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Shanghai, May 31, 2012 These function spaces arise in many of the most fundamental PDEs.
For numerical purposes, we need finite element subspaces that work
well together.
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Finite element de Rham subcomplexes Finite element spaces

We need finite element spaces /\f, © HAK which form a subcomplex A finite element is constructed by assembling three ingredients:

admitting commuting projections. @ A triangulation 7 consisting of polygonal elements T

@ For each T, a space of shape functions V(T), typically polynomial

S At S A

“MJ »J @ For each T, a set of DOFs: a set of functionals on V(T), each

! ' associated to a face of T. These must be unisolvent, i.e., form a
Y V- V] basis for V(T)*.

Vi, is defined as functions piecewise in V(T) with DOFs single-valued
§ i k ¢ . The DOFs determine (1) the interels t continuity, and
How should we define the finite element spaces Aj;? onifacesihelDORs(dstermine|(1)jthelinterslementicontindityjan
(2) a projection operator into Vj.



Example: HA® = H': the Lagrange

element family
Elements T € 75 are simplices in R".
Shape fns: V(T) = P(T), some r > 1.
o What are the spaces
s
i /,(m 0)q, G € Prga(f). f € A(T), /\Z C H/\k

o veNy(T): uwsu(v)

o cC AT s [ret)a, g€ Prs(e) -\ analogo.us to the Lagrange
orendT: uo f(wug qeP o) I family of elements
o T: u [ruq, g € Pr_g(T)

in the case k = 07
Theorem: The number of DOFs = dim ,(T) and they are unisolvent.
The imposed continuity exactly forces inclusion in H'.

Simpl

e element differential forms The Koszul complex

The Koszul differential:  # : AX — AK=1

There are (exactly) two families.

way=x,  K(uA) = (sp)ArH(—1) uA(ep), pe A, b e AL
First famit Koszul differential
irstlamily polynomial de Rham complex
Shape fns: P, A (T) := P, AK(T) + £ Hr—1 AH(T), 05PN G P A S G p AT S AT g
" " » r—n i
homogeneous Koszul complex
N0 L 1A 1 K ,
DOFs: u v /(v,u),‘q G € Prik—a-1A"K(F), f € A(T), 0 PN & PyA S E PN & PN 0
Jt
X xX x
Second family 0 P = (P1)" < = (P—nt1)" & Pron 0
Shape fns: P, A%(T),
DOFs: u+- /(tr,u)/\q. G € Py oNK(r), TE AT, (dit kd)w = (r k) w,
Jt
eg., curl(X x V) + X(divV) = (degV +2) v
PA° N PN & oo 2 PrA" Y ( ) ( ) = (deg )

Lagrange , P >DG HN = dH o N1 @ iH, N
PN S PN S S p A



The P, family in 2D The P; A¥ family in 3D

PN PN PN PN

Lagrange Nédélec '80  Nédélec '80 DG

PrN(T) = Py AK(T) + 5 He g ANFY(T,

PN PN PrA?
Lagrange Raviart-Thomas'76 DG ; ‘ :
r=
d

b
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The P, family in 2D The P,A* family in 3D
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Counting for P, Ak

PIN(T) = ProaN(T) + 6 He—y AT(T)
dim P7AK(T) = dim Py A* + dim kAR

Since the Koszul complex

CE M NC(T) E HAN(T) & H g N(T) & e
is exact (by the homotopy relation),

dim kH,A*(T) = dim H,A(T) — dim &H,_s A (T).

This enables a backward induction on k to calculate dim £#,A*(T). It
is then an elementary calculation with binomial identities to verify that

dim Py A(T) = #DOFs

Historical notes

@ The P(/\k complex is in Whitney '57 (Bossavit '88).
@ The P,A¥ complex is in Sullivan '78.
@ Hiptmair gave a uniform treatment of the ;- A* spaces in '99.

@ The unified treatment and use of the Koszul complex is in
DNA-Falk-Winther '06.

Unisolvence for P, Ak

PrN(T) = Proy AK(T) + 5 H AH(T)
u— /(m UAG, g € Prik—a1ATK(F), € A(T)
Jr
Proof of unisolvence: If u € P;-A*(T) and all its DOFS vanish, then
try u € P, A*(f) and all its DOFs vanish. By induction on dimension,

tru vanishes on the boundary. So we need to show:
ue P N(T), [, ung=0VqE PuicasA™(T) = u=0

A weaker statement is easily shown (by clever choice of g):
u € Py N(T), [, ung = 0Yq € Prsn N(T) u=0
So we just need to show u € Pr_1AK(T).
@ By homotopy relation, u € Py A, du =0 = u e Pr_iAK.
So it remains to show that du = 0.
o du e P, NH(T),
[ dunp = % [, undp = 0p € Pris—pA"*(T).
Therefore du = 0 by the weaker statement (with k — k+1).

