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Abstract

In order to study gravitational waves, we introduce a new approach to finite element
simulation of general relativity. This approach is based on approximating the Weyl
curvature directly through new stable mixed finite elements for the Einstein-Bianchi
system. We design and analyze these novel finite elements by adapting the recently
developed Finite Element Exterior Calculus (FEEC) framework to abstract Hodge wave
equations. This framework enables us to borrow key ideas from Reissner-Mindlin plate
bending and elasticity with weakly imposed symmetries to maintain stability of the
method. The stability of a discretization often relies on deep connections between
fundamental branches of mathematics: the FEEC mimics these connections for the
numerical method to achieve similar stability to that of the original equations. The
recent development of FEEC has had a transformative impact on electromagnetism and
related computational problems, and we are expanding it to general relativity.
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Chapter 1

Introduction

We introduce a new approach to finite element simulation of general relativity. We do
so by designing and analyzing novel finite elements and adapting a recently developed
framework to abstract wave equations and numerical relativity. The method is then
implemented and applied to the study of gravitational waves.

Gravity is an universal attraction a massive object produces towards other massive
objects. How masses and the gravity they induce change and bend space and time is
described by Einstein’s theory of general relativity. The equations describing gravity
predict a new kind of wave that propagates in the universe. These gravitational waves
can be understood as small ripples in the fabric of space-time itself caused by moving
masses.

The objective of this thesis is to present the design and implementation of a new
approach to computer simulation of the propagation of gravitational waves. Since
Einstein’s equations cannot be solved analytically except under special circumstances,
numerical calculations are essential. In particular, they allow for inverting the signals
from new observatories that sense gravity to uncover the nature of their sources, by
producing expected signals to match with observed ones. However, computer simulations
have themselves proven very challenging. These difficulties are in part due to the non-
uniqueness of the solutions caused by the translation of the problem from geometric
equations, relating lengths in the four-dimensional space-times, to differential equations,
relating kinematics of objects in time.

The new computer simulation is based on an analogy between general relativity and
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2
electromagnetism: the EB formulation of Einstein’s equations. The constrained evolution
system is similar to Maxwell’s equations with the essential difference of replacing unknown
vectors by unknown symmetric and traceless matrices. The formulation is inspired by
previous work [2, 3]. Because of the algebraic constraints, symmetry and traceless,
imposed by the formulation, it turns out that this similarity with electromagnetism is
not enough to obtain a convergent computer simulation. This implementation is the first
computer implementation of the EB formulation, achieved by tailoring a new FEM to
that formulation.

This thesis presents a way of maintaining stability while imposing the constraints by
extending to this problem a recently developed general abstract framework, the Finite
Element Exterior Calculus (FEEC) [4, 5]. Indeed, this stability property often relies
on deep connections between fundamental branches of mathematics: the FEEC mimics
these connections for the discretization to achieve similar stability to that of the original
equations. This method is the first application of FEEC to general relativity.

1.1 Outline

In the first chapter, we introduce manifolds and curvature in the context of general
relativity. We also review the standard 3 + 1 linearization of Einstein’s equations in
order to identify small plane wave solutions.

In the second chapter, we introduce the Bel decomposition which divides the Weyl
curvature tensor into its electric and magnetic part, following [2, 3]. We then derive a
constrained evolution system for electric and magnetic parts of the Weyl tensor in the
case of a small perturbation from Minkowski space: the linearized EB system. These
two parts are symmetric, traceless, and divergence-free, matrices. We show how the
evolution equations propagate some of those constraints, and review known results about
this system.

In the third chapter, we develop a general framework enabling the study of wave
equations such as Maxwell’s equations and the linearized EB system. To do so, we
introduce the theory of Hilbert complexes combined with the theory of unbounded
operators needed in the general analysis of wave equations attached to complexes. We
call these wave equations, Hodge wave equations. We then analyze the existence and
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uniqueness of a solution to a general Hodge wave equation. We then identify three
formulations of the linearized EB system. The first one is based on the vector de
Rham complex, and the abstract analysis carries over naturally. In this system, all
the constraints are evolved by the evolution equations. However, it is not clear that
the propagation of constraints is robust to adding coefficients and lower order terms.
Therefore, we consider a version in which symmetries are imposed strongly. Finding
finite elements for this formulation with strong symmetries is difficult. Indeed, this
formulation requires symmetry and H2 regularity. On one hand, as was discovered for
elasticity, finite elements with symmetry are difficult to identify. On the other, as for
plate bending, finite elements with H2 regularity are also difficult to identify. To resolve
the first issue, we present an alternative formulation with symmetry imposed weakly.
To address the second issue, we introduce a new framework in the following chapter.
This leads to a third formulation, but a different analysis needs to be provided for this
formulation. This is the content of the next two chapters.

In the fourth chapter, we identify a formulation of the linearized EB system in which
the symmetries are imposed weakly and the need for H2 regularity is alleviated. We
call this formulation the linearized EB system with weak symmetries. This formulation
is identified by combining two complexes together. The general framework to do so is
called the BGG framework. The name is due to the similarity of this process to the
Bernstein-Gelfand-Gelfand resolution in the representation theory of Lie algebras. For
this formulation, we show existence and uniqueness of a solution at the continuous level.
We mimic this analysis at the discrete level to provide new mixed finite elements for this
problem. The general analysis of such combination of two complexes finds inspiration in
elasticity with weak symmetry and a limiting case of Reissner–Mindlin plate bending. As
an application of this general framework and analysis, we consider the time-independent
linearized EB system with weak symmetries. We then extend the framework to the
time-dependent case. This enables us to analyze the time-dependent linearized EB
system with weak symmetries. We show the convergence analysis of the method.

In the fifth chapter, we investigate the implementation in the case of small per-
turbations and of gravitational waves. Due to the presence of projection operators
in the linearized EB system, we hybridize the system by introducing multipliers and
integrals on edges and faces to ease the implementation. Moreover, to improve efficiency
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of the method, we derive a preconditioner tailored to this hybridized system. For the
implementation, we then use FEniCS, an open source project with focus on solving PDE
by finite element methods. With this implementation, we confirm the convergence of
the method. We also demonstrate the propagation of a gravitational wave from a weak
source using the method.



Chapter 2

Manifolds, Tensors, and General
Relativity

In general relativity, four-dimensional spacetime is represented by a smooth manifold
endowed with a metric. The geodesics on this manifold describe the paths of particles
in free fall. In this chapter, we introduce background material on manifold geometry
that is needed to discuss Einstein’s equations. For this, we follow [6], and also refer to
[1, 7, 8, 9]. We begin by tensor fields on manifolds and the abstract index notation to
compute with them. This then leads us to the metric and associated covariant derivative.
Following this, we discuss the curvature of a smooth manifold. Einstein’s equations
then tell us the relation between a given distribution of matter and the curvature of the
manifold. Finally, we discuss the linearization of Einstein’s equations with the goal of
understanding plane wave solutions.

2.1 Tensor Fields on Manifolds

We begin by recalling the definition of a manifold. An n-dimensional (smooth and real)
manifold is a set M equipped with a collection of subsets {Oα} such that
• {Oα} covers M ;
• for each α, there exists a bijective map ψα : Oα → Uα, where Uα is an open subset

of Rn;
• for any α and β such that Oα∩Oβ is not empty, ψβ ◦ψ−1

α is a smooth map between

5



6
the ψα(Oα ∩Oβ) ⊂ Uα ⊂ Rn to ψβ(Oα ∩Oβ) ⊂ Uβ ⊂ Rn, assumed open in Rn.

The maps ψα is said to be a chart or a coordinate system. We always assume that we
have a maximal cover {Oα} and chart family: all charts compatible with the last two
properties are included.

For any p in an n-dimensional manifold M , we can attach an n-dimensional vector
space TpM , called the tangent space of M at p. An element v of TpM is a tangent vector
at p: a map on smooth scalar functions on M to R such that
• v is linear,
• v satisfies the Leibniz Rule: v(fg) = v(p)v(g) + v(f)g(p) for any smooth scalar
functions f, g on M .

The cotangent space at p is the dual space T ∗pM of the tangent space TpM . A covector
is thus a linear functional on TpM . As TpM is finite dimensional, its dual T ∗pM has the
same dimension.

At any p ∈M , we can define the coordinate basis of TpM for a chart ψ around p,

Xµ(f) = ∂

∂xµ
(f ◦ ψ−1)

∣∣∣∣
ψ(p)

where xµ are the Cartesian coordinates of Rn, µ is an integer with 1 ≤ µ ≤ n, and f is a
smooth map from M to R. If we pick another chart ψ′ around p, the chain rule gives us
the relation between Xµ and X ′µ,

Xµ =
∑
ν

∂x′ν

∂xµ

∣∣∣∣
ψ(p)

X ′ν ,

where x′ν denotes the νth component of ψ′ ◦ ψ−1. We often denote Xµ by ∂/∂xµ or
simply by ∂µ. The associated dual basis for T ∗pM is given by dx1(p), . . . , dxn(p): the
notation is just a symbol for the linear map such that dxµ (∂ν) = δµν at p. At the
point p, we can expand a vector v in terms of its components vµ in the given basis:
v =

∑n
µ=1 v

µ∂µ = vµ∂µ, where we used Einstein’s summation convention which imply
the summation over repeated Greek indices. Similarly, a covector w at p can be written
in terms of its components wµ as w =

∑n
µ=1wµdx

µ = wµdx
µ.

For any non-negative integers k and l and for any point p ∈ M , we consider the
tensor product

T k,lp M := TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸
k

⊗T ∗pM ⊗ · · · ⊗ T ∗pM︸ ︷︷ ︸
l
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which is a vector space of dimension nk+l. This tensor product can be identified with
the space of (k, l)-linear maps

T ∗pM × · · · × T ∗pM︸ ︷︷ ︸
k

×TpM × · · · × TpM︸ ︷︷ ︸
l

→ R.

An element of T k,lp M is called a tensor at p, and the pair (k, l) is the valence of the
tensor. In particular, a tangent vector at p is an element of T 1,0

p M , and a covector is
an element of T 0,1

p M . A tensor of arbitrary valence can be expanded in terms of its
components in the basis and dual basis.

The disjoint union of the tangent spaces TpM is the tangent bundle TM , and may
be given the structure of a 2n-dimensional manifold. Similarly, we can construct the
cotangent bundle T ∗M , and the (k, l)-tensor tangent bundle T k,lM . A vector field on
M , that is a section of TM , is a smooth function v : M → TM such that v(p) ∈ TpM .
Similarly, we can construct covector fields and (k, l)-tensor fields. A (k, l)-tensor field is
thus a function mapping p ∈M to a (k, l)-multilinear map on k covectors and l vectors.
The set of all (k, l)-tensor fields is Γ(T k,lM). We highlight that the set of (0, 0)-tensor
fields are scalar fields, of (1, 0)-tensor fields are vector fields, and (0, 1)-tensor fields are
covector fields.

We use two notations for tensor fields (and for tensors when mentioned explicitly
in the context). First, we use bold characters to denote tensors of any valence. This
notation will also be convenient when discussing differential equations, combined with
standard differential operators like grad, curl, and div. Second, we use the abstract
index notation which is often more convenient for computation. The notation is the
following. For a vector, we may use va – the choice of a for the superscript has no
particular meaning other than indicating that the object is a vector. In this notation,
(k, l)-tensor fields are denoted with k distinct superscripts and l distinct subscripts. We
call the superscripts contravariant indices and the subscripts covariant indices. To refer
to a tensor field of arbitrary valence, we may write va...c.... In order to avoid confusing
expressions written in the abstract index notation and expressions written in terms of
components in a coordinate system, we employ the following convention inspired by [6]:
we use Latin indices starting at a for abstract indices, and Greek indices for tensors in a
given coordinate system.



8
The tensor product of two tensor fields, say va and wb is written, in abstract index

notation, simply as vawb. This is inspired by the coordinate expression, since, if vµ and
wν give the components of two tensor fields with respect to the same coordinate system,
then the components of their tensor product is indeed vµwν . This notation readily
extends to the tensor product between tensors of arbitrary valence. It is important to
make the distinction between vawb denoting the tensor product of va and wb, and vawa.
The latter denotes the contraction of va with wb and its result is the scalar field vawa
such that, at any p ∈M , (vawa)(p) is equal to the real number obtained when va(p) is
paired with wb(p). The contraction is indicated by the repetition of the index. In general,
the contraction of the ith and the jth indices is a map Γ(T k,lM)→ Γ(T k−1,l−1M), by
pairing the ith copy of T ∗pM with the jth copy of TpM . We call the (i, j)th trace of a
tensor field the contraction of its ith contravariant index and jth covariant index. For
instance, the (1, 1)-trace on T 1,1

p M is the map T 1,1
p M → R sending a tensor hbc to hbb.

In order to respect the vector space structure of tensors, writing equations in
abstract index notation has to follow the following rule. In an equation, each term’s
superscripts/subscripts should have the same number of any non-contracted letter, so
that contracting with a fixed covector/vector removes a letter from each term. For
instance, we can write aabcdef + babdcef = habdcef . For a (2, 0)-tensor field hab, we
can write hab + hab = 2hab for an equation in T 2,0

p M . However, this is in general not
the same (2, 0)-tensor field as hab + hba, since habvawb does not result in the same
scalar field as hbavawb. Since T 2,0

p M = TpM ⊗ TpM , we can see hab 7→ hba as the
map u ⊗ v 7→ v ⊗ u for vector fields u and v. We introduce the following elements
of notation: the use of parenthesis for the symmetric part and square-brackets for
the anti-symmetric part of tensor fields. For instance, va(bc) = 1

2(vabc + vacb) and
va[bc] = 1

2(vabc − vacb). Thus, we have that va(bc) = va(cb) and va[bc] = −va[cb], as desired.
For a tensor field of any valence, the symmetric part is the average of all the permutations
of the indices with respect to which one is symmetrizing. The anti-symmetric part is
the same sum with each term multiplied by the sign of the permutation. For example,
va[bcd] = 1

6 (vabcd + vadbc + vacdb − vabdc − vacbd − vadcb).



