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Preview

The Einstein equations are simple geometrical equations to

be satisfied by a metric of signature −+ ++ on the

4-manifold representing spacetime. More specifically, they

constrain the curvature tensor associated to the metric.

It is evident, geometrically, that there is a great deal of

non-uniqueness in the Einstein equations.

If we coordinatize the manifold the equations can be viewed

as 10 very complicated PDEs for the 10 component

functions of the metric.

1



2

Part I

The coordinate-free viewpoint:

geometry
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Vector space concepts

V an finite dimensional vector space; V ∗ its dual;

N.B.: there is a canonical identification V ∼= V ∗∗, but not V ∼= V ∗

tensor product V ⊗W ;

V ⊗W can be thought of as bilinear maps on V ∗ ×W ∗ or

linear maps from V ∗ to W or linear maps from W ∗ to V

V ⊗ · · · ⊗ V︸ ︷︷ ︸
k

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
l

∼= multlinear maps V ∗ × · · · × V ∗︸ ︷︷ ︸
k

×V × · · · × V︸ ︷︷ ︸
l

→ R

Since V ∗ ⊗ V is linear maps from V → V ,

∃ tr : V ∗ ⊗ V → R given by tr(f ⊗ v) = f(v)
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Inner product concepts

A (pseudo) inner product is a symmetric bilinear map

a : V × V → R (so an element of V ∗ ⊗ V ∗) which is

non-degenerate: a(v, · ) 6≡ 0 if v 6= 0.

Given an inner product we can assign every vector a squared

length a(v, v). It is not 0 if v 6= 0, but it can be negative.

Orthonormal basis: a(ei, ej) = ±δij. The number of pluses

and minuses is basis-independent, the signature of the inner

product.

An inner product establishes a canonical identification

V ∼= V ∗
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Manifold concepts
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Tensors on manifolds

M an n-manifold, p ∈M , TpM the tangent space of M at p,

(TpM)∗ the cotangent space

T (k,l)
p M := TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸

k

⊗TpM
∗ ⊗ · · · ⊗ TpM

∗︸ ︷︷ ︸
l

Maps p ∈M 7→ vp ∈ T (k,l)
p M , are called (k, l)-tensors

(0, 0)-tensors: functions M → R; (1, 0)-tensors: vector fields

on M ; (0, 1)-tensors: covector fields on M

A (k, l)-tensor is a machine that at each p takes k tangent

covectors and l tangent vectors and returns a number

(multilinear in the (co)vectors, smooth in p).

All physical quantities in relativity are modeled as tensors.
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Maps between manifolds

If φ : M → N is smooth and p ∈M , then

dφp : TpM → Tφ(p)N is a linear map. For v ∈ TpM ,

dφpv ∈ Tφ(p)N is also denoted φ∗v, the push-forward of v.

For I an interval about 0, γ : I →M a curve, then

γ′(0) := dγ01 is a tangent vector at γ(0).

If f : M → R, then dfp is a linear map TpM to R, i.e., df is

a covector field.
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Metrics on manifolds

A pseudo Riemannian metric is a symmetric, non-degenerate

(0, 2)-tensor, i.e., at each point p, an inner product on TpM

The Einstein equations are concerned with assigning to a

manifold a metric with signature −+ ++ with certain

properties.
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Abstract index notation

For (k, l)-tensors, use symbols adorned with k superscripts

and l subscripts a, b, . . .

va is a vector field, wb is a covectorfield, Rd
abc is a

(1, 3)-field, etc.

The indices themselves have no meaning (like the~ in ~v).

The tensor product of va
b and wab

c is written va
bw

cd
e .

Counting sub- and superscripts shows it to be a (3, 2)-tensor.

The trace of a (1, 1)-tensor is indicated by a repeated index:

va
a (Repeated sub-/superscripts aren’t counted.)

vabc
ad trace of a (3, 2)-tensor wrt the first covector and

vector variables, a (2, 1)-tensor.
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Symmetry notation

v(ab) := 1
2(vab + vba), the symmetric part of vab

v[ab] := 1
2(vab − vba), the antisymmetric part of vab

v(ab)c := 1
2(vabc + vbac)

v(abc) := 1
6(vabc + vbca + vcab + vbac + vcba + vacb)
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Index lowering and raising

If a metric gab is specified, we can identify a covector with a

vector. We write va for the vector identified with vb:

va = gabv
b

This can apply to one index of many: gcew
ed
ab = wd

abc,

or several: gcegdfw
ef
ab = wabcd

Applied to the metric we find gb
a is the identity δb

a, and gab is

the “inverse metric,” which can be used to raise indices:

va = gabvb
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Covariant differentiation

Given a function f : M → R and a vector V a ∈ TpM there

is a natural way to define the directional derivative V a∇af :

V a∇af(p) = lim
ε→0

f(“p+ εV a”)− f(p)
ε

.

By “p+ εV a” we mean γ(ε) where γ : R →M is a curve

with γ(0) = p, γ′(0) = V a.

Thus ∇af is a covector field, which we previously called df .