Finite element
differential forms on
cubical meshes



The tensor product construction Finite element differential forms on cubes: the Q; A* family

Again there are two families (only?). One results from a tensor product Start with the simple 1-D degree r finite element de Rham complex, V;:

construction. DA S B AL
Suppose we have a finite element de Rham subcomplex V on an 0 = PA() = PrsA'(1) =0
element S C R™:

d
C vk Sk

and another, W, on another element T C R": Take tensor product n times:  Q A"(17) i= (V, A+ A V)"

Q=7 Pr—1 @ Praxi + Pr @ Pr—y dx2, Pr—1 @ Pr—y dxs Adxe
o WK G ket
The tensor-product construction produces a new complex V A W, a 2 N I— Q‘—AJ > :\)" b
subcomplex of the de Rham complex on S x T. J
Shapefns: (VA W)X = @ sV A TEW .
-~
=k =
N . Bt
DOFs: (1A p)(w3vamiw) = n(v)p(w) g VS
o Sy e

Key properties

Foranyn>1,r>1,0<k<n

The S,A\*(1") family of FEDFs: Degree property: P,AK(17) C S,AK(17) C PrniNS(I)
Shape fns:

For a form monomial m = x{ - - - X3 dxy, A - - - A dXy,, define Inclusion property: S;A¥(1") C Sr44A*(1")
degm =) aj,ldegm = #{i|a;j =1, a; ¢ {o1,...,04} }

Trace property: For each face f of 17, tr; S,A*(1") = S, ()

H,¢N(I") = span of monomials with deg = r, Ideg > £, Subcomplex property: dS,A (1) € S, 1A“*1(17)

TN(I") = @ kMg, N7, Unisolvence: The indicated DOFs are correct in number and are unisolvent.
1
S,/\“(/”) = p,/\k(/”) =) _7,/\“(/”) @ dFr g N1 m). Commuting projections: The DOFs determine commuting projections

from the de Rham complex to the subcomplex
DOFs: ur [,ung, q € ProghX(f), f e A(I")
SA(IT) S SN (T S e B S, AT,



The case of 0-forms (H' elements) Serendipity 0-forms in more dimensions

Define sdeg m of a monomial m to be the degree ignoring variables
that enter linearly: sdeg x®yz?> = 5. For a polynomial p, sdeg p is the
maximum over its monomials.

Si(I")={peP(I")|sdegp < r}

1D: Si(1) = Pr(l),  2D: Si(12) = P,(12) + span[x"y, xy']

Dimensions
— T—‘.—‘.—I T ey P17 ) Q.(1"
T T ¥ B T n|j12 38 4 5 1.2 3 4 5 12 3 4 5
| T T oY 723 45 6 2 3 4 5 6 23 4 5 6
I T T T T T ; ; 2|36 1015 21 4 8 12 17 23 4 9 16 25 36
— ¢ — [ 3|4 1020 35 56 8 20 32 50 74 8 27 64 125 216
S(12) Sy(1?) Ss(1?) Sa(12) Ss(12) 4|5153570 126 16 48 80 136 216 16 81 256 625 1296

The 2nd cubic family in 2-D
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Dimensions and low order cases The 3D shape functions in traditional FE language

S,A% polynomials u such that sdegu < r

SN
(w1, v2, va) + (Xoxa(wo — wa), Xax1 (W5 — wy), X1 Xo(ws — w2)) +grad u,

Vi € Pr, w; € Pr—q independent of x;, sdegu < r+1
SN2
(v1, v, v3) + curl(xexs (W2 — w3), Xaxi (Wa — wi), X Xe(wg — we)),

vi, w; € P;(1®) with w; independent of x;

SN veP,

w1z 24125

Summary points

@ Two families of simplicial FEDF (P; A* and 7,A*) and two
familes of cubic FEDF (Q; A and S,A%)

Each family contains spaces for all dimensions n, all form
degrees 0 < k < n, and all polynomial degrees r > 1.

Each family’s shape functions and DOFs are given in a unified
way, and unisolvence proved for all family members at once.

Each family is invariant under face traces (shape functions & DOFs).

Each space has precisely the smoothness needed for inclusion in

the energy space HA¥, no more, no less.

@ The spaces combine to form de Rham subcomplexes with
bounded cochain projections, just what is needed for stable
Galerkin methods.

@ The exterior calculus framework, including the Koszul complex,
brings unity and clarity.

@ The right tools for the job!