9
2.2 Metric

A pseudo-Riemannian metric on M is a non-degenerate symmetric (0, 2)-tensor field gab.
Non-degenerate means that, for any point p ∈M and nonzero vector va ∈ TpM , there
exists a vector wb such that gab(p)vawb is not zero. Since gab(p) is a symmetric bilinear
form for every p ∈ TpM , there is a basis of vectors v1 a, . . . , vn a diagonalizing gab(p) at p,
namely that (gab(p))( vi a)( vj b) = 0 if i 6= j. Moreover, the scalar λi := (gab(p))( vi a)( vi b)
is not zero for any i. By Sylvester’s law of inertia, the number of λi which are positive
does not depend on the choice of basis. This number determine the signature of the
metric [9, p. 42]. If this number is n, then gab(p) is positive definite for each TpM and
thus induces an inner product on TpM . The metric is then called Riemannian. In
contrast, if this number is n− 1, then the metric only induces a pseudo-inner product
(symmetric and non-degenerate, but not positive definite) on the tangent spaces. The
metric is then called Lorentzian. We sometimes denote the signature as a list of + and −.
For instance, we might say that the metric has signature (−+ ++) for a 4-dimensional
manifold equipped with a Lorentzian metric. For a Lorentzian metric gab, a vector
va at p is called spacelike if gab(p)vavb > 0, timelike if gab(p)vavb < 0, and lightlike if
gab(p)vavb = 0.

The metric induces a map between vector fields and covector fields, as it induces
a map gab(p) : TpM → T ∗pM at any point p of the manifold. Since the metric is
non-degenerate, this map is invertible at any p ∈M . We denote the inverse by gab(p)
and the associated tensor field gab. Contracting the metric with its inverse gbc gives
gabg

bc = δ c
a = δca, the identity (1, 1)-tensor field, called the Kronecker delta. Using

the metric and its inverse, we can lower the index of a vector field and raise the index
of a covector field. Indeed, for a given vector field va, we define the covector field
va = gabv

b with lowered index. Similarly, for a covector field wa, we define the vector
field wa = gabvb with raised index. We can also raise and lower indices of any tensor
fields. Since gab is the inverse of gab, raising and lowering indices are inverse of each
other: gabgbcvc = δ c

a vc = va. By raising and lowering indices, we may end up with
staggered indices on a tensor field in the abstract index notation. For instance, for the
(3, 2)-tensor field habcde, we have h c e

ab d = gafgbgg
ehhfgcdh. To refer to a tensor field of

arbitrary valence, we still write va...c... in the abstract index notation. Moreover, since
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we can change the valence of a tensor field using the metric, we sometimes refer to
(k, l)-tensor fields as (k + l)-tensor fields.

A metric on M uniquely determines a covariant derivative ∇a as follows [6, p.
31]. The covariant derivative ∇a (also denoted ∇) takes a (k, l)-tensor field, for any
non-negative integers k and l, and returns a (k, l + 1)-tensor field such that
• Linearity: ∇a is linear from T k,lM to T k,l+1M .
• Leibniz Rule: ∇a satisfies∇a(vb...c...wd...e...) = (∇avb...c...)(wd...e...)+(vb...c...)(∇awd...e...).
• Commutativity with traces: ∇a commutes with contractions of indices,∇a(v...b......b...) =
∇av...b......b....
• Differential on scalars: ∇a is the usual exterior derivative on scalar fields, (∇af)(p) =
dfp for any p ∈M and f ∈ T 0,0M .
• Torsion-free: ∇a commutes on scalar fields, ∇a∇bf is symmetric for any f ∈ T 0,0M .
• Compatibility with the metric: ∇agbc = 0.

We also sometimes denote the covariant derivative with a semi-colon: for instance,
va;b := ∇bva for a covector vb.

In a given coordinate system with the coordinate basis xµ, the covariant derivative
can be computed explicitly. From the definition, we can already compute it for scalars,

∇µf = f,µ

where we define f,µ = ∂f/∂xµ. The coordinate expression of the covariant derivative of
a tensor of arbitrary valence requires Christoffel symbols. The Christoffel symbols are
given as

Γµνα := gµγΓναγ := 1
2g

µγ (gνγ,α + gαγ,ν − gνα,γ) . (2.1)

Since the metric is symmetric, we have that Γµνα = Γµαν . The Christoffel symbols are
always attached to a coordinate system. Now, we can compute the covariant derivative
of vectors and covectors:

∇µvν = ∂vν

∂xµ
+ Γνµαvα and ∇µvν = ∂vν

∂xµ
− Γαµνvα.

Higher-order tensors repeat the pattern of vectors and covectors. For instance,

∇µvνγ =
∂vνγ
∂xµ

+ Γνµαvαγ − Γαµγvνα.



11
2.3 Riemann Curvature Tensor

Even though the covariant derivative commutes on scalar fields, it does not commute on
arbitrary tensor fields. For example, the quantity ∇[c∇d]v

a need not vanish for a vector
field va. However, it is linear in va at every point p ∈M , and can be shown to have its
value at a point p ∈M only dependent on the value of va at p [9, p. 33]. We then define
the Riemann curvature tensor as the tensor field Rabcdvb := ∇[c∇d]v

a following [1]. We
often simply say Riemann tensor.

Using the explicit form of the covariant derivative in a given coordinate basis, we
give an explicit way of computing the Riemann tensor from the metric. If we introduce
a system of coordinates, the components of the Riemann tensor are given by

Rαµβν = ∂βΓαµν − ∂νΓαµβ + ΓαγβΓγµν − ΓαγνΓγµβ. (2.2)

A vector field V a is said to be parallel transported along a curve with tangent field
T a when T b∇bV a = 0. In particular, a geodesic is a curve whose tangent vector field T a

is parallel transported along itself: T b∇bT a = 0. The Riemann curvature tensor then
describes whether geodesics on a manifolds become closer or further away from each
other. Indeed, consider a smooth one-parameter family of geodesics γs(t). Then we can
use t and s as coordinates for the 2-dimensional submanifold spanned by the geodesics,
and set T a = (∂/∂t)a and Xa = (∂/∂s)a. The vector field aa = T c∇c(T b∇bXa) tells us
the relative acceleration of nearby geodesics. A calculation as done in [1, p. 37] and [6,
p. 47], using the definition of the Riemann tensor, the Leibniz rule, and the fact that
the coordinate vector fields T a and Xb commute as operators on scalar fields, yields the
geodesic deviation equation

aa = −RacbdXbT cT d (2.3)

which then tells us that initially parallel geodesic will fail to remain so if and only if the
Riemann curvature tensor does not vanish. Thus, parallel straight lines remain parallel
on a flat manifold.

Even though the Riemann tensor has four indices and could have up to n4 independent
components, it really only has n2(n2 − 1)/12 independent components (20 when n = 4)
because of its many symmetries.
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Proposition 2.1. The Riemann tensor satisfies
• skew-symmetry in each of the two pairs Rabcd = −Rbacd = −Rabdc,
• the first (or algebraic) Bianchi identity, Ra[bcd] = 0.

Proof. The skew-symmetry in the first pair follows from the compatibility of the metric:

0 = 2 (∇c∇d −∇d∇c) gae = R b
a cdgbe +R b

e cdgab = Raecd +Reacd.

The skew-symmetry in the second pair is clear from the definition. The first Bianchi
identity follows by observing that 0 = ∇[a∇bvc] by expanding the covariant derivative
in any coordinate basis (this relation in differential forms is simply that d2~v = 0 for a
vector ~v and exterior derivative d). From this relation, we see immediately that

0 = ∇[c∇dva] −∇[d∇cva] = R b
[a cd]vb,

as desired. �

We can write the symmetries in the previous proposition differently. From [10],
we have the following for any tensor field Cabcd satisfying skew symmetry in each
pair: Cabcd satisfies the first Bianchi identity if and only if Cabcd has the interchange
symmetry, Cabcd = Ccdab, and null totally antisymmetric part, C[abcd] = 0. Finally,
another important property of the Riemann tensor is the (second or differential) Bianchi
identity,

∇[eRcd]ab = 0, (2.4)

which can be obtained from the definition.
The trace of the Riemann tensor is called the Ricci tensor, Rab = Rcacb, and is a

(0, 2)-tensor field. Because of the interchange symmetry of the Riemann tensor, the Ricci
tensor is symmetric. If the Ricci tensor vanishes identically, we say that the manifold
is Ricci-flat. The trace of the Ricci tensor is the Ricci scalar, or scalar curvature,
R = Raa, and is a scalar field. Now, we take the trace twice (e with a, and b with
d) in the second Bianchi identity (2.4), and get the twice-contracted Bianchi identity,
∇a

(
Rac − 1

2gacR
)

= 0. The Einstein tensor

Gab = Rac −
1
2gacR
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is the (0, 2)-tensor field appearing in parenthesis, and inherits symmetry from the Ricci
tensor. The Einstein tensor is not an arbitrary symmetric tensor though, as we have
just shown it satisfies

∇aGac = 0.

2.4 Einstein’s Equations

In the theory of general relativity, the four-dimensional spacetime is represented by a
four-dimensional Lorentzian manifold equipped with a metric gab of signature (−+ ++).
The relation between the curvature of the manifold and the mass and energy living on it
is the content of Einstein’s equations (sometimes also called Einstein’s field equations).
These equations are a set of 10 equations that relate the Einstein tensor Gab and the
energy-momentum tensor Tab through

Gab = 8πG
c4 Tab,

where G on the right is the gravitational constant and c is the speed of light. The
constant 8πG/c4 then has a value of about 5 · 10−44s2/m/kg, and thus highlights the
scale of mass and energy needed to create a noticeable effect. For convenience, we will
take geometrized units in which G = c = 1, so that the constant is simply 8π.

Since the twice-contracted Bianchi identity says that the Einstein tensor satisfies
the conservation law ∇aGab = 0, the energy-momentum tensor should be conservative,
namely that ∇aTab = 0. In the case of vacuum, Tab = 0, so Gab = 0. Since the trace
of Gab is zero if and only if the trace of Rac is zero, Gab = 0 is equivalent to Rab = 0.
Thus, in vacuum, Einstein’s equations state that the manifold is Ricci-flat.

2.5 Gauge Freedom

If we are given two manifolds M and N of dimensions m and n with charts ψMα and ψNβ ,
a map φ : M → N is said to be smooth, if, for each α and β, ψNβ ◦ φ ◦ (ψMα )−1 mapping
Uα ⊂ Rm into Uβ ⊂ Rn is smooth. If also φ is bijective and has a smooth inverse, then
φ is a diffeomorphism. In that case, M and N are said to be diffeomorphic and have
identical manifold structures [6].
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If M and N are two manifolds and φ : M → N is a smooth map, then, at each point

p ∈ M , the differential dφp : TpM → Tφ(p)N is a linear map such that dφp(X)(f) =
X(f ◦ φ) for X ∈ TpM and f a smooth scalar field on N . We can then define the push-
forward of vectors, φ∗ : TM → TN and v ∈ TpM , (φ∗v)p := dφpv ∈ Tφ(p)N . The adjoint
map (dφp)∗ maps the other way: from T ∗φ(p)N to T ∗pM . To combine these adjoint maps
at every p ∈M , φ needs to be one-to-one and onto. Thus, if φ is a diffeomorphism, then
the pull-back φ∗ from T ∗N to T ∗M , can be defined as (φ∗)pw := (dφp)∗w ∈ T ∗pM for
any p ∈M and w ∈ T ∗φ(p)N . In the case when φ is a diffeomorphism, and thus invertible,
we can also define the push-forward of covectors via φ∗ := (φ−1)∗ : T ∗M → T ∗N .
Using the tensor products, we thus have a push-forward for tensors of any valence:
φ∗ : T k,lM → T k,lN . Similarly, we have a pull-back φ∗ for tensors of any valence. We
can also extend the definition of push-forward φ∗ to tensor fields too: for the (k, l)-tensor
field onM , we view φ∗v as the (k, l)-tensor field on N mapping φ(p) to φ∗v(p). Similarly,
we also extend the definition of pull-back φ∗.

Suppose we are given two diffeomorphic manifolds M and N via the diffeomorphism
φ, where M has metric g. Then, the push-forward φ∗g to N assigns the same value to a
pair of vectors at φ(p) ∈ N as g as the corresponding pair of vectors at p ∈M . Thus,
by construction, φ∗g on N is isometric to g on M . For an arbitrary tensor field v, we
get from the definitions that φ∗(∇v) = ∇(φ∗v), where on the left ∇ is the covariant
derivative attached to M and to N on the right with appropriate metrics. It follows
that the Riemann tensor associated to φ∗g on N is just the push-forward of the one on
M , and similarly for the Ricci tensor, Ricci scalar, and Einstein tensor.

A solution to Einstein’s equations then corresponds to an equivalence class of
manifolds with a high degree of non-uniqueness. The equivalence relation is given by
diffeomorphisms. This non-uniqueness cannot be suppressed with boundary conditions:
indeed, if a manifold has a boundary, one can take a diffeomorphism reducing to the
identity near the boundary. Therefore, whenever Einstein’s equations has a solution, it
actually has many. We refer to this non-uniqueness as gauge freedom, and call gauge-
related a tensor field and its push-forward to another manifold of the same equivalence
class. For instance, consider a metric g satisfying the vacuum Einstein’s equations,
G = 0: for any diffeomorphism φ : M → N , the push-forward φ∗g still satisfy the
vacuum Einstein’s equations. Often, it is necessary to pick a single representative in the
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equivalence class of solutions, and, to do so, we can impose some extra conditions, called
gauge conditions. This process of picking an unique representative is called gauge fixing.

2.6 Lie Derivative

When linearizing in the next section, we consider one-parameter groups of diffeomor-
phisms on a background manifold. Such one-parameter groups of diffeomorphisms
φ : M ×R→M on a manifold M are in fact induced by vector fields. Thus, for a vector
field Y and any tensor field T , the Lie derivative at p ∈M is then

(LY T )(p) = d

dt

∣∣∣∣
t=0

((φ∗)−tT )(p)

where φ∗t is the pullback associated to the diffeomorphism φt induced by Y (see [9, p.
20] [6, p. 439]). The Lie derivative satisfies Leibniz rule: for any tensor fields S and T ,
LY (S ⊗ T ) = (LY S)⊗ T +S ⊗ (LY T ). For a scalar field f , the Lie derivative becomes
LY f = Y (f). For a vector field X, the Lie derivative is LYX = [Y ,X], where [Y ,X] is
the Lie bracket or commutator of X and Y and [Y ,X]b = Y a∇aXb −Xa∇aY b. Thus,
for a vector field Xa, we have

LYXb = Y a∇aXb −Xa∇aY b.

