Finite element differential forms on simplices and cubes	
Douglas N. Arnold	
School of Mathematics, University of Minnesota	

collaborators: G. Awanou, R. Falk, R. Winther, F. Bonizzoni, D. Boffi

DNA-Fak-Winther: Finite element exterior calculus, homological techniques, and applications, Acta Numerica 2006 Finite element exterior calculus: from Hodge theory to numerical stability. Builetin of the AMS 2010

Finite element de Rham subcomplexes

We need finite element spaces $\Lambda_h^k \subset H\Lambda^k$ which form a subcomplex admitting commuting projections.

$$\begin{array}{c} H\Lambda^{0} \stackrel{d}{\rightarrow} H\Lambda^{1} \stackrel{d}{\rightarrow} \cdots \stackrel{d}{\rightarrow} H\Lambda^{n-1} \stackrel{d}{\rightarrow} H\Lambda^{n} \\ \xrightarrow{} \pi_{n}^{2} \downarrow \qquad \pi_{n}^{1} \downarrow \qquad \pi_{n}^{n-1} \downarrow \qquad \pi_{n}^{n} \downarrow \\ \Lambda_{n}^{0} \stackrel{d}{\rightarrow} \Lambda_{n}^{1} \stackrel{d}{\rightarrow} \cdots \stackrel{d}{\rightarrow} \Lambda_{n}^{n-1} \stackrel{d}{\rightarrow} \Lambda_{n}^{n} \leftarrow \end{array}$$

How should we define the finite element spaces Λ_h^k ?

Finite element spaces

A finite element is constructed by assembling three ingredients: Ciarlet '78

- A triangulation \mathcal{T} consisting of polygonal elements \mathcal{T}
- For each T, a space of shape functions V(T), typically polynomial
- For each T, a set of DOFs: a set of functionals on V(T), each associated to a face of T. These must be unisolvent, i.e., form a basis for V(T)*.

 V_h is *defined* as functions piecewise in V(T) with DOFs single-valued on faces. The DOFs determine (1) the interelement continuity, and (2) a projection operator into V_h .

Example: $H\Lambda^0 = H^1$: the Lagrange finite element family

Elements $T \in \mathcal{T}_h$ are simplices in \mathbb{R}^n .

Shape fns: $V(T) = \mathcal{P}_r(T)$, some $r \ge 1$.

DOFs:

$$u\mapsto \int_{f}(\mathrm{tr}_{f}\,u)q,\ q\in\mathcal{P}_{r-d-1}(f),\ f\in\Delta(T),\quad d=\dim f$$

- $v \in \Delta_0(T)$: $u \mapsto u(v)$
- $e \in \Delta_1(T)$: $u \mapsto \int_e (\operatorname{tr}_e u) q, q \in \mathcal{P}_{r-2}(e)$
- $f \in \Delta_2(T)$: $u \mapsto \int_f (tr_f u)q, q \in \mathcal{P}_{r-3}(f)$
- T: $u \mapsto \int_T uq, q \in \mathcal{P}_{r-4}(T)$

Theorem: The number of DOFs = dim $P_r(T)$ and they are unisolvent. The imposed continuity exactly forces inclusion in H^1 .

What are the spaces

 $\Lambda_h^k \subset H\Lambda^k$

analogous to the Lagrange family of elements in the case k = 0?

