −−→ · · ·yπk−1
h

yπk
h

· · · −−→ Λk−1
h

dk−1

−−−→ Λk
h −−→ · · ·

πk
h bounded

πk
h a projection

πk
h dk−1 = dk−1πk−1

h

limh→0 π
k
h v = v , v ∈ Λk

Theorem

The induced map on cohomology is an isomorphism for h small.

gap
(
Hk ,Hk

h

)
→ 0

The discrete Poincaré inequality holds uniformly in h.

Galerkin’s method is stable and convergent.
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Proof of discrete Poincaré inequality

Thm. There is a positive constant c , independent of h, such that

‖ω‖ ≤ c‖dω‖, ω ∈ Zk⊥
h .

Proof. Given ω ∈ Zk⊥
h , define η ∈ Zk⊥ ⊂ HΛk(Ω) by dη = dω. By

the Poincaré inequality, ‖η‖ ≤ c‖dω‖, so it is enough to show that
‖ω‖ ≤ c‖η‖. Now, ω − πhη ∈ Λk

h and d(ω − πhη) = 0, so
ω − πhη ∈ Zk

h . Therefore

‖ω‖2 = 〈ω, πhη〉+ 〈ω, ω − πhη〉 = 〈ω, πhη〉 ≤ ‖ω‖‖πhη‖,

whence ‖ω‖ ≤ ‖πhη‖, and the result follows.
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Finite element differential forms
How do we construct finite element spaces that fit together in
de Rham subcomplexes with bounded cochain projections?

Finite element differential forms

Let T = Th be a triangulation of Ω ⊂ Rn. We wish to construct
finite element spaces Λk(T ) ⊂ HΛk(Ω) which form a finite
dimensional subcomplex with bounded cochain projections.
We will construct them as usual for finite elements:
On each simplex T ∈ T we specify

a space of polynomials shape functions

degrees of freedom, each associated to a face of the simplex

It turns out that for each form degree k and polynomial degree r ,
there are just two “natural” finite element subspaces of HΛk(Ω):

Pr Λk(Th) and P−r Λk(Th)

P−r Λk(Th) =


Pr Λk(Th), k = 0,

Pr−1Λk(Th), k = n,

strictly between, 0 < k < n
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The Koszul complex

Key tool: the Koszul differential κ : Λk → Λk−1:

(κω)x(v 1, . . . , vk−1) = ωx(X , v 1, . . . , vk−1), X = x − x0

0 ←−− Pr Λ0 κ←−− Pr−1Λ1 κ←−− · · · κ←−− Pr−nΛn ←−− 0

C.f., the polynomial de Rham complex

0 −−→ Pr Λ0 d−−→ Pr−1Λ1 d−−→ · · · d−−→ Pr−nΛn −−→ 0

For Ω ⊂ R3

0← Pr (Ω)
•X←−− Pr−1(Ω; R3)

×X←−− Pr−2(Ω; R3)
X←−− Pr−3(Ω)← 0

Key relation: (dκ+ κd)ω = (r + k)ω ∀ω ∈ Hr Λk (homogeneous polys)

∴ Hr Λk = dHr+1Λk−1 ⊕ κHr−1Λk+1
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Definition of P−r Λk

Pr Λk = Pr−1Λk +Hr Λk

= Pr−1Λk + κHr−1Λk+1 + dHr+1Λk−1

P−r Λk := Pr−1Λk + κHr−1Λk+1

God made Pr Λk and P−r Λk ,
all the rest is the work of man.
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Degrees of freedom

The other ingredient of a finite element space are the degrees of freedom,

i.e., a decomposition of the dual spaces (Pr Λk(T ))∗ and (P−r Λk(T ))∗,

into subspaces associated to subsimplices f of T .

DOF for Pr Λk(T ): to a subsimplex f of dim. d ≥ k we associate

ω 7→
∫

f
Trf ω ∧ η, η ∈ P−r+k−dΛd−k(f )

DOF for P−r Λk(T ):

ω 7→
∫

f
Trf ω ∧ η, η ∈ Pr+k−d−1Λd−k(f ) Hiptmair

The resulting FE spaces have exactly the continuity required by HΛk :

Theorem. Pr Λk(T ) = {ω ∈ HΛk(Ω) : ω|T ∈ Pr Λk(T ) ∀T ∈ T }.
Similarly for P−r .
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Finite element differential forms and classical mixed FEM