For a covector field Xa, we have

LYXb = Y a∇aXb +Xa∇bY a.

For a tensor field with arbitrary valence, the pattern repeats: one extra term for each
lower/upper index. In particular, if we apply the Lie derivative to the metric, we get
LXgab = Xc∇cgab + gcb∇aXc + gac∇bXc = 2∇(aXb).

2.7 Linearization

We now review the case of small perturbations of the flat Minkowski metric in order
to study the structure of Einstein’s equations. Such small perturbations enable us to
understand gravitational waves.
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We follow [6, pages 75, 183, 441], [8, p. 277], and [9, p. 24], and we fix the background

manifold Mb = R4 equipped with the Minkowski metric η. We suppose that we
have a smooth one-parameter family g(ε) of exact solutions to Einstein’s equations
G(ε) = 8πT (ε) such that g(0) = η and T (0) = 0. Thus, we can expand the family in a
series, g(ε) = η + εh+O(ε2), where

h = d

dε
g(ε)

∣∣∣∣
ε=0

is understood as a perturbation of η. For simplicity, we also often call h the metric.
As usual, indices are raised and lowered using the Minkowski metric η, except in the

case of the metric for which gab denotes the inverse of gab, gab ≈ ηab − εhab, where ≈
means equality up to O(ε2). Moreover, the derivative operators are associated to the
Minkowski metric.

We now want to know how perturbations of the metric change under diffeomorphisms.

Theorem 2.2. Suppose we are given any vector field ξ on Mb. If we call the induced
one-parameter group of diffeomorphisms ψ(ε) : Mb →Mb, then

d

dε
ψ∗(ε)g(ε)

∣∣∣∣
ε=0

= h+ 2E(ξ).

We say that h and h+ 2E(ξ) are gauge-related.

Proof. Consider a vector field ξ on Mb. This vector field induces a flow, and thus also a
one-parameter group of diffeomorphisms ψ(ε) on Mb. We thus study how the first order
perturbation h changes to

h′ = d

dε
ψ∗(ε)g(ε)

∣∣∣∣
ε=0

.

Hence,

ψ∗(ε)g(ε) = ψ∗(ε)
(
η + εh+O(ε2)

)
≈ ψ∗(ε)η + εψ∗(ε)h.

We then further see that

ψ∗(ε)h = h+O(ε),

and that

ψ∗(ε)η = η + ε
ψ∗(ε)η − η

ε
= η + εLξ(η) +O(ε2).
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Therefore,

ψ∗(ε)g(ε) ≈ η + εh+ εLξ(η),

so h′ = h+ Lξ(η). However, we recall that Lξ(ηab) = ∇aξb +∇bξa, which is simply the
symmetric gradient, 2E(ξ), as desired. �

This theorem describes the effect of a diffeomorphism on the perturbations of metrics.
We thus have that gauge-related metrics are given by

hnew
ab = hab + 2∇(aξb),

for any covector field ξb.
To later simplify the equations, we introduce the trace-reversed metric, sh = h−ηh/2,

so that g ≈ η + εsh − εηsh/2, where h = ηabhab and sh = ηabshab. A calculation using
Theorem 2.2 shows that gauge-related trace-reversed metrics are given by

shnew
ab = shab + 2∇(aξb) − ηab∇cξc, (2.5)

since shnew
ab = hnew

ab − ηabhnew/2 and hnew = h+ 2∇cξc.
We are now ready to see the effect of a diffeormorhism on the Einstein tensor.

Theorem 2.3. The linearization H = d
dεG

∣∣∣
ε=0

of the Einstein tensor G is

Hbd = ∇c∇(bhd)c −
1
2 (∇c∇chbd +∇d∇bh)− ηbd

2 (∇c∇ehec −∇c∇ch)

or in terms of the trace-reversed tensor

Hbd = ∇a∇(bshd)a −
1
2
(
∇a∇ashbd + ηbd∇a∇eshea

)
.

Proof. We follow [1, p. 39]. We first compute the Christoffel symbol given in equations
(2.1), the connection tensor relating the derivative operators associated to the metric g
and η. We denote the latter ∇. Thus,

Γabc = 1
2 (∇bgac +∇agbc −∇cgab) ≈ ε

1
2 (∇bhac +∇ahbc −∇chab) .
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We now compute the Riemann tensor, which is given by (2.2). Since the contraction of
two Christoffel symbols is O(ε2) and the covariant derivative commutes on scalar fields,
the Riemann tensor is

Rabcd ≈ ∇cΓbda −∇dΓbca

= ε
1
2 (∇c∇dhba +∇c∇bhda −∇c∇ahbd −∇d∇chba −∇d∇bhca +∇d∇ahbc)

= ε
1
2 (∇c∇bhda −∇c∇ahbd −∇d∇bhca +∇d∇ahbc) , (2.6)

and then the Ricci tensor,

Rbd = Rcbcd

≈ ε1
2 (∇c∇bh c

d −∇c∇chbd −∇d∇bh c
c +∇d∇chbc)

= ε∇c∇(bhd)c − ε
1
2 (∇c∇chbd +∇d∇bh) . (2.7)

Consequently, the Ricci scalar is

R = Rdd

≈ ε1
2
(
∇c∇dhdc −∇c∇ch−∇d∇dh+∇d∇chdc

)
= ε∇c∇dhdc − ε∇c∇ch.

Thus, the Einstein tensor becomes

Gbd = Rbd −
gbd
2 R

≈ ε∇c∇(bhd)c − ε
1
2 (∇c∇chbd +∇d∇bh)− εηbd2 (∇c∇ehec −∇c∇ch) . (2.8)

We can then compute the linearized Einstein tensor to be

H = d

dε
G

∣∣∣∣
ε=0

.

Instead of writing these quantities in terms of the perturbation hcd, we can rewrite
them using trace-reversed metric shcd via hcd = shcd+ηcdh/2. With a similar computation
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to what was done before, the Ricci tensor then becomes

Rbd ≈ ε∇a∇(bshd)a + ε
1
2

(
−2∇a∇(bηd)a

sh

2 −∇
a∇ashbd +∇a∇aηbd

sh

2 +∇b∇dsh
)

= ε∇a∇(bshd)a + ε
1
2

(
−∇a∇bηda

sh

2 −∇
a∇dηba

sh

2 −∇
a∇ashbd +∇a∇aηbd

sh

2 +∇b∇dsh
)

= ε∇a∇(bshd)a + ε
1
2

(
−∇a∇ashbd + ηbd∇a∇a

sh

2

)
,

and, similarly for the Ricci scalar,

R ≈ ε∇a∇dshda + ε
1
2∇

a∇ash.

The Einstein tensor finally is

Gbd ≈ ε∇a∇(bshd)a + ε
1
2

(
−∇a∇ashbd + ηbd∇a∇a

sh

2

)
− εηbd2 ∇

a∇dshda − ε
ηbd
4 ∇

a∇ash

= ε∇a∇(bshd)a − ε
1
2
(
∇a∇ashbd + ηbd∇a∇eshea

)
, (2.9)

as desired. �

We can identify the operators in the previous theorem as follows:

H = E(divh)− 1
2
(
�h+∇2h

)
− η2 (div divh−�h) ,

or, in terms of the trace-reversed metric sh,

H = E(div sh)− 1
2
(
�sh+ η div div sh

)
.

The differential operators appearing above are the following four-dimensional operators
with signature (− + ++): (divh)a = ∇bhab, � = ∇a∇a, (∇2h)ab = ∇a∇bh, and
(E(divh))bd = ∇c∇(bhd)c.

From Theorem 2.3 with T = εT +O(ε2), we see that the linearized Einstein equations
are

∇c∇(bhd)c −
1
2 (∇c∇chbd +∇d∇bh)− ηbd

2 (∇c∇ehec −∇c∇ch) = 8πTbd,

or in terms of the trace-reversed tensor

∇a∇(bshd)a −
1
2
(
∇a∇ashbd + ηbd∇a∇eshea

)
= 8πTbd, (2.10)
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with the energy-momentum tensor Tbd = εTbd + O(ε2). Finally, we see that 2∇(aξb),
which appears in Theorem 2.2, is a solution to the homogeneous problem for any vector
field ξ. Indeed, we insert 2∇(aξb), expand the symmetric parts, interchange derivatives,
and cancel corresponding terms,

Hbd = 1
2
(
∇c∇b2∇(dξc) +∇c∇d2∇(bξc)

)
− 1

2
(
∇c∇c2∇(bξd) +∇d∇b4∇aξa

)
− ηbd

2
(
∇c∇a2∇(aξc) −∇c∇c4∇aξa

)
= ∇c∇b∇dξc +∇c∇b∇cξd +∇c∇d∇bξc +∇c∇d∇cξb

−∇c∇c∇bξd −∇c∇c∇dξb − 2∇d∇b∇aξa

= 0.

2.8 Gravitational Waves

In the special case of small perturbation, Einstein’s equations can be written as a
system of wave equations if we introduce the Lorentz gauge which we define below. This
then enables us to study precisely gravitational waves and their polarization by further
specializing to the Transverse-Traceless (TT) gauge, also introduced below.

Proposition 2.4. For any trace-reversed metric, we can find a gauge-related trace-
reversed metric shab satisfying the Lorentz gauge,

∂ashab = 0.

Moreover, the linearization of the Einstein tensor from Theorem 2.3 in terms of shab

becomes

Hbd = −�shbd,

where � := ∂a∂a is called the d’Alembertian.

Proof. Suppose we are given a metric hab. We use a mapping given by Theorem 2.2.
By mapping hnew

ab = hab − 2∂(aξb), for any vector field ξb, from equation (2.5) we have
that shnew

ab = shab − (2∂(aξb) − ηab∂cξc), and so ∂bshnew
ab = ∂bshab − ∂b∂bξa. We can take ξa

satisfying the inhomogeneous wave equation, ∂b∂bξa = ∂bshab. Doing this, we realized
that we found a diffeomorphism mapping the tensor hab to shab which is divergence-free
and thus satisfies the Lorentz gauge condition. �
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If the Lorentz gauge is satisfied, we then get that the metric satisfies

�shbd = −16πTab, (2.11)

from Theorem 2.4. We now seek plane wave solutions to the homogeneous equations.

Proposition 2.5. Let ka be a constant vector field, and Aab a constant symmetric
(0, 2)-tensor field. We suppose that ka is lightlike, namely that kckc = 0, and that it
belongs to the kernel of Aab, so that Aabkb = 0. Let also f(s) be a real-valued C2 function
of one-variable, and define a (0, 2)-tensor field

shab := Aabf(kcxc),

where xc is the identity vector field on Mb and kcxc is a scalar field. Then, shab is a
plane wave solution in the Lorentz gauge to the homogeneous wave equation given by
equation 2.11 with Tab = 0.

Proof. The plane wave satisfies

�Aabf(kcxc) = Aab�f(kcxc) = Aabkdk
df ′′(kcxc) = 0,

since kd is lightlike, and the Lorentz gauge condition,

∂ashab = kaAabf
′(kcxc) = 0,

since ka is in the kernel of Aab. This concludes the proof. �

We now introduce a specialization of the Lorentz gauge for a plane wave solution
shab = Aabf(kcxc) as given in Proposition 2.5: the Transverse Traceless (TT) gauge:

Aaa = 0, (2.12a)

Aabu
b = 0, (2.12b)

for some arbitrary constant timelike vector field ua. For simplicity, we choose coordinates
in which ua = (1, 0, 0, 0) points along the time axis, and assume the wave propagates
along the z-axis, so ka = k(1, 0, 0, 1). In this gauge, we see that sh = h = 0, so shab = hab.
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Moreover, since Aabkb = 0, the tensor field Aab must then take the form

0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 , (2.13)

for arbitrary real numbers A+ and A−. These two numbers are the only two degrees of
freedom left, and corresponds to two different polarizations of a gravitational wave, the
+ and × polarization.

Proposition 2.6. Consider the plane wave shab = Aabf(kcxc) as given in Proposition
2.5 with ka = k(1, 0, 0, 1). Then shab is gauge-related to a plane wave sh′ab = A′abf(kcxc)
satisfying the TT gauge conditions (2.12) with ua = (1, 0, 0, 0).

Proof. Using equation (2.5), we can find a gauge-related metric via

sh′ab := shab − (2∂(aξb) − ηab∂cξc), (2.14)

for any vector field ξa. Now, we take a real-valued C3 function g(s) of one-variable with
g′ = f , and consider ξa = Bag(kcxc) with a constant vector field Ba. We see that sh′ab

automatically satisfies the Lorentz gauge. Since ka is lightlike and in the kernel of Aab,
from equation (2.14),

∂ash′ab = ∂ashab − ∂a(2∂(aξb) − ηab∂cξc)

= (kaAab − kakaBb − kakbBa + kbkcB
c)f(kdxd) = 0,

as desired.
Now, we take the special choice

B0 = 1
2k (A00 + A

2 ),

Bj = 1
k

(Aj0 − kjB0).

In order to satisfy the TT gauge, we need to verify the following two conditions.
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First, to impose the traceless condition (2.12a), we require 0 = sh′ = sh+ 2∂aξa. Thus,

ξa should satisfy ∂aξa = −1
2
sh, or kaBa = −1

2A. This last condition holds, since

kµB
µ = −kB0 − k

1
k

(A30 + kB0) = −kB0 −A30 − kB0

= −2kB0 +A00 = −A00 −
A

2 +A00 = −A2 ,

as desired.
Second, we impose the transverse condition (2.12b), Aµ0 = 0. Indeed, from equation

(2.14) with µ = 0 and ν = 0, we get

0 = A00 − 2kB0 + kαB
α = A00 − 2kB0 −

A

2 ,

or B0 = 1
2k (A00 + A

2 ), as desired. We then turn to µ = j and ν = 0, we get

0 = Aj0 − kBj − kjB0,

or Bj = 1
k (Aj0 − kjB0) with B0 found earlier, as desired.