Simplicial finite element differential forms

There are (exactly) two families. First family Koszul differential Shape Ins: $\mathcal{P}_r^- \Lambda^k(T) := \mathcal{P}_{r-1}\Lambda^k(T) + \kappa \mathcal{H}_{r-1}\Lambda^{k+1}(T), r \ge 1$ homogeneous DOFs: $u \mapsto \int_f (\operatorname{tr}_f u) \wedge q, \quad q \in \mathcal{P}_{r+k-d-1}\Lambda^{d-k}(f), \ f \in \Delta(T), \quad d = \dim f \ge k$ Shape Ins: $\mathcal{P}_r \Lambda^k(T), r \ge 1$ DOFs: $u \mapsto \int_f (\operatorname{tr}_f u) \wedge q, \quad q \in \mathcal{P}_{r+k-d}^- \Lambda^{d-k}(f), \ f \in \Delta(T), \quad d = \dim f \ge k$ Lagrange $\mathcal{P}_r \Lambda^0 \stackrel{d}{\to} \mathcal{P}_r^- \Lambda^1 \stackrel{d}{\to} \cdots \stackrel{d}{\to} \mathcal{P}_r^- \Lambda^0$ DG

The Koszul complex

Ko

The Koszul differential: $\kappa : \Lambda^k \to \Lambda^{k-1}$	
$\kappa dx_l = x_l, \qquad \kappa(\mu \wedge \nu) = (\kappa \mu) \wedge \nu + (-1)^k \mu \wedge (\kappa \nu), \mu \in \Lambda^k, \ \nu \in \Lambda^k$	l
nomial de Rham complex	
$0 \to \mathcal{P}_r \Lambda^0 \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^1 \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n+1} \Lambda^{n-1} \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^n \to 0$	
$ \begin{array}{c} \text{zul complex} \\ 0 \leftarrow \mathcal{P}_r \Lambda^0 \xleftarrow{\kappa} \mathcal{P}_{r-1} \Lambda^1 \xleftarrow{\kappa} \cdots \xleftarrow{\kappa} \mathcal{P}_{r-n+1} \Lambda^{n-1} \xleftarrow{\kappa} \mathcal{P}_{r-n} \Lambda^n \leftarrow 0 \end{array} $	
$0 \leftarrow \mathcal{P}_r \stackrel{\bullet X}{\leftarrow} (\mathcal{P}_{r-1})^n \leftarrow \cdots \stackrel{\times X}{\leftarrow} (\mathcal{P}_{r-n+1})^n \stackrel{X}{\leftarrow} \mathcal{P}_{r-n} \leftarrow 0$	
Homotopy relation	
$egin{array}{ll} (m{d}\kappa+\kappam{d})\omega=(m{r}+m{k})\omega, & \omega\in\mathcal{H}_r\Lambda^k \end{array}$	
e.g., $\operatorname{curl}(\vec{x} \times \vec{v}) + \vec{x} (\operatorname{div} \vec{v}) = (\operatorname{deg} \vec{v} + 2) \vec{v}$	
$\mathcal{H}_r \Lambda^k = d\mathcal{H}_{r+1} \Lambda^{k-1} \oplus \kappa \mathcal{H}_{r-1} \Lambda^{k+1}$	

The \mathcal{P}_r^- family in 2D

Counting for $\mathcal{P}_r^- \Lambda^k$

 $\begin{aligned} \mathcal{P}_{r}^{-}\Lambda^{k}(T) &= \mathcal{P}_{r-1}\Lambda^{k}(T) + \kappa \,\mathcal{H}_{r-1}\Lambda^{k+1}(T) \\ \dim \mathcal{P}_{r}^{-}\Lambda^{k}(T) &= \dim \mathcal{P}_{r-1}\Lambda^{k} + \dim \kappa \mathcal{H}_{r-1}\Lambda^{k+1} \end{aligned}$

Since the Koszul complex

 $\cdots \xleftarrow{\kappa} \mathcal{H}_{r+1} \Lambda^{k-1}(T) \xleftarrow{\kappa} \mathcal{H}_r \Lambda^k(T) \xleftarrow{\kappa} \mathcal{H}_{r-1} \Lambda^{k+1}(T) \xleftarrow{\kappa} \cdots$

is exact (by the homotopy relation),

 $\dim \kappa \mathcal{H}_r \Lambda^k(T) = \dim \mathcal{H}_r \Lambda^k(T) - \dim \kappa \mathcal{H}_{r-1} \Lambda^{k+1}(T).$