P−r Λ0(T ) = Pr Λ0(T ) ⊂ H1 Lagrange elts

P−r Λn(T ) = Pr−1Λn(T ) ⊂ L2 discontinuous elts

n = 2: P−r Λ1(T ) ⊂ H(curl) Raviart–Thomas elts

n = 2: Pr Λ1(T ) ⊂ H(curl) Brezzi–Douglas–Marini elts

n = 3: P−r Λ1(T ) ⊂ H(curl) Nedelec 1st kind edge elts

n = 3: Pr Λ1(T ) ⊂ H(curl) Nedelec 2nd kind edge elts

n = 3: P−r Λ2(T ) ⊂ H(div) Nedelec 1st kind face elts

n = 3: Pr Λ2(T ) ⊂ H(div) Nedelec 2nd kind face elts
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Finite element de Rham subcomplexes

From these spaces we want to build discrete de Rham complexes
with bounded projections. It turns out that there are lots of ways
to do this (2n−1 for each r). Extreme cases are:

0→ P−r Λ0(T )
d−−→ P−r Λ1(T )

d−−→ · · · d−−→ P−r Λn(T )→ 0

0→ grad−−→ curl−−→ div−−→ → 0

Whitney 1957, Bossavit 1988

0→ Pr Λ0(T )
d−−→ Pr−1Λ1(T )

d−−→ · · · d−−→ Pr−nΛn(T )→ 0

0→ grad−−→ curl−−→ div−−→ → 0
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Application to Elasticity
What else can you do with FEEC?

Stress–displacement mixed finite elements for elasticity

Find stress σ : Ω→ R3×3
sym , displacement u : Ω→ R3 such that

Aσ = ε(u), div σ = f

∫
Ω

(
1

2
Aσ :σ + div σ · u + f · u

)
dx

σ,u−−−−−−−−−−→
H(div;S)×L2(Rn)

stationary point

Search for stable finite elements dates back to the ’60s, very limited success.

. . . to derive elements that exhibit complete continuity of the
appropriate components along interfaces. . . was achieved by
Raviart and Thomas in the case of the heat conduction
problem. . . . Extension to the full stress problem is difficult and as
yet such elements have not been successfully noted.

— Zienkiewicz, Taylor, Zhu

The Finite Element Method: Its Basis & Fundamentals, 6th ed., vol. 1, 2005
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Recent progress coming from the FEEC perspective

First stable elements based on polynomials, 2D
(Arnold–Winther 2002), all degrees r ≥ 1:

3D stable elements, all degrees r ≥ 1
(Arnold–Awanou–Winther 2007): for r = 1 stress space has
162 degrees of freedom (27 per component on average)
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A computation using the new elements

From Eberhard, Hueber, Jiang, Wohlmuth 2006
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Mixed formulation with weak symmetry

Idea goes back to Fraeijs de Veubeke 1975, Amara–Thomas 1979
In the classical Hellinger–Reissner principle, symmetry of the stress
tensor (balance of angular momentum) is assumed to hold exactly.
Instead we impose it weakly with a Lagrange multiplier (the rotation).

∫
Ω

(
1

2
Aσ :σ + div σ · u + f · u

)
dx

σ,u−−−−−−−−−−→
H(div;S)×L2(Rn)

stationary point

∫
Ω

(
1

2
Aσ :σ + div σ · u + σ :p + f · u

)
dx

σ,u,p−−−−−−−−−−−−−−−→
H(div;M)×L2(Rn)×L2(K)

S.P.

FEEC has led to very simple stable elements

σ u p
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Features of the new mixed elements

Based on HR formulation with weak symmetry; very natural

Lowest degree element is very simple: full P1 for stress, P0 for
displacement and rotation

Works for every polynomial degree

Works the same in 2 and 3 (or more) dimensions

Robust to material constraints like incompressibility

Provably stable and convergent
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Conclusions

Exterior calculus clarifies the nature of physical quantities and
the structure of the PDEs involving them.
Capturing the right structure on the discrete level can be
essential to get stable methods.
FEEC provides a very natural framework for the design and
understanding of subtle stability issues that arise in the
discretization of a wide variety of PDE systems. It brings to
bear tools from geometry, topology, and algebra to develop
discretizations which are compatible with the geometric,
topological, and algebraic structure of the PDE system, and
so obtain stability.
FEEC has been used to unify, clarify, and refine many known
finite element methods. It is a mathematically rigorous theory.
The Pr Λk and P−r Λk spaces are the natural finite element
discretizations for differential forms and the de Rham complex.
Through FEEC we believe we have completed the long search
for “just the right” mixed finite elements for elasticity.
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