We conclude that we have constructed a gauge-related plane wave solution sh′ab

satisfying the TT gauge. �

In order to find the force between two particles in free fall, we need to compute the
acceleration between them. To do so, we study the geodesic deviation given by equation
(2.3), as done in [1, p. 44]. Two particles initially at rest with separation vector field va

have

aµ ≈ −Rµ0ν0v
ν .

We need to compute the Riemann tensor using equation (2.6). Because of the symmetries
of the Riemann tensor and the metric, the only non-zero components in this case are

Rα1β1 ≈ −
ε

2∂α∂βh11, (2.15a)

Rα2β2 ≈ −
ε

2∂α∂βh22, (2.15b)

Rα1β2 ≈ −
ε

2∂α∂βh12, (2.15c)
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Figure 2.1: The effect of a gravitational wave with the given polarization passing through
a ring of particles, [1, p. 45].

where α and β can only be 0 and 3. Thus, since hµν = shµν in this gauge,

a1 ≈ ε

2
(
ḧ11v

1 + ḧ12v
2
)
= −εk

2

2
(
A+v1 +A×v2

)
f(kαxα),

a2 ≈ ε

2
(
ḧ12v

1 + ḧ22v
2
)
= −εk

2

2
(
A×v1 −A+v2

)
f(kαxα).

We thus indeed observe the two independent polarizations, see Figure 2.1.



Chapter 3

EB System

In this chapter, we decompose the Riemann tensor Rabcd in a part Mabcd depending on
the Ricci curvature and another tensor field Wabcd called the Weyl tensor,

Rabcd = Mabcd +Wabcd.

This decomposition is analogous to decomposing a matrix in terms of a traceless part
and a multiple of the identity. Indeed, both Mabcd and Wabcd carry the symmetries of the
Riemann tensor, but Wabcd is also fully traceless, while Mabcd depends only on the trace
of the Riemann tensor, that is, on the Ricci tensor. In vacuum, general relativity tells us
precisely that the Ricci curvature Rab is zero. This implies that Mabcd is zero, and thus
the Weyl tensor coincides with the Riemann tensor in vacuum. Our goal is then to find
a method to recover the Weyl tensor. To do so, we follow [2, 3] and identify a first order
hyperbolic system for the Weyl tensor. The first key ingredient is the second Bianchi
identity satisfied by the Riemann tensor (2.4), and thus by the Weyl tensor in vacuum,

∇[aWbc]de = 0. (3.1)

This identity allows us to identify a conservation law for the Weyl tensor. The second
key ingredient is a decomposition of the Weyl tensor in terms of two parts: an electric
and a magnetic part. Such decomposition was introduced in [11]. As it turns out,
combining these two ingredients leads to a first order hyperbolic system for the Weyl
tensor reminiscent to Maxwell’s equations. A nonlinear evolution system based on the
those two ingredients is discussed in [2] for vacuum. Moreover, a similar system using
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the second Bianchi identity, but based on four parts derived directly from the Riemann
tensor, is presented in [3], and covers the non-vacuum case.

3.1 Volume Form and Hodge Duality

We call a smooth alternating (0, p)-tensor field a differential p-form or simply a p-form.
The space of p-forms is denoted Λp. An n-dimensional manifold is said to be orientable
if it has a nowhere vanishing n-form. If we define the following equivalence relation
between nowhere vanishing n-forms on an orientable manifold: ω and η are equivalent
if and only if ω = fη for some smooth function f > 0, then an orientation on M is
a choice of equivalence class. A volume form is then any element of the equivalence
class. A natural volume form is given by the Levi-Civita tensor whose expression in any
coordinate system is given by

ωi1...in =
√
|det g|εi1...in ,

where det g is the determinant of the metric and εi1...in is the Levi-Civita symbol, with
value +1 for an even permutation of the indices, −1 for an even permutation, and 0
otherwise. Unless otherwise noted, we refer to the natural volume form as the volume
form.

A positively oriented basis of TpM is a choice va1 , . . . , van of ordered basis of TpM .
Two bases (e1, . . . , en) and (f1, . . . , fn) are said to have the same orientation if the linear
map L : TpM → TpM defined by Lei := fi has positive determinant. The volume form
ωa...b(p) at p ∈M is the unique alternating (0, n)-tensor such that ωa...b(p)va1 . . . vbn = 1
for any positively oriented orthonormal (with respect to gab(p)) basis va1 , . . . , van of TpM .
Assuming we have an orientable manifold M , the (natural) volume form ωa...b for a
manifold M with metric gab is the volume form ωa...b(p) of TpM relative to the inner
product gab(p) with the chosen orientation for any p ∈M .

The volume form is related to Hodge duality, as detailed in [12]. Take nonnegative
integers k and l such that k + l = n. Given a k-form wa1...ak

, we define the Hodge dual
of wa1...ak

to be the l-form

(?w)b1...bl
:= 1

k!ω
a1...ak

b1...bl
wa1...ak

.



27
We also call the operator ? from k-forms to l-forms the Hodge star operator. Using this
definition and contractions of the volume form with itself given by

ωa1...akc1...clωc1...clb1...bk
= (−1)t k!l! δa1...ak

b1...bk
,

where t is the number of negative eigenvalues of the metric, the Hodge dual of the Hodge
dual is found to be

(? ?w)a1...ak
= 1
k!l!ω

b1...bl
a1...ak

ω c1...ck
b1...bl

wc1...ck

= (−1)kl

k!l! ω b1...bl
a1...ak

ωc1...ck
b1...bl

wc1...ck
= (−1)kl+t

k!l! k!l!wa1...ak
= (−1)kl+twa1...ak

.

The Hodge dual thus provides a bijective mapping between k- and l- forms. Now, we
finally observe that the volume form is simply the Hodge dual of the constant function 1
viewed as a 0-tensor field, since

(?1)a1...an = ωa1...an .

3.2 Weyl Tensor and Bel Decomposition

As introduced before, we decompose the Riemann tensor as Rabcd = Mabcd +Wabcd. The
first tensor field is defined as

Mabcd := 2
n− 2

[
ga[cRd]b − gb[cRd]a −

R

n− 1ga[cgd]b

]
,

following [1, p. 288] and [2]. Each of the two parts share the symmetries of the Riemann
tensor given in Proposition 2.1: namely, they are skew-symmetric in each pair and satisfy
the first Bianchi identity Ra[bcd]. The first tensor field depends on the Ricci curvature.
The second tensor field is the Weyl tensor Wabcd and is fully traceless, W a

bac = 0. It
can then be shown that the Weyl tensor has n(n + 1)(n + 2)(n − 3)/12 independent
components when n ≥ 4, and zero otherwise. In the particular case n = 4, the Weyl
tensor thus has 10 independent components – and thus half of the components of the
Riemann tensor.

We now specialize to the 4 dimensional case and introduce the Bel decomposition of
the Weyl tensor. This decomposition is the second key ingredient needed in the search
for a first order hyperbolic system for the Weyl tensor. We first note that, since the
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Weyl tensor is skew-symmetric in each of the first and second pair of indices, we can
view it as a double 2-form: an element of Λ2 ⊗ Λ2. We can then apply the Hodge star
operator to either of the two pairs (thus mapping a 2-form to a 2-form), and obtain the
dual Weyl tensors,

W ∗abcd := (1⊗ ?)Wabcd = 1
2Wabefω

ef
cd,

W∗ abcd := (?⊗ 1)Wabcd = 1
2ω

ef
ab Wefcd,

where ωabcd is the volume form of the manifold. The dual of the dual Weyl tensor satisfies
W ∗∗abcd = −Wabcd, and, using the interchange symmetry, W ∗abcd = W∗ cdab . If we fix any
timelike unit vector na, we can divide the Weyl tensor into two parts: the electric and
magnetic tensors

sEab := ncndWcadb,

sBab := ncndW ∗cadb,

respectively. We call this decomposition of the Weyl tensor in terms of the electric and
magnetic tensors the Bel decomposition, or the electric-magnetic decomposition. This
decomposition is sometimes used to extract gravitational wave information out of the
Weyl tensor after a numerical simulation has been run, [13] and [1, Sections 8.6-8.9]. It
is also used to visualize the curvature tensor [14]. The electric and magnetic tensors
inherit properties of the Weyl tensor.

Proposition 3.1. The electric and magnetic tensors are symmetric, traceless, and
orthogonal to n.

Proof. We start with the electric tensor sE. From the interchange symmetry of the Weyl
tensor, sE is symmetric. From the trace-free condition, sE is also trace-free. From the
antisymmetry, n · sE = 0, so sE is orthogonal to n. This concludes the first part of the
proof.

We turn to the magnetic tensor sB. To show that the magnetic tensor sB is traceless,
we compute

gab sBab = 1
2n

cndWcaefg
abωefdb = −1

2n
cndWcaefω

aef
d = −1

2n
cndWc[aef ]ω

aef
d = 0,
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by the first Bianchi identity. Now, we turn to the symmetry of sB, by showing that the
skew part is null. To do so, we define the spatial volume form ωabc = ωabcdn

d. We then
compute

npω
abpq

sBab = 1
2n

cW ef
ca npω

abqpndωefbd = 1
2n

cW ef
ca ωabqωefb = −1

2n
cW ef

ca ωbaqωbef

= −1
2n

cW ef
ca (δae δ

q
f − δ

a
fδ
q
e) = −1

2n
cW aq

ca + 1
2n

cW qa
ca = 0,

by the trace-free condition, and sB is then symmetric. From the antisymmetry, n · sB = 0,
so sB is orthogonal to n. This concludes the second part of the proof. �

The electric and magnetic tensors contribute all of the 10 independent components
of the Weyl tensor. Indeed, we note the following two facts. First, a 2-tensor that is
symmetric, traceless, and orthogonal to n, has 5 independent components – and thus sE

and sB contribute up to 10 independent components. Second, with a straight forward
calculation using the definitions of the electric and magnetic tensors, we see that the
Weyl tensor can be written

Wabcd = 2
[
la[c sEd]b − lb[c sEd]a − n[c sBd]eω

e
ab − n[a sBb]eω

e
cd

]
, (3.2)

with lcd = gcd + 2ncnd, and ωbcd = ωabcdn
a. Thus, sE and sB are enough to recover the

Weyl tensor.

3.3 Linearized Bel Decomposition

In the case of small perturbations, the EB system can be written as a constrained
evolution system reminiscent of Maxwell’s equations. This linearized decomposition and
accompanying system were presented in [10], and we visit those results in the following.
We now fix the background manifold Mb = R4 equipped the Minkowski metric η. We
suppose that we have a smooth one-parameter family g(ε) of exact solutions to vacuum
Einstein’s equations G(ε) = 0 such that g(0) = η. We take a set of coordinates such



30
that the metric η and its inverse have the form

−1
1

1
1

 .

In these coordinates, the volume form and the Levi-Civita symbol are equal, ωabcd = εabcd.
Moreover, we set na = (1, 0, 0, 0). We write Wabcd = C0

abcd + εCabcd +O(ε2), where

Cabcd = d

dε
Wabcd(ε)

∣∣∣∣
ε=0

,

and C0
abcd = 0, since C0

abcd corresponds to the linearized Weyl tensor of the background
manifold Mb. We also set

Eab := d

dε
sEab(ε)

∣∣∣∣
ε=0

= ncndCcadb = C0a0b,

Bab := d

dε
sBab(ε)

∣∣∣∣
ε=0

= ncndC∗cadb = C∗0a0b = C0aef ε
ef

0b,

and

Hab = C∗ 0a0b = 1
2ε

ef
0a Cef0b,

Dab = C∗ ∗
0a0b = 1

2ε
ef

0a C∗ef0b.

We call the four previous tensors the linearized Bel decomposition of C. We now study
some properties of (0, 4)-tensors that are skew-symmetric in the first and last pair.

Proposition 3.2. Suppose we have a double 2-form C and set

Eab := C0a0b, Bab := C∗0a0b = C0aef ε
ef

0b,

Hab := C∗ 0a0b = 1
2ε

ef
0a Cef0b, Dab := C∗ ∗

0a0b = 1
2ε

ef
0a C∗ef0b.

Then the matrix representation of C in the basis of bivectors (t∧x, t∧y, t∧z,y∧z, z ∧
x,x ∧ y), with coordinates taken from the background manifold Mb, isE B

H D

 .
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Moreover, C 7→ C∗ is given byE B

H D

 7→
B −E
D −H

 ,
and C 7→ C∗ by E B

H D

 7→
H D

−E −B

 ,
and C 7→ C∗ ∗ by E B

H D

 7→
 D −H
−B E

 .
Proof. A double 2-form has 6 · 6 = 36 independent components, so that we can represent
such tensor completely by the matrix

C0101 C0102 C0103 C0123 C0131 C0112

C0201 C0202 C0203 C0223 C0231 C0212

C0301 C0302 C0303 C0323 C0331 C0312

C2301 C2302 C2303 C2323 C2331 C2312

C3101 C3102 C3103 C3123 C3131 C3112

C1201 C1202 C1203 C1223 C1231 C1212


,

as done in [10], further divide the representation into four blocks,E B

H D

 .
Since C∗abcdvcwd = Cabef (εefcdvcwd) for any vector vc and vd, taking the dual of the
Weyl tensor is equivalent to applying the Weyl tensor on the basis of bivectors permuted
according to

t ∧ x 7→ y ∧ z, y ∧ z 7→ −t ∧ x,

t ∧ y 7→ z ∧ x, z ∧ x 7→ −t ∧ y,

t ∧ z 7→ x ∧ y, x ∧ y 7→ −t ∧ z,
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which sends the first column of the partition to second, and the second to minus the
first, so that the matrix representation of the dual tensor C∗abcd isB −E

D −H

 .
Similarly, we note that C∗ bcde sends the first row to second, and the second to minus
the first, H D

−E −B

 .
Thus, the matrix representation of C∗ ∗

bcde is D −H
−B E

 ,
as desired. �

Since the linearized Weyl tensor is skew-symmetric in each pair from Proposition 2.1,
it is a double 2-form and the previous proposition applies directly.