This enables a backward induction on *k* to calculate dim $\kappa \mathcal{H}_r \Lambda^k(T)$. It is then an elementary calculation with binomial identities to verify that

$$\dim \mathcal{P}_r^- \Lambda^k(T) = \# \mathsf{DOF}$$

Unisolvence for $\mathcal{P}_r^- \Lambda^k$

 $\begin{aligned} \mathcal{P}_r^{-} \Lambda^k(T) &= \mathcal{P}_{r-1} \Lambda^k(T) + \kappa \mathcal{H}_{r-1} \Lambda^{k+1}(T) \\ u &\mapsto \int_{f} (\operatorname{tr}_{f} u) \wedge q, \quad q \in \mathcal{P}_{r+k-d-1} \Lambda^{d-k}(f), \ f \in \Delta(T) \end{aligned}$

Proof of unisolvence: If $u \in \mathcal{P}_r^- \Lambda^k(T)$ and all its DOFS vanish, then $\operatorname{tr}_r u \in \mathcal{P}_r^- \Lambda^k(f)$ and all its DOFs vanish. By induction on dimension, tr u vanishes on the boundary. So we need to show:

 $u \in \mathring{\mathcal{P}}_{r}^{-} \Lambda^{k}(T), \quad \int_{T} u \wedge q = 0 \ \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \implies u = 0$

A weaker statement is easily shown (by clever choice of q): $u \in \mathring{\mathcal{P}}_{r-1}\Lambda^{k}(T), \int_{T} u \wedge q = 0 \forall q \in \mathcal{P}_{rik-n-1}\Lambda^{n-k}(T) \implies u = 0$ So we just need to show $u \in \mathcal{P}_{r-1}\Lambda^{k}(T)$.

- By homotopy relation, u ∈ P⁻_r Λ^k, du = 0 ⇒ u ∈ P_{r-1}Λ^k.
 So it remains to show that du = 0.
- $du \in \dot{\mathcal{P}}_{r-1} \Lambda^{k+1}(T)$, $\int_T du \wedge p = \pm \int_T u \wedge dp = 0 \quad \forall p \in \mathcal{P}_{r+k-n} \Lambda^{n-k-1}(T)$. Therefore du = 0 by the weaker statement (with $k \to k+1$).

Historical notes

- The P⁻₁Λ^k complex is in Whitney '57 (Bossavit '88).
- The *P_r*Λ^k complex is in Sullivan '78.
- Hiptmair gave a uniform treatment of the P⁻_ℓΛ^k spaces in '99.
- The unified treatment and use of the Koszul complex is in DNA-Falk-Winther '06.

Finite element differential forms on cubical meshes

The tensor product construction

Again there are two families (only?). One results from a tensor product construction. (DNA–Boffi–Bonizzoni)

Suppose we have a finite element de Rham subcomplex V on an element $S \subset \mathbb{R}^m$:

$$\cdots \rightarrow V^k \xrightarrow{d} V^{k+1} \rightarrow \cdots \qquad V^k \subset \Lambda^k(S)$$

and another, W, on another element $T \subset \mathbb{R}^n$:

$$\cdots \rightarrow W^k \xrightarrow{d} W^{k+1} \rightarrow \cdots$$

The tensor-product construction produces a new complex $V \land W$, a subcomplex of the de Rham complex on $S \times T$.