It is not possible to define the directional derivative of a

vector field vb in the same way, because

vb(“p+ εV a”)− vb(p) involves the difference of vectors in

different spaces.
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Covariant differentiation and parallel transport

If a metric gab is specified, this determines a way to parallel

transport a vector along a curve. Using this we can define

∇af
b. Using the Leibnitz rule this easily extends to tensors

of arbitrary variance. In this way we get a linear operator ∇
from (k, l)-tensors to (k, l+ 1)-tensors for all k, l. It satisfies

the Leibniz rule, commutes with traces, gives the right result

on scalar field, satisfies the symmetry

∇a∇bf = ∇b∇af, f : M → R

and is compatible with the metric:

∇agbc = 0.

This characterizes the covariant differentiation operator.
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Riemann curvature tensor

It is not true that the second covariant derivative is

symmetric when applied to vectors. Instead

(∇a∇b −∇b∇a)vd =
1
2
Rd

abcv
c

for some tensor Rd
abc, called the Riemann curvature tensor.

R(ab)cd = 0, Rabcd = Rcdab, R[abc],d = 0

1 DOF in 2D, 6 in 3D, 20 in 4D

Bianchi identity: ∇[aRbc]de = 0
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Ricci tensor, scalar curvature, Einstein tensor

The Ricci tensor is the trace of the Riemann tensor:

Rab = Rd
adb

The scalar curvature is its trace: R = Ra
a = gabRab

The Einstein tensor is Gab = Rab − 1
2Rgab.

In 4D Gab has the same trace-free part but opposite trace as

Rab: Einstein is trace-reversed Ricci.

By the Bianchi identity, ∇aGab := gac∇cGab = 0
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The Einstein equations

In a vacuum, the Einstein equations are simply

Gab = 0
or Rab = 0.

In GR we are interested in spacetimes, i.e., 4-manifolds

endowed with a metric of signature −+ ++ which satisfy

the Einstein equations.

If matter is present, then Gab = kTab where the

stress-energy tensor Tab comes from a matter model,

k = const. = 8πG/c4 = 2× 10−48 sec2/g cm
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Gauge freedom

If φ : M → N is any diffeomorphism of manifolds and we

have a metric g on M , then we can push forward to get a

metric φ∗g on N . With this choice of metric φ is an

isometry. It is obvious that the Riemann/Ricci/scalar/Einstein

curvature tensors associated with φ∗g on N are just the

push-forwards of the those associated with g on M . So if g

satisfies the vacuum Einstein equations, so does φ∗g.

In particular we can map a manifold to itself

diffeomorphically, leaving it unchanged in all but a small

region. This shows that the Einstein equations plus boundary

conditions can never determine a unique metric on a manifold.

Uniqueness can never be for more than an equivalence class

of metrics under diffeomorphism.
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Part II

The coordinate viewpoint:

PDEs
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Coordinates and components

Let (x1, . . . , xn) : M → Rn be a diffeomorphism of M (often

only part of M) onto Ω ⊂ Rn. At each point we can pull

back the standard basis of Rn to a basis for TpM . This

coordinate-dependent choice of basis (Xa
1 (p), . . . , Xa

n(p)) at

each point is the coordinate frame.

We also get a dual basis for TpM
∗ and then a basis for all

the T
(k,l)
p M .

E.g., Xa
i (p)⊗Xa

j (p), 1 ≤ i, j ≤ n gives a basis for T
(2,0)
p M .

We can expand a (2, 0)-tensor in this basis, and so represent

it by an array of functions vij : Ω → R, called the

components of the tensor.
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Covariant differentiation in coordinates

If gij are the components of the metric and vi are the

components of some vector field vb, then the components of

the covariant derivative ∇av
b are

∇iv
j =

∂vj

∂xi
+ Γj

ikv
k,

where

Γi
jk =

1
2
gil(

∂glk

∂xj
+
∂gjl

∂xk
− ∂gjk

∂xl
)

are the Christoffel symbols of the metric in the particular

coordinate system. Similar formulas exist for the covariant

derivative of tensors of any variance.
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Einstein equations in coordinates

(gij) = (gij)−1, Γi
jk =

1
2
gil(

∂glk

∂xj
+
∂gjl

∂xk
− ∂gjk

∂xl
)

Rl
ijk =

∂Γl
jk

∂xi
− ∂Γl

ik

∂xj
+ Γm

jkΓ
l
mi − Γm

ikΓ
l
mj

Rij = Rl
ilj, R = gijRij, Gij = Rij −

1
2
Rgij

Gij = kTij

10 quasilinear second order equations in 10 unknowns and

4 independent variables, 1000s of terms
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Gauge freedom in coordinates

Given a second coordinate system (x′1, . . . , x′n) : M → Ω′

we get a second set of component functions g′ij for the same

metric.

gij(x) =
∂ψk

∂xi
(x)

∂ψl

∂xj
(x)g′kl(x

′),

where ψ is Ω →M → Ω′.

(g′ij) satisfies the vacuum Einstein equations iff (gij) does.

This suggests that roughly 4 of the 10 components gij can

be specified independently of the Einstein equations.
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Conclusions

The Einstein equations are simple geometrical equations to

be satisfied by a metric of signature −+ ++ on the

4-manifold representing spacetime. More specifically, they

constrain the curvature tensor associated to the metric.

It is evident, geometrically, that there is a great deal of

non-uniqueness in the Einstein equations.

If we coordinatize the manifold the equations can be viewed

as 10 very complicated PDEs for the 10 component

functions of the metric.

For computational (and other) purposes it is better to view

the Einstein equations not as equations for a 4-metric but as

equations for a 3-metric that evolves in time. Stay tuned. . .
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