Proposition 3.3. Under the assumptions of Proposition 3.2, the following holds.
• The interchange symmetry is equivalent to: E and D are symmetric, and H = BT .
• The null totally antisymmetric part condition is equivalent to: trB + trH = 0.
• The trace-free condition is equivalent to: E is trace-free, B and H are symmetric,
and D = −ET .

Proof. The 16 conditions imposed by the first Bianchi identity breaks into 15 + 1
conditions, the interchange symmetry and the null totally antisymmetric part condition,
respectively. The interchange symmetry is equivalent to the symmetry of the matrix
representation. The null totally antisymmetric part condition C[abcd] = 0 has only 6
terms, since no index can be repeated. These 6 terms are the terms on the diagonals of
B and H, the only ones with no index repeated. Thus, the null totally antisymmetric
part condition is equivalent to trB + trH = 0.

We now consider the 16 traceless conditions for Cabcd, divided into 1 + 3 + 3 + 6 + 3.
The singleton is 0 = Ca0a0 = E11 + E22 + E33. The first triplet is 0 = Ca0aj =



33
C101j + C202j + C303j , which imposes the symmetry of B. The second triplet is 0 =
Caia0 = C1i10 + C2i20 + C3i30, which imposes the symmetry of H. The 6-tuple is
0 = Caiaj = −C0i0j for i 6= j, giving Eij = −Dji for i 6= j. The last triplet is
0 =

∑
aC

a
iai , from which we get −E11 + D22 + D33 = 0, D11 − E22 + D33 = 0, and

D11 +D22−E33 = 0, thus concluding that D = −ET +δ trE/2 = −ET . This concludes
the proof. �

A similar result for the nonlinear case can be found in [3].
Proposition 3.2 thus leads to following matrix representation of the Weyl tensor,E B

B −E

 ,
with E and B traceless and symmetric.

3.4 Linearized EB System

In this section, we find a constrained evolution system for E and B that is reminiscent
of Maxwell’s equations, as presented in [10], using the linearized version of the second
Bianchi identity in vacuum given by (3.1),

∇[aCbc]de = 0.

This identity divides itself into 6 constraints that must be satisfied at all time, and 18
evolution equations. On one hand, if we pick the first three indices (a, b, c) to be (1, 2, 3),
then the corresponding 6 equations do not involve time derivatives and are therefore
constraints. On the other hand, if we pick (a, b, c) as either (0, 1, 2), (0, 1, 3), (0, 2, 3),
then the corresponding 3× 6 = 18 equations have time derivatives and are thus evolution
equations. The following proposition details this decomposition.

Proposition 3.4. The linearization of the second Bianchi identity (3.1) is equivalent
to the constraints

divE = 0,

divB = 0,
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and the evolution equations,

Ė + curlB = 0, (3.3)

Ḃ − curlE = 0. (3.4)

We call this system, in which E and B are symmetric and trace-free matrix fields, the
linearized Einstein-Bianchi system, or simply the linearized EB system.

Proof. We start with the vacuum second Bianchi identity, the first set of equations (3.1),
written in the basis of the bivectors,

0 = ε∇[αCβγ]δθ +O(ε2) = ε∂[αCβγ]δθ +O(ε2),

and so we get the vacuum second Bianchi identity for the linearized Weyl tensor,

∂[αCβγ]δθ = 0. (3.5)

We note that there are at most 4 × 6 = 24 independent conditions, due to the anti-
symmetry in the triplet and the pair. We consider these 24 conditions in 4 groups. The
first group is (α, β, γ) = (1, 2, 3) with (δ, θ) either (0, 1), (0, 2), or (0, 3). The second
group is (α, β, γ) = (1, 2, 3) with (δ, θ) either (2, 3), (3, 1), or (1, 2). These first two
groups have 3 equations each, do not have time derivatives, and are thus constraints.
The third group is (α, β, γ) replaced by (0, 2, 3), (0, 3, 1), (0, 1, 2), and (δ, θ) by (0, 1),
(0, 2), and (0, 3). The fourth group is (α, β, γ) replaced by (0, 2, 3), (0, 3, 1), (0, 1, 2), and
(δ, θ) by (2, 3), (3, 1), and (1, 2). These last two groups have 9 equations each, have time
derivatives, and are thus evolution equations.

We look into the first two groups. With (α, β, γ) replaced by (1, 2, 3) in equation
(3.5), we have

∂1C23δθ + ∂2C31δθ + ∂3C12δθ = 0.

Then, further replacing (δ, θ) successively by (0, 1), (0, 2), and (0, 3),

∂1H1j + ∂2H2j + ∂3H3j = 0,

so that

divHT = 0.
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Using the symmetries of the Weyl tensor given in Proposition 3.2, this is the first
constraint, giving the first three equations,

divB = 0.

However, replacing (δ, θ), by (2, 3), (3, 1), and (1, 2), we get

∂1D1j + ∂2D2j + ∂3D3j = 0,

so that

divDT = 0,

Using the symmetries of the Weyl tensor given in Proposition 3.2, this is the second
constraint, giving the second three equations,

divE = 0.

We look into the next two groups. With (α, β, γ) in equation (3.5) replaced by
(0, 2, 3), (0, 3, 1), (0, 1, 2), and we get

∂0C23δθ + ∂2C30δθ + ∂3C02δθ = 0.

∂0C31δθ + ∂3C10δθ + ∂1C03δθ = 0,

∂0C12δθ + ∂1C20δθ + ∂2C01δθ = 0.

On one hand, if we further take (δ, θ) to be (0, 1), (0, 2), and (0, 3), we get

∂0H1j − ∂2E3j + ∂3E2j = 0,

∂0H2j − ∂3E1j + ∂1E3j = 0,

∂0H3j − ∂1E2j + ∂2E1j = 0,

which we can combine into

Ḣ
T − curlET = 0.

Using the symmetries of the Weyl tensor given in Proposition 3.2, this is the evolution
equations for B, giving the second three equations,

Ḃ − curlE = 0.
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On the other, if we take (δ, θ) instead to be (2, 3), (3, 1), and (1, 2), we get

∂0D1j − ∂2B3j + ∂3B2j = 0,

∂0D2j − ∂3B1j + ∂1B3j = 0,

∂0D3j − ∂1B2j + ∂2B1j = 0,

which can be combined into

Ḋ
T − curlBT = 0,

Using the symmetries of the Weyl tensor given in Proposition 3.2, this is the evolution
equations for E, giving the second block of nine equations,

Ė + curlB = 0.

This concludes the proof. �

Not only must E and B be divergence-free, as found from the previous proposition,
but, from Proposition 3.2, they must also both be traceless and symmetric. We call
TSD a matrix field that is traceless, symmetric, and divergence-free, at every point of
the manifold.

Lemma 3.5. Suppose we have a matrix field A in H(curl,M).
• The matrix field curlA is divergence-free.
• If A is symmetric, then the matrix field curlA is also trace-free.
• If, further, A is TSD, then the matrix field curlA is TSD.

Proof. The first point is clear, since div curlA = 0.
Now, define

(vskwA)a := 1
2ε

bc
a Abc,

for any (0, 2)-tensor field A. This is the skew part of a matrix field seen as a vector.
Then, the second point relies on the identity

tr curlA = εabc∂bAac = ∂bε
bcaAac = −2 div vskwA
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for any matrix field A. In particular, if A is symmetric, then vskwA = 0 and the right
hand side is zero. The matrix field A is then trace-free.

Finally, for any matrix field A, we define

(curlA)ab := ε cdb ∂cAad,

and compute

(2 vskw curlA)a

= ε bc
a ε dec ∂dAbe = εabcε

cde∂dA
b
e = (δdaδeb − δeaδdb )∂dAbe = ∂aA

b
b − ∂bAba

= (grad trA− divAT )a = (grad trA− divA+ 2 div skwA)a.

Thus, if A is TSD, the right hand side is zero, so that the matrix field curlA is symmetric.
This concludes the proof. �

Using this lemma, we now show that, if E and B are TSD at the initial time, they
remain so for all time afterwards when propagated with this evolution equations in
Proposition 3.4.

Proposition 3.6. We are given sufficiently smooth TSD matrix fields E0 and B0. If
E(t) and B(t) satisfy E(0) = E0 and B(0) = B0 with the evolution equations given in
Proposition 3.4 for all time t ≥ 0, then E(t) and B(t) are TSD for t ≥ 0.

Proof. We need to show that curlE is TSD, but this is clear by Lemma 3.5 since E
is TSD. Similarly, curlE is TSD. We can repeat the same proof with E 7→ B and
B 7→ −E. Therefore, the operator defined by 0 − curl

curl 0


maps TSD matrix fields to themselves, and so, by Theorem 4.5, E and B are TSD for
all time. This concludes the proof. �

We thus have seen that the linearized second Bianchi identity in vacuum results in
the constraints

divE = 0,

divB = 0,
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and the evolution equations

Ė + curlB = 0,

Ḃ − curlE = 0,

in Proposition 3.4. Moreover, a solution to these evolution equations with initial
conditions that are TSD must be TSD for all later times, as seen in Proposition 3.4. In
Section 4.4, we will show that this system is well-posed.

In the nonlinear case discussed in [2], the second Bianchi identity can also be
decomposed into the constraints

div sE − sB×·K = 0,

div sB − sE×·K = 0,

and evolution equations

ṡE + sym curl sB +L1 = 0,
ṡB + sym curl sE +L2 = 0,

with

L1 := −3 sym(K · sE) + sE trK − sE××K + 2 sym(a× sB),

L2 := −3 sym(K · sB) + sB trK − sB××K + 2 sym(a× sE),

where K is the extrinsic curvature of the manifold, a := n · ∇n, and

(G×·H)j := ωkljGikH
i
l ,

(G××H)ij := ω kl
i GkmHlnω

mn
j ,

for any (0, 2)-tensor fields G and H.

3.5 Gravitational Waves

We now find what plane waves in the TT gauge translate to in the EB system. Let ka

be a constant vector field, and Aab a constant symmetric (0, 2)-tensor field. We suppose
that ka is lightlike, namely that kckc = 0, and that it belongs to the kernel of Aab, so
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that Aabkb = 0. Let also f(s) be a real-valued C2 function of one-variable. We then
have seen that we can find a plane wave solution hab = Aabf(kcxc) to the homogeneous
wave equation given by equation 2.11 satisfying the TT gauge conditions (2.12). For
simplicity, we assume the wave propagates along the z-axis, so k = k(1, 0, 0, 1), and,
from equation (2.13),

hµν =


0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 f(kcxc),

for arbitrary real numbers A+ and A−. In this case, since Wabcd = Rabcd in vacuum,
from equations (2.15), we have that the only non-zero components are

Cα1β1 = −1
2∂α∂βh11 = −1

2kαkβA
+f ′′(kcxc),

Cα2β2 = −1
2∂α∂βh22 = 1

2kαkβA
+f ′′(kcxc),

Cα1β2 = −1
2∂α∂βh12 = −1

2kαkβA
×f ′′(kcxc),

where α and β can only be 0 and 3. Thus, we have that a plane wave propagating along
the z-axis gives rise to

Eµν = C0µ0ν =


C0101 C0102 C0103

C0201 C0202 C0203

C0301 C0302 C0303

 =


−A+ −A× 0
−A× A+ 0

0 0 0

 k2

2 f
′′(kcxc),

Bµν = C∗0µ0ν =


C0123 C0131 C0112

C0223 C0231 C0212

C0323 C0331 C0312

 =


−A× A+ 0
A+ A× 0
0 0 0

 k2

2 f
′′(kcxc),

using the definition of Eµν and Bµν . If f ∈ C3, we then see that the electric and the
magnetic tensors for a plane wave satisfy the linearized EB system given in Proposition
3.4. In particular, we see that these two tensor fields are TSD for all time.



Chapter 4

Mixed Abstract Hodge Wave
Equations

We now consider a general framework for the discretization of first order linear hyperbolic
systems. This framework enables the study, analysis, and discretization, of a large class
of problems which includes acoustics, Maxwell’s, and the linearized EB system. Because
of the commonalities between these problems, the goal is to carry over the techniques to
the linearized EB system.

In this chapter, we first review unbounded operators and Hilbert complexes. We then
discuss well-posedness of first-order-in-time problems, along with a result on propagation
of constraints. We then introduce the abstract Hodge wave equation. Then, following a
review of Brezzi’s theorem, the discretization of the abstract Hodge wave equation. We
then turn to known polynomial complexes and to applications of the theory developed.
Aiming at the linearized EB system, we first discuss application to the scalar wave
equation, the vector wave equation, and Maxwell’s equations. We in fact visit two
different formulations of the linearized EB system based on two different complexes. The
discretization of the first one is a direct application of the theory developed, but the
discretization of the second involves the work of the next two chapters.

40
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4.1 Unbounded Operators

Consider two Hilbert spaces X and Y with a linear operator T : D(T ) → Y where
D(T ) ⊂ X. As an operator from X to Y , it is not-necessarily-everywhere-defined and
not-necessarily-bounded. Instead of these two expressions, we often simply say that T is
an unbounded operator. One should think of T as equipped with a given domain, so that
changing the domain also changes the operator. Therefore, we say that two unbounded
operators are equal if and only if (1) the domains are equal and (2) the actions agree.
For instance, the gradient on H1(R) and the gradient on H̊1(R) are seen as two different
operators. We say T is densely defined if ĞD(T ) = X. Moreover, we say that the operator
is closed if the graph Γ(T ) = {(x, Tx) | x ∈ D(T )} is closed in X × Y . If T is closed,
D(T ) is a Hilbert spaces with the graph norm, namely ‖v‖2D(T ) = ‖v‖2 + ‖dv‖2 for any
v ∈ D(T ). By the Closed Graph theorem, if D(T ) = X, then T is closed if and only if T
is bounded. If T is a closed operator, we can then view T as either an unbounded linear
operator between Hilbert spaces, or bounded operator on its domain with the graph
norm.