 $\begin{array}{ll} \text{Shape fns:} & \left(V \wedge W \right)^k = \bigoplus_{l+j=k} \pi_S^* V^l \wedge \pi_T^* W^l & \left(\pi_S: S \times T \to S \right) \\ \\ \text{DOFs:} & \left(\eta \wedge \rho \right) (\pi_S^* v \wedge \pi_T^* w) := \eta(v) \rho(w) \end{array}$

The 2nd family of finite element differential forms on cubes

The $S_r \Lambda^k(I^n)$ family of FEDFs: (DNA–Awanou '12)

Shape fns:

For a form monomial $m = \mathbf{x}_1^{\mathbf{a}_1} \cdots \mathbf{x}_n^{\mathbf{a}_n} \, d\mathbf{x}_{\sigma_1} \wedge \cdots \wedge d\mathbf{x}_{\sigma_k}$, define $\operatorname{deg} m = \sum \alpha_{l_1} \operatorname{ldeg} m = \#\{i \mid \alpha_l = 1, \alpha_l \notin \{\sigma_1, \dots, \sigma_k\}\}.$ Ex: If $m = x_1 x_2 x_5^2 dx_1$, deg m = 7, ldeg m = 1.

$$\begin{split} \mathcal{H}_{r,\ell}\Lambda^{k}(l^{n}) &= \text{ span of monomials with deg} = r, \text{ ldeg} \geq \ell, \\ \mathcal{J}_{r}\Lambda^{k}(l^{n}) &= \bigoplus_{\ell \geq 1} \kappa \mathcal{H}_{r+\ell-1,\ell}\Lambda^{k+1}(l^{n}), \\ \mathcal{S}_{r}\Lambda^{k}(l^{n}) &= \mathcal{P}_{r}\Lambda^{k}(l^{n}) \oplus \mathcal{J}_{r}\Lambda^{k}(l^{n}) \oplus \mathcal{J}_{r+1}\Lambda^{k-1}(l^{n}). \end{split}$$
 $\begin{aligned} \mathsf{DOFs:} \quad u \mapsto \int_{r} u \wedge q, \quad q \in \mathcal{P}_{r-2q}\Lambda^{d-k}(l), \ t \in \Delta(l^{n}) \end{aligned}$

Finite element differential forms on cubes: the $Q_r^- \Lambda^k$ family

Start with the simple 1-D degree r finite element de Rham complex, Vr:

Take tensor product *n* times: $Q_{\ell}^{-} \Lambda^{k} (I^{n}) := (V_{\ell} \wedge \cdots \wedge V_{\ell})^{k}$

 $\mathcal{Q}_r = \mathcal{P}_r \otimes \mathcal{P}_r, \ \ \mathcal{P}_{r-1} \otimes \mathcal{P}_r \, dx_1 + \mathcal{P}_r \otimes \mathcal{P}_{r-1} \, dx_2, \ \ \mathcal{P}_{r-1} \otimes \mathcal{P}_{r-1} \, dx_1 \wedge dx_2$

Key properties

For any $n \ge 1$, $r \ge 1$, $0 \le k \le n$:

Degree property: $\mathcal{P}_r \Lambda^k(I^n) \subset \mathcal{S}_r \Lambda^k(I^n) \subset \mathcal{P}_{r+n-k} \Lambda^k(I^n)$

Inclusion property: $S_r \Lambda^k(I^n) \subset S_{r+1} \Lambda^k(I^n)$

Trace property: For each face f of I^n , $\operatorname{tr}_f S_r \Lambda^k(I^n) = S_r \Lambda^k(f)$.

Subcomplex property: $dS_r \Lambda^k(I^n) \subset S_{r-1} \Lambda^{k+1}(I^n)$

Unisolvence: The indicated DOFs are correct in number and are unisolvent.

Commuting projections: The DOFs determine commuting projections from the de Rham complex to the subcomplex

$$S_r \Lambda^0(I^n) \xrightarrow{d} S_{r-1} \Lambda^1(I^n) \xrightarrow{d} \cdots \xrightarrow{d} S_{r-n} \Lambda^n(I^n).$$

The case of 0-forms (H^1 elements)

Define sdeg *m* of a monomial *m* to be the degree ignoring variables that enter linearly: sdeg $x^3yz^2 = 5$. For a polynomial p, sdeg p is the maximum over its monomials.