We now define the adjoint T ∗ : Y → X of a densely defined unbounded operator
T : X → Y between Hilbert spaces X and Y . We set the domain D(T ∗) of T ∗ to be the
set of w ∈ Y such that

|〈w, Tv〉Y | ≤ c‖v‖X ,

for some constant c. With this domain, we can set T ∗ : Y → X to be the unique linear
map such that

〈T ∗w, v〉X = 〈w, Tv〉Y

for v ∈ D(T ) and w ∈ D(T ∗). The adjoint of a densely defined unbounded operator
is always closed. An unbounded operator T : X → X with dense domain D(T ) is
said to be self-adjoint (or skew-adjoint) if T ∗ = T (or T ∗ = −T ). We also say that
an unbounded operator is symmetric (or skew-symmetric) if D(T ) ⊂ D(T ∗) and the
action of T ∗ restricted to D(T ) agrees with T (or −T ). In particular, an operator T is
self-adjoint if and only if it is symmetric and D(T ∗) ⊂ D(T ).

If we introduce the rotated graph of the adjoint of a densely defined unbounded
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operator T : X → Y ,

Γ̃(T ∗) = {(x, y) | (y,−x) ∈ Γ(T ∗)} = {(T ∗y,−y) | y ∈ D(T ∗)} ,

then we have the relations

Γ(T )⊥ = Γ̃(T ∗),
ĘΓ(T ) = Γ̃(T ∗)⊥,

and, if T is closed, then Γ(T ) = Γ̃(T ∗)⊥. The adjoint of a closed densely defined operator
is also densely defined. Indeed, if y ∈ Y and y ⊥ D(T ∗), then (0, y) ∈ Γ̃(T ∗)⊥ = Γ(T )
and so y = 0. Finally, for a closed densely defined operator T : X → Y , we have

R(T )⊥ = N (T ∗), (4.1a)

N (T )⊥ = ĞR(T ∗), (4.1b)

R(T ∗)⊥ = N (T ), (4.1c)

N (T ∗)⊥ = ĞR(T ). (4.1d)

4.2 Hilbert Complexes

In this section, we review Hilbert complexes and follow [15, 5]. A Hilbert complex (W,d)
is a sequence of Hilbert spaces W k

0 d−→W 0 d−→W 1 d−→ . . .
d−→Wn d−→ 0,

with an associated sequence of closed densely defined linear operators dk from W k to
W k+1 such that dk+1 ◦ dkv = 0 for any v ∈ V k, where we set V k as the domain of dk for
any k. We then define the associated bounded complex (V, d),

0→ V 0 d−→ V 1 d−→ . . .
d−→ V n → 0,

called the domain complex. This complex is said to be bounded, since the operators d
are bounded on their corresponding domain V with the graph norm. As an example, we
can consider the smooth differential k-forms Λk(Ω) := C∞(Ω,Rn×···×nskw ) for any integer



43
k ≥ 0. We can equip them with the exterior derivatives d : Λk(Ω) → Λk+1(Ω). The
domains of the exterior derivatives are

HΛk :=
{
ω ∈ L2Λk | dω ∈ L2Λk+1

}
for k ≥ 0. The associated Hilbert spaces are L2Λk := L2(Ω,Rn×···×nskw ). On a three
dimensional domain Ω, this translates into the de Rham complex,

0→ H1(R) grad−−−→ H(curl,V) curl−−→ H(div,V) div−−→ L2(R)→ 0. (4.2)

If we set L2(X) to be the set of square-integrable functions from Ω to X, then the Hilbert
spaces associated to the previous sequences are L2(R), L2(V), L2(V), and L2(R). The
complex is a closed Hilbert complex. The sequence is exact on a contractible domain Ω,
except in the first position.

We call elements of the range Bk = dV k−1 k-coboundaries (or simply boundaries
when the context is clear), and elements of the null space Zk = N (dk), k-cocycles (or
simply cycles). We note that Bk ⊂ Zk, since d ◦ d = 0, so we can form Hk := Zk/Bk,
the kth cohomology space. We say that the Hilbert complex is closed, whenever the
operators have closed range, so that Bk is closed in W k for all k (or, equivalently, in V k

since the norms for W k and V k are equivalent for Zk which contains Bk).
We denote by d∗k from W k →W k−1 the adjoint of dk−1. We denote the domain of

d∗k by V ∗k , so that we can define the dual complex (W,d∗),

0← V ∗0
d∗←− V ∗1

d∗←− . . . d∗←− V ∗n ← 0

which is a bounded chain complex. If (W,d) is a closed Hilbert complex, then the dual
complex (W,d∗) also is. The dual complex of the de Rham complex is

0← L2(R) − div←−−− H̊(div,V) curl←−− H̊(curl,V) − grad←−−−− H̊1(R)← 0. (4.3)

This is also a closed Hilbert complex. The associated Hilbert spaces are still L2(R),
L2(V), L2(V), and L2(R). We remind that, since the domains are different, the operators
appearing here are different than the ones in the de Rham complex.

Assuming that Bk is closed, we now identify the cohomology space Hk with the
subspace Hk ⊂ Zk, the orthogonal complement of Bk inside Zk. Thus, by definition,
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we have the orthogonal decomposition Zk = Bk ⊕ Hk. Moreover, using equations (4.1),
since B∗k are closed, we have B∗k = (Zk)⊥, so that

Hk := (Bk)⊥Zk = Zk ∩ (Bk)⊥ = Zk ∩ Z∗k =
{
u ∈ V k ∩ V ∗k | du = 0, d∗u = 0

}
.

We call the elements of Hk harmonic k-forms. The name comes from the fact that
harmonic k-forms form precisely the null space of the Hodge Laplacian Lk = dk−1d∗k +
d∗k+1d

k with domain

D(Lk) =
{
u ∈ V k ∩ V ∗k | du ∈ V ∗k+1, d

∗u ∈ V k−1
}
.

We say that a Hilbert complex has the compactness property if V k ∩ V ∗k is a dense and
compact subspace of W k for all k. A Hilbert complex with the compactness property
is also Fredholm: the harmonic k-forms are finite dimensional for all k. A Fredholm
Hilbert complex is always closed.

The following orthogonal decompositions are a matter of using the previous observa-
tions on W k = Zk ⊕ (Zk)⊥ and V k = Zk ⊕ (Zk)⊥V k .

Theorem 4.1 (Hodge decomposition). Any closed Hilbert complex satisfies the orthogo-
nal decompositions

W k = Bk ⊕ Hk ⊕B∗k,

V k = Bk ⊕ Hk ⊕ (Zk)⊥V k .

We further say that a complex is exact if Bk = Zk for all k. In that case, Hk = 0
and Hk = 0 for all k. In the case of the de Rham complex on a contractible domain, the
complex is exact and

L2(V) = gradH1(R)⊕ curl H̊(curl,V),

L2(V) = curlH(curl,V)⊕ grad H̊1(R),

L2(R) = divH(div,V).

Now, since dk is an isomorphism from (Zk)⊥V onto Bk+1, dk has a bounded inverse,
we have the following result.

Theorem 4.2 (Poincaré inequality). For each k, there exists a constant C such that

‖z‖V ≤ C‖dz‖

for any z ∈ (Zk)⊥V .
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4.3 Well-Posedness and Constraint Propagation

To show well-posedness of an abstract wave equation we introduce in the next section,
we need to introduce a corollary of the Hille-Yosida Theorem [16, Proposition 4.1.6 and
Corollary 2.4.9].

Theorem 4.3. Given a skew-adjoint operator L with domain D(L) dense in X, U0 ∈
D(L), and F in both C([0, T ], X) and at least one ofW 1,1([0, T ], X) and L1((0, T ), D(L)).
There exists a unique solution

U ∈ C0([0, T ], D(L)) ∩ C1([0, T ], X)

to the system U̇ = LU + F with U(0) = U0.

Moreover, we are also interested in the case in which we need to restrict L to a closed
subspace of X.

Theorem 4.4. Suppose we have a Hilbert space X and a closed subspace K, and a
skew-adjoint operator L with domain D(L) dense in X, such that
• PKD(L) ⊂ D(L), with PK the orthogonal projection onto K,
• D(L) ∩K is dense in K,
• L(D(L) ∩K) ⊂ K.

If we define the operator L̃ : K → K with domain D(L̃) := D(L)∩K by restricting L to
K, then L̃ is skew-adjoint.

Proof. First, let us show that L(D(L) ∩ K⊥) ⊂ K⊥. Take u ∈ D(L) ∩ K⊥ and
v ∈ D(L) ∩K, then

〈Lu, v〉 = −〈u,Lv〉 = 0,

using that L(D(L) ∩K) ⊂ K. Thus, L(D(L) ∩K⊥) ⊂ (D(L) ∩K)⊥. Since D(L) ∩K
is dense in K, L(D(L) ∩K⊥) ⊂ K⊥.

We claim that L̃ is skew-adjoint. For any u and v in D(L̃),

〈u, L̃v〉K = 〈u,Lv〉X = −〈Lu, v〉X = −〈L̃u, v〉K ,
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by the definition of L, since D(L̃) ⊂ D(L). This shows that D(L̃) ⊂ D(L̃∗) and L∗ = −L
on D(L̃). Thus, L̃ is automatically skew-symmetric. We now show that D(L̃∗) ⊂ D(L̃).
Take u ∈ D(L̃∗) ⊂ K, for any w ∈ D(L),

〈u,Lw〉 = 〈u, L̃PKw〉+ 〈u,LPK⊥w〉 = 〈u, L̃PKw〉 ≤ C‖PKw‖ ≤ C‖w‖,

using L(D(L) ∩K⊥) ⊂ K⊥, PKD(L) ⊂ D(L), and

|〈u, L̃v〉|X ≤ C‖v‖X ,

for any v ∈ D(L̃). Therefore, u ∈ D(L∗), and so D(L̃∗) ⊂ D(L∗) ∩K = D(L̃). This
then shows that L̃ is skew-adjoint, as desired. �

If we combine the previous two results, we understand the well-posedness of an
operator restricted to a subspace.

Corollary 4.5. Suppose the hypotheses of Theorem 4.4 hold. If we also have that U0 ∈
D(L̃), and F in both C([0, T ],K) and at least one ofW 1,1([0, T ],K) and L1((0, T ), D(L̃)),
then there exists a unique solution

U ∈ C0([0, T ], D(L̃)) ∩ C1([0, T ],K)

to the system U̇ = LU + F with U(0) = U0.

Proof. From Theorem 4.4, we know that L̃ is skew-adjoint. We can now apply Theorem
4.3 on L̃. Therefore, there exists a unique solution

U ∈ C0([0, T ], D(L̃) ∩ C1([0, T ],K)

to the system

U̇ = L̃U + F

with U(0) = U0. Since D(L̃) ⊂ D(L) and K ⊂ X, U is also the unique solution to the
system

U̇ = LU + F

with U(0) = U0, which exists by Theorem 4.3 on L. This concludes the proof. �
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We can apply this corollary to show the propagation of constraints. We thus want the

solution to remain in the kernel K := kerM of some not-necessarily-bounded operator
M : X → Y , for Hilbert spaces X and Y . Since the kernel of a (not-necessarily-bounded)
linear operator is closed, the conclusion of the theorem says thatMU = 0 on [0, T ].

4.4 Abstract Hodge Wave

We are now ready to present the abstract framework for an abstract wave equation
associated to a complex. We have Hilbert spaces W 0, W 1, W 2, equipped with closed
unbounded closed range operator di from W i to W i+1 and dense domains D(di) = V i.
The first order abstract Hodge wave equation in mixed form is the system

σ̇ = d∗u, (4.4a)

u̇ = −dσ − d∗ρ, (4.4b)

ρ̇ = du. (4.4c)

We introduce the operator L from W := W 0 × W 1 × W 2 to itself, with domain
D(L) = V 0 × (V 1 ∩ V ∗1 )× V ∗2 , given by

L(σ, u, ρ) = (−d∗u, dσ + d∗ρ,−du). (4.5)

We then set ξ = (σ, u, ρ) and write the abstract Hodge wave equation as

ξ̇ + Lξ = 0.

If the initial data ξ0 = (σ0, u0, ρ0) is inD(L), then we say that the (strong) mixed abstract
Hodge wave equation (4.4) has a strong solution ξ if and only if ξ ∈ C0([0, T ], D(L)) ∩
C1([0, T ],W ), ξ satisfies the equations (4.4), and ξ(0) = ξ0. The following theorem says
that there exists a unique strong solution.

Theorem 4.6. Let W 0, W 1, W 2 be Hilbert spaces. For i = 0, 1, let di : W i →W i+1 be
a closed unbounded operator with dense domains V i and closed range with the complex
property, d ◦ d = 0. Define L as in (4.5) with D(L) := V 0 × (V 1 ∩ V ∗1 ) × V ∗2 . Given
initial data (σ0, u0, ρ0) in D(L), there exists a unique solution

(σ, u, ρ) ∈ C0([0, T ], D(L)) ∩ C1([0, T ],W )
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to the mixed abstract Hodge wave equation (4.4) satisfying the initial conditions σ(0) = σ0,
u(0) = u0, and ρ(0) = ρ0.

Proof. If we show that L is skew-adjoint, by Theorem 4.3, there exists a unique solution
in C0([0, T ], D(L)) ∩ C1([0, T ],W ) to the mixed abstract Hodge wave equation (4.4)
for the given initial conditions in D(L), as desired. We show that L is skew-adjoint
following an argument from Arnold.

We show that D(L) = D(L∗) and L∗(σ, u, ρ) = −L(σ, u, ρ) for any (σ, u, ρ) ∈ D(L).
Thus, we first note that, for any (σ, u, ρ) and (τ, v, µ) in D(L),

〈(σ, u, ρ),L(τ, v, µ)〉 = −〈σ, d∗v〉+ 〈u, dτ + d∗µ〉 − 〈ρ, dv〉

= 〈d∗u, τ〉 − 〈dσ + d∗ρ, v〉+ 〈du, µ〉

= −〈L(σ, u, ρ), (τ, v, µ)〉,

which shows that D(L) ⊂ D(L∗) and L∗ = −L on D(L).
It remains to show that D(L∗) ⊂ D(L). We consider (σ, u, ρ) ∈ D(L∗), i.e. there

exists a constant C such that

|〈(σ, u, ρ),L(τ, v, µ)〉| ≤ C‖τ, v, µ‖W , (4.6)

for any (τ, v, µ) ∈ D(L).
We show that u ∈ V ∩ V ∗. Taking v = 0 and µ = 0 in equation (4.6) gives that

|〈u, dτ〉| ≤ C‖τ‖ for any τ ∈ V . Thus, u ∈ V ∗. Similarly, taking v = 0 and τ = 0 instead
shows that u ∈ V , since d is a closed operator and so d∗∗ = d. Therefore, u ∈ V ∩ V ∗, as
desired.

We now show that σ ∈ V . Consider any w ∈ V ∗. We know that w ∈ W has an
orthogonal decomposition w = z+ y, where z ∈ Z, the kernel of d, and y ∈ Z⊥ = B∗, the
range of d∗. Now, z = w − y ∈ V ∗, but z ∈ V , so z ∈ V ∩ V ∗. Thus, by equation (4.6)
with (τ, v, µ) = (0, z, 0) ∈ D(L), recalling that dz = 0, |〈σ, d∗z〉| ≤ C‖z‖. However, using
the complex property d◦d = 0, we have d∗w = d∗z and ‖z‖ ≤ ‖w‖, so |〈σ, d∗w〉| ≤ C‖w‖.
Thus, σ ∈ V .

The argument is similar for ρ ∈ V ∗, so (σ, u, ρ) ∈ D(L), and so D(L∗) ⊂ D(L). This
concludes the proof. �
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We now write the mixed abstract Hodge wave equation in weak form, and to do so

we introduce V = V 0 × V 1 ×W 2. We thus seek (σ, u, ρ) ∈ C0([0, T ],V ) ∩C1([0, T ],W )
such that

(σ̇, τ) = (u, dτ), (4.7a)

(u̇, v) = −(dσ, v)− (ρ, dv), (4.7b)

(ρ̇, µ) = (du, µ), (4.7c)

for any (τ, v, µ) ∈ V . The initial conditions are taken in V . We can define the bilinear
form a : V × V → R as

a(σ, u, ρ; τ, v, µ) = −(u, dτ) + (dσ, v) + (ρ, dv)− (du, µ),

for any (σ, u, ρ) ∈ V , and (τ, v, µ) ∈ V . Thus, we write the weak mixed abstract Hodge
wave equation (4.7) as finding ξ ∈ C0([0, T ],V ) ∩ C1([0, T ],W ) such that

(ξ̇, ψ) + a(ξ, ψ) = 0, (4.8)

for any ψ ∈ V . We say that the mixed Hodge wave equation (4.4) have a weak solution
ξ = (σ, u, ρ) if ξ = (σ, u, ρ) ∈ C0([0, T ],V ) ∩ C1([0, T ],W ), ξ = (σ, u, ρ) satisfies the
equations (4.7), and ξ(0) = (σ, u, ρ)(0) ∈ V . To see the uniqueness of a weak solution,
we suppose we have two solutions ξ1 = (σ1, u1, ρ1) and ξ2 = (σ2, u2, ρ2). The difference
satisfies the Hodge wave equation with zero initial conditions. By taking τ = σ1 − σ2,
v = u1 − u2, and µ = ρ1 − ρ2, we get that ‖σ1 − σ2‖2 + ‖u1 − u2‖2 + ‖ρ1 − ρ2‖2 = 0.
Thus, the two solutions are the same. The following theorem shows that the strong and
weak forms are equivalent in the given sense.

Theorem 4.7. Under the hypothesis of Theorem 4.6, the strong and weak forms (4.4)
and (4.7) of the mixed abstract Hodge wave are equivalent in the following sense.
• If ξ = (σ, u, ρ) ∈ C0([0, T ], D(L)) ∩ C1([0, T ],W ) is a solution to the strong
form (4.4) with initial conditions in D(L), then ξ = (σ, u, ρ) ∈ C0([0, T ],V ) ∩
C1([0, T ],W ) is also a solution to the weak form (4.7) with the same initial
conditions.
• If ξ = (σ, u, ρ) ∈ C0([0, T ],V ) ∩ C1([0, T ],W ) is a solution to the weak form (4.7)
with initial conditions in D(L), then ξ = (σ, u, ρ) ∈ C0([0, T ], D(L))∩C1([0, T ],W )
and is also a solution to the strong form (4.4) with the same initial conditions.
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Proof. On one hand, if ξ is a strong solution to the mixed abstract Hodge wave equation
(4.4), it certainly belongs to C0([0, T ],V ) ∩ C1([0, T ],W ). The weak form (4.7) then
easily follows from the strong form (4.4), and so the strong solution is also a weak
solution. Thus, the first statement of this theorem certainly holds.

On the other hand, suppose that ξ is a weak solution to the mixed abstract Hodge
wave equation (4.4) with ξ(0) ∈ D(L). By Theorem 4.7, there exists a strong solution
ξ̃ to the mixed abstract Hodge wave equation (4.4) taking on the same initial data
ξ(0) ∈ D(L). By the first part of this theorem, that solution also satisfies the weak form.
However, we have seen that uniqueness holds for the initial value problem for the weak
form. Thus, ξ must coincide with ξ̃, so that ξ ∈ C0([0, T ], D(L)) ∩ C1([0, T ],W ) and
is a strong solution. Therefore, the second statement of this theorem also holds. This
concludes the proof. �

4.5 Brezzi’s Theorem

Before proceeding with the discretization of the Hodge wave equation, let us first
review an essential result in the theory of mixed finite element. We consider a Hilbert
space X. We denote the dual space of X by X∗. We say that a bilinear functional is
continuous (or bounded) if there exists C < ∞ such that |a(u, v)| ≤ C‖u‖‖v‖ for all
(u, v) ∈ X ×X. We also say that a bilinear functional is coercive if there exists α > 0
such that a(u, u) ≥ α‖u‖2 for all u ∈ X.

Theorem 4.8 (Lax-Milgram). Let a : X ×X → R be a continuous and coercive bilinear
functional, and f ∈ X∗. Then there exists a unique u ∈ X such that a(u, v) = 〈f, v〉 for
all v ∈ X.

We follow [17]. We say that a bilinear form a satisfies the inf-sup condition if

inf
06=u∈X

sup
06=v∈X

a(u, v)
‖u‖‖v‖

> 0.

Equivalently, a satisfies this condition if there exists γ > 0 such that for all 0 6= u ∈ X
there exists 0 6= v ∈ X such that

a(u, v) ≥ γ‖u‖‖v‖.
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We say that the bilinear form a satisfies the dense range condition if for all 0 6= v ∈ X
there exists u ∈ X such that a(u, v) 6= 0. Equivalently, a satisfies this condition if for
any u ∈ X, if a(u, v) = 0 for any v ∈ X then u = 0.

Theorem 4.9. Suppose we have a continuous bilinear form a on X×X. Then a satisfies
the inf-sup and dense range conditions if and only if for any f ∈ X∗ there exists u ∈ X
such that a(u, v) = 〈f, v〉 for any v ∈ X.

In this case, if we define L : X → X∗ such that Lu = a(u, ·), we see that

inf
06=u∈X

sup
06=v∈X

a(u, v)
‖u‖‖v‖

= ‖L−1‖−1
L(X∗,X).

Suppose we have a bounded bilinear form a on X ×X, with which we define a linear
functional Lu = a(u, ·), which satisfies the inf-sup condition. Suppose further that we
have a finite dimensional subspace Xh of X on which we restrict the bilinear form a

to define Lh : Xh → X∗h. We want to find an approximation uh by solving Lhuh = Fh

to the solution u of Lu = F , where Fh is the restriction to Xh of the bounded linear
functional F on X.

Theorem 4.10 (Quasi-optimality of the Finite Element Methods). Suppose the bilinear
form a is bounded on Xh ×Xh and satisfies the inf-sup condition over Xh ×Xh with a
uniform lower bound γ > 0. Then there exists a constant C independent of h, u and uh
such that

‖u− uh‖ ≤ C inf
v∈Xh

‖u− v‖.

Proof. Let rhu be the orthogonal projection of u in Xh, so that

‖u− rhu‖ = inf
v∈Xh

‖u− v‖.

Since the bilinear form a satisfies the inf-sup condition over Xh×Xh, we can use Theorem
4.9, and the uniform bound on the inf-sup constant γ ≤ ‖L−1

h ‖
−1
L(X∗

h
,Xh). Therefore,

‖u− uh‖ ≤ ‖u− rhu‖+ ‖rhu− uh‖

≤ ‖u− rhu‖+ γ−1‖Lh (rhu− uh) ‖X∗
h

= ‖u− rhu‖+ γ−1‖L (rhu− u) ‖X∗
h
,
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since Lh(rhu− uh) = L(rhu− uh) = L(rhu− u) + L(u− uh) = L(rhu− u) on Xh, Now,
L is bounded on X with constant M , so

‖u− uh‖ ≤
(
1 +Mγ−1

)
‖rhu− u‖

≤
(
1 +Mγ−1

)
inf
v∈Xh

‖u− v‖.

This concludes the proof. �

We now consider a second Hilbert space Y , and a second bounded linear map
B : Y → X∗, along with bounded linear functionals F and G on X and Y , respectively.
We then consider the abstract saddle point problem: find u ∈ X, p ∈ Y such that

Lu+B∗p = F,

Bu = G.

Defining b(u, q) = Bu(q), we can also write the problem as: find u ∈ X, p ∈ Y such that

a(u, v) + b(v, p) = F (v),

b(u, q) = G(q),

for any v ∈ X, q ∈ Y . We say that this problem is well-posed if there exists a unique
solution (u, p) ∈ X × Y and some constant C such that

‖u‖X + ‖p‖Y ≤ C (‖F‖X∗ + ‖G‖Y ∗) .

We then present a corresponding well-posedness theorem. We set Z ⊂ X to be the kernel
of B, namely Z = {u ∈ X | b(u, q) = 0∀q ∈ Y }.

Theorem 4.11 (Brezzi [18]). Suppose
• a satisfies both the inf-sup and dense range conditions over Z × Z,
• b satisfies the inf-sup condition on X × Y .

Then the saddle point problem is well-posed.

4.6 Discretization

We now define the discretized version of equations (4.7). We take V h = V 0
h × V 1

h × V 2
h

to be a finite dimensional subspace of V . We make the following assumptions on
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the spaces V i

h, for 0 ≤ i ≤ 2. First, we assume density: for any i, for any v ∈ V i,
limh→0 infw∈V i

h
‖v−w‖V i = 0. This hypothesis is essential if we hope to have convergence

of a finite element method. Second, we need the discrete spaces V 0
h , V 1

h , and V 2
h to satisfy

the subcomplex property: the spaces form a chain complex (Vh, d), with the operators
di
∣∣
V i

h
which we denote simply d. In other words, dV 0

h ⊂ V 1
h and dV 1

h ⊂ W 2
h . This

hypothesis enables us to mimic the analysis performed at the continuous level at the
discrete level. Third, we assume the existence of bounded cochain projections: for each i,
we have a bounded linear map πih : V i → V i

h restricting to the identity on V i
h such that

V 0 V 1 W 2

V 0
h V 1

h V 2
h

π0
h

d

π1
h

d

π2
h

d d

commutes. These hypotheses are standard in the framework of Finite Element Exterior
Calculus and are important in carrying the analysis from the continuous to the discrete
level.

Moreover, the following simple observation is needed in what follows.

Lemma 4.12. Given nonnegative functions F ∈ C0([0, T ]) and Q ∈ C1([0, T ]), such
that

d

dt
Q2 ≤ FQ,

we have

Q(t) ≤ Q(0) + 1
2

∫ t

0
F (s)ds,

for t ∈ [0, T ].

The estimate is sharp in the sense that taking Q(t) = t and F (t) = 2 for all t satisfies
the hypothesis, and, in that case, the asserted inequality is an equality.

The method is then as follows. We seek (σh, uh, ρh) ∈ C1(V h) such that

(σ̇h, τ) = (uh, dτ), (4.9a)

(u̇h, v) = −(dσh, v)− (ρh, dv), (4.9b)

(ρ̇h, µ) = (duh, µ), (4.9c)
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for any (τ, v, µ) ∈ V h, with initial conditions V h. We can write the discrete weak mixed
abstract Hodge wave equation (4.9) as finding ξh ∈ C1(V h) such that

(ξ̇h, ψ) + a(ξh, ψ) = 0 (4.10)

for any ψ ∈ V h. We say that ξh = (σh, uh, ρh) is a discrete solution to the mixed abstract
Hodge wave equation (4.4) if ξh ∈ C1([0, T ],V h), ξh satisfies the equations (4.9), and
ξh(0) ∈ V h. We know the equations (4.9) have a unique solution, since they form a
square system of linear ordinary differential equations.

We call ξ := (σ, u, ρ) the weak solution to the mixed abstract Hodge wave equation
(4.7), and ξh := (σh, uh, ρh) the discrete solution. We define d(σ, u, ρ) = (0, dσ, du) for
any (σ, u, ρ) ∈ V .

In order to get convergence of the method, we need the following elliptic projection
Πhξ(t) = ξΠ

h (t) ∈ V h of ξ(t) ∈ V such that

(ξΠ
h , ψ) + a(ξΠ

h , ψ) = (ξ, ψ) + a(ξ, ψ), (4.11)

for any ψ ∈ V h. We denote Πhξ(t) = Πh(σ, u, ρ)(t) = (σΠ
h , u

Π
h , ρ

Π
h )(t). The system for

the elliptic projection (4.11) is non-singular. Indeed, we see that the system is square,
so we only need to show that (σ, u, ρ) = 0 implies that (σΠ

h , u
Π
h , ρ

Π
h ) = 0. This is clear,

since, taking ψ = ξΠ
h in (4.11), we get ‖σΠ

h ‖2 + ‖uΠ
h ‖2 + ‖ρΠ

h ‖2 = 0. Let us know define
the bilinear form A : V h × V h → R by

A(σ, u, ρ; τ, v, µ) = (σ, τ) + (u, v) + (ρ, µ) + a(σ, u, ρ; τ, v, µ).

which is uniformly bounded in h on V h × V h. We want to show the stability of this
bilinear form.

Proposition 4.13. Suppose we have V = V 0 × V 1 × V 2 with the subcomplex property.
Then, the bilinear form A satisfies the inf-sup condition over V with lower bound
γ = 1/

√
12.

Proof. We consider any (σ, u, ρ) ∈ V . We then take (τ, v, µ) = (σ, u+ dσ, ρ− du) ∈ V ,
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so that

A(σ, u, ρ; τ, v, µ) = A(σ, u, ρ;σ, u, ρ) +A(σ, u, ρ; 0, dσ,−du)

= ‖σ‖2 + ‖u‖2 + ‖ρ‖2 + (u, dσ) + ‖dσ‖2 − (ρ, du) + ‖du‖2

≥ ‖σ‖2 + ‖u‖2 + ‖ρ‖2 − 1
2‖u‖

2 − 1
2‖dσ‖

2 + ‖dσ‖2

− 1
2‖ρ‖

2 − 1
2‖du‖

2 + ‖du‖2

≥ 1
2(‖σ‖2V + ‖u‖2V + ‖ρ‖2W ) = 1

2‖σ, u, ρ‖
2
V .

Since ‖τ, v, µ‖V ≤
√

3‖σ, u, ρ‖V , we see that

A(σ, u, ρ; τ, v, µ) ≥ 1√
12
‖σ, u, ρ‖V ‖τ, v, µ‖V ,

and the inf-sup condition is satisfied. �

Moreover, this result also holds at the discrete level by the same proof and with the
same constant, as long as our subspaces form a subcomplex. In particular, the inf-sup
constant is uniformly bounded in h. By the quasi-optimality result given in Theorem
4.10, we have that there exists a constant C such that

‖ζ −Πhζ‖V ≤ C inf
ψ∈V h

‖ζ − ψ‖V ,

for any ζ ∈ V .
The system for the bilinear form can be recognize as a discretization of the Hodge

Laplacian with a lower order term,

(dd∗ + d∗d+ I)u = f.

The convergence of the discretization of the Hodge Laplacian for the case without
the lower order term is well-known [4, 5], and requires a Hilbert complex with the
compactness property. However, it is an upcoming result from Arnold and Li that the
standard estimates still hold with this particular lower order term.

We now reduce the question of convergence of the method to the convergence of the
elliptic projection. For convenience, we introduce the projected error εh := ξΠ

h − ξh =
(εσh, εuh, ε

ρ
h), with εσh = σΠ

h − σh, εuh = uΠ
h − uh, and ε

ρ
h = ρΠ

h − ρh.
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Theorem 4.14. Suppose V h = V 0

h × V 1
h × V 2

h is a finite dimensional subspace of V
with the subcomplex property. We have

‖ξ − ξh‖L∞(W ) ≤ ‖ξΠ
h (0)− ξh(0)‖+ ‖ξΠ

h − ξ‖L∞(W )

+ (1 + T )(‖(ξΠ
h − ξ)(0)‖W + ‖ξ̇Π

h − ξ̇‖L1(W )).

Proof. From 4.8 and 4.10, we get

(ξ̇, ψ) + a(ξ, ψ) = (ξ̇h, ψ) + a(ξh, ψ),

for any ψ ∈ V h, and also

(ξ̇Π
h − ξ̇h, ψ) + a(ξΠ

h − ξh, ψ) = (ξ̇Π
h − ξ̇, ψ) + a(ξΠ

h − ξ, ψ),

or, in terms of the projected error εh,

(ε̇h, ψ) + a(εh, ψ) = (ξ̇Π
h − ξ̇, ψ) + a(ξΠ

h − ξ, ψ) = (ξ̇Π
h − ξ̇, ψ)− (ξΠ

h − ξ, ψ).

where we used the definition of the elliptic projection (4.11) at the final step. Since
a(ψ,ψ) = 0 for any ψ ∈ V h, taking ψ = εh ∈ V h, we see that

1
2
d

dt
‖εh‖2 = (ξ̇Π

h − ξ̇, εh)− (ξΠ
h − ξ, εh) ≤ (‖ξ̇Π

h − ξ̇‖+ ‖ξΠ
h − ξ‖)‖εh‖.

By Lemma 4.12,

‖εh(t)‖ ≤ ‖εh(0)‖+
∫ t

0
(‖ξ̇Π

h − ξ̇‖+ ‖ξΠ
h − ξ‖),

or

‖εh(t)‖W ≤ ‖εh(0)‖+ (‖ξ̇Π
h − ξ̇‖L1(W ) + ‖ξΠ

h − ξ‖L1(W )).

Since |f(t)| ≤ |f(0)|+ |
∫ t

0 ḟ |,

‖εh(t)‖W ≤ ‖εh(0)‖+ (1 + T )(‖(ξΠ
h − ξ)(0)‖W + ‖ξ̇Π

h − ξ̇‖L1(W )).

Taking the supremum over time,

‖εh‖L∞(W ) ≤ ‖εh(0)‖+ (1 + T )(‖(ξΠ
h − ξ)(0)‖W + ‖ξ̇Π

h − ξ̇‖L1(W )),

and using triangle inequality conclude the proof. �

Now, if we have a Hilbert complex with the compactness property, the elliptic
projection converges. Moreover, if we take initial data ξh(0) = ξΠ

h (0), then the method
for the Hodge wave equation converges.
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4.7 Polynomial de Rham Complex

We now want to consider examples building up to the linearized EB system: the acoustic
wave equation, the vector wave equation and Maxwell’s equations, and then the matrix
wave equation and the linearized EB system. To do this, we consider the special case
of the theory developed for the Hodge wave equation applied to the n-dimensional de
Rham complex (4.2). For a discretization Th, we recall two families Λh of finite element
spaces presented in the Finite Element Exterior Calculus framework: PΛ and P−Λ, as
presented in [5]. We discuss their shape functions and then their degrees of freedom [19].

The shape functions for the assembled space PrΛk on any simplex T are given by

PrΛk(T ) =

 ∑
σ∈Σ(k,n)

pσdx
σ | pσ ∈ Pr(T )

 ,
the space of differential k-forms on each simplex T with polynomial coefficients of degree
at most r. We define PrΛk(T ) to be zero if r < 0, k < 0, or k > n. A key property is
that this family form a subcomplex of the de Rham complex,

0→ PrΛ0(T ) d−→ Pr−1Λ1(T ) d−→ · · · d−→ Pr−nΛn(T )→ 0,

since dPrΛk(T ) ⊂ Pr−1Λk+1(T ). We can similarly define HrΛk(T ), the space of differen-
tial k-forms with homogeneous polynomial coefficients of degree r.

We introduce the Koszul differential operator κ mapping k-forms to (k− 1)-forms by

(κω)a...b(x) = ωca...b(x)xc,

where xc is a vector of Rn that was identified with x. The Koszul operator can be thought
of as contraction with x. With this in hand, the shape functions for the assembled space
P−r Λk(T ) on any simplex T are given by the space

P−r Λk(T ) = Pr−1Λk(T )⊕ κHr−1Λk+1(T ).

In particular, P−r Λ0(T ) = PrΛ0(T ) and P−r Λn(T ) = Pr−1Λn(T ). Moreover, we define
P−r Λk(T ) to be zero if r ≤ 0, k < 0, k > n. The operators d and κ are related together
by the Homotopy formula,

(κd+ dκ)ω = (k + r)ω
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for ω ∈ HrΛk(T ). From this formula follows

HrΛk = κHr−1Λk+1(T )⊕ dHr+1Λk−1(T ).

Therefore, we have

dP−r Λk(T ) = dPrΛk(T ) ⊂ Pr−1Λk+1(T ) ⊂ P−r Λk+1(T ),

and so the family P−Λ(T ) also forms a complex

0→ P−r Λ0(T ) d−→ P−r Λ1(T ) d−→ · · · d−→ P−r Λn(T )→ 0.

Moreover, given a degree r high enough, the two families can be combined together to
build 2n−1 discretizations of the de Rham complex. Indeed, we start with PrΛ0(T ) =
P−r Λ0(T ), and then we have have two choices at every level until the last level where we
can only choose Pr−nΛn(T ) = P−r−n+1Λn(T ). These sequences are called polynomial de
Rham complexes.

With the two spaces of shape functions in hand, we can now present their degrees of
freedom. A unisolvent set of degrees of freedom for PrΛk(T ) is

ω 7→
∫
f
(trf ω) ∧ µ

for ω ∈ PrΛk(T ), µ ∈ P−r+k−dΛd−k(f), f ∈ ∆d(T ), and d ≥ k. A unisolvent set of
degrees of freedom for P−r Λk(T ) are

ω 7→
∫
f
(trf ω) ∧ µ

for ω ∈ P−r Λk(T ), µ ∈ Pr+k−d−1Λd−k(f), f ∈ ∆d(T ), and d ≥ k. Given a triangulation
Th, these degrees of freedom give the assembled spaces the exact continuity to be in
HΛk, since

PrΛk := PrΛk(Th) :=
{
ω ∈ HΛk | ω|T ∈ PrΛk(T )

}
,

and similarly for P−r Λk. These degrees of freedom also define canonical cochain pro-
jections CΛk(sΩ)→ PrΛk. Combining these projections with smoothers as in [5], it is
possible to construct bounded cochain projections πkh : L2Λk(Ω)→ Λkh with the following
estimates.
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Theorem 4.15 ([5]). Given a domain Ω with triangulation Th, the projections πkh :
L2Λk → Λkh satisfy the following.
• Let Λk

h be one of the spaces P−r+1Λk for r ≥ 0 or PrΛk for r ≥ 1. Then, πkh is a
projection onto Λkh and satisfies

‖ω − πkhω‖L2Λk ≤ Chs‖ω‖HsΛk ,

for ω ∈ HsΛk and 0 ≤ s ≤ r + 1. Moreover, for all ω ∈ L2Λk, πkhω → ω in L2 as
h→ 0.
• Let Λkh be one of the spaces PrΛk or P−r Λk with r ≥ 1. Then,

‖d(ω − πkhω)‖L2Λk ≤ Chs‖dω‖HsΛk ,

for ω ∈ HsΛk and 0 ≤ s ≤ r.

We now consider the three-dimensional case. In this case, PrΛ0 is the family of
Lagrange elements of degree r; P−r Λ1 and PrΛ1 are the family of Nédélec edge elements
of the first and second kind (respectively) of degree r; P−r Λ2 and PrΛ2 are the family of
Nédélec face elements of the first and second kind (respectively) of degree r; and Pr−1Λ3

is the family of piecewise polynomials of degree r − 1.

4.8 Scalar Wave Equation

We now start investigating examples of application of discretizations of the de Rham
complex: we start with the acoustic scalar wave equation,

ü−∆u = 0,

for a scalar field u, as a particular case of the theory developed. We consider the
beginning of the de Rham complex,

0→ H1(R) grad−−−→ L2(V),

with Hilbert spacesW−1 = 0, W 0 = L2(R), and W 1 = L2(V). The associated well-posed
Hodge wave equation in weak form is given by seeking

(u, ρ) ∈ C0([0, T ], H1(R)× L2(V)) ∩ C1([0, T ], L2(R)× L2(V))
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such that

(u̇, v) = −(ρ, grad v),

(ρ̇, µ) = (gradu, µ),

for any v ∈ H1(R) and µ ∈ L2(V). Even though we wrote this problem in mixed form,
the second equation immediately implies that ρ̇ = gradu. Therefore, we can eliminate
that second equation, and seek

u ∈ C0([0, T ], H1(R)) ∩ C1([0, T ], L2(R))

such that

(ü, v) = −(gradu, grad v),

for any v ∈ H1(R). This leads to the standard non-mixed formulation of the acoustic
wave equation, and is discussed in [20, 21]. The space used is simply PrΛ0, the continuous
Galerkin elements of degree r. In this previous case, the boundary conditions are natural,
and are ρ · n =

∫ t
0 gradu · n = 0. A variation with essential boundary conditions can be

derived using

0→ H̊1(R) grad−−−→ L2(V),

with Hilbert spaces W−1 = 0, W 0 = L2(R), and W 1 = L2(V), In this case, the boundary
conditions are u = 0.

We can turn to another formulation of the acoustic wave equation by considering,

H(div,V) div−−→ L2(R)→ 0,

with Hilbert spaces W 2 = L2(V), W 3 = L2(R), and W 4 = 0. The associated well-posed
Hodge wave equation in weak form is given by seeking

(σ, u) ∈ C0([0, T ], H(div,V)× L2(R)) ∩ C1([0, T ], L2(V)× L2(R))

such that

(σ̇, τ) = −(u,div τ),

(u̇, v) = (div σ, v),
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for any τ ∈ H(div,V) and v ∈ L2(R). This mixed formulation is discussed in [22] and
using FEEC in [23]. For the discretization, we can choose either of

P−r Λ2 × Pr−1Λ3,

PrΛ2 × Pr−1Λ3,

namely either of Raviart-Thomas element of degree r with discontinuous finite elements
of degree r, or Brezzi-Douglas-Marini elements of degree r with discontinuous finite
elements of degree r− 1. In this previous case, the boundary conditions are natural, and
are u = 0. A variation with essential boundary conditions can be derived using

H̊(div,V) div−−→ L2(R)→ 0,

with Hilbert spaces W 2 = L2(V), W 3 = L2(R), and W 4 = 0. In this case, the boundary
conditions are σ · n = 0.

4.9 Vector Wave Equation

Since linearized EB system is reminiscent of Maxwell’s equations, and Maxwell’s equations
are a special case of the vector wave equation, we now investigate the vector wave equation,

ü− grad div u+ curl curlu = 0,

for a vector field u, We thus realize the vector wave equation on an interval [0, T ]
restricting ourselves to a bounded three-dimensional contractible domain Ω. We do so
by considering

H1(R) grad−−−→ H(curl,V) curl−−→ L2(V),

with Hilbert spaces L2(R), L2(V), and L2(V). The associated well-posed Hodge wave
equation in weak form is given

(σ, u, ρ) ∈ C0([0, T ], H1(R)×H(curl,V)× L2(V)) ∩ C1([0, T ], L2(R)× L2(V)× L2(V))

such that

(σ̇, τ) = (u, grad τ), (4.12a)

(u̇, v) = −(ρ, curl v)− (gradσ, v), (4.12b)

(ρ̇, µ) = (curl u, µ), (4.12c)
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for any τ ∈ H1(R), v ∈ H(curl,V), and ρ ∈ L2(V). Again, we notice that using the last
equation holds, we can eliminate the third unknown. Thus, a simplified formulation is
to seek

(σ, u) ∈ C