 $\mathcal{S}_r(I^n) = \{ p \in \mathcal{P}(I^n) \mid \operatorname{sdeg} p \leq r \}$

1D: $S_r(I) = \mathcal{P}_r(I)$, 2D: $S_r(I^2) = \mathcal{P}_r(I^2) + \operatorname{span}[x^r y, xy^r]$ serendipity

Serendipity 0-forms in more dimensions

$P_r(I^n)$ 3 4	5	1	2	Sr(I	")				$Q_r(I)$	n)		
3 4	5	1	2	0				$Q_r(I^n)$				
			~	3	4	5	1	2	3	4	5	
4 5	6	2	3	4	5	6	2	3	4	5	6	
10 15	21	4	8	12	17	23	4	9	16	25	36	
20 35	56	8	20	32	50	74	8	27	64	125	216	
35 70	126	16	48	80	136	216	16	81	256	625	1296	
	10 15 20 35 35 70	10 15 21 20 35 56 35 70 126	10 15 21 4 20 35 56 8 35 70 126 16	10 15 21 4 8 20 35 56 8 20 35 70 126 16 48	10 15 21 4 8 12 20 35 56 8 20 32 35 70 126 16 48 80	10 15 21 4 8 12 17 20 35 56 8 20 32 50 35 70 126 16 48 80 136	10 15 21 4 8 12 17 23 20 35 56 8 20 32 50 74 35 70 126 16 48 80 136 216	10 15 21 4 8 12 17 23 4 20 35 56 8 20 32 50 74 8 35 70 126 16 48 80 136 216 16	10 15 21 4 8 12 17 23 4 9 20 35 56 8 20 32 50 74 8 27 35 70 126 16 48 80 136 216 16 81	10 15 21 4 8 12 17 23 4 9 16 20 35 56 8 20 32 50 74 8 27 64 35 70 126 16 48 80 136 216 16 81 256	10 15 21 4 8 12 17 23 4 9 16 25 20 35 56 8 20 32 50 74 8 27 64 125 35 70 126 16 48 80 136 216 16 81 256 625	

Dimensions and low order cases

The 3D shape functions in traditional FE language

 $S_r \Lambda^0$: polynomials *u* such that sdeg $u \leq r$

$S_r \Lambda^1$:

 $(v_1, v_2, v_3) + (x_2x_3(w_2 - w_3), x_3x_1(w_3 - w_1), x_1x_2(w_1 - w_2)) + \text{grad } u,$

 $v_i \in \mathcal{P}_r, \quad w_i \in \mathcal{P}_{r-1} \text{ independent of } x_i, \quad \text{sdeg } u \leq r+1$

$S_r \Lambda^2$:

 $(v_1, v_2, v_3) + \operatorname{curl}(x_2 x_3 (w_2 - w_3), x_3 x_1 (w_3 - w_1), x_1 x_2 (w_1 - w_2)),$

 $v_i, w_i \in \mathcal{P}_r(I^3)$ with w_i independent of x_i

 $S_r \Lambda^3$: $v \in \mathcal{P}_r$

Summary points

- Two families of simplicial FEDF (P⁻_rΛ^k and P⁻_rΛ^k) and two familes of cubic FEDF (Q⁻_rΛ^k and S⁻_rΛ^k)
- Each family contains spaces for all dimensions n, all form degrees 0 ≤ k ≤ n, and all polynomial degrees r ≥ 1.
- Each family's shape functions and DOFs are given in a unified way, and unisolvence proved for all family members at once.
- Each family is invariant under face traces (shape functions & DOFs).
- Each space has precisely the smoothness needed for inclusion in the energy space HΛ^k, no more, no less.
- The spaces combine to form de Rham subcomplexes with bounded cochain projections, just what is needed for stable Galerkin methods.
- The exterior calculus framework, including the Koszul complex, brings unity and clarity.
- The right tools for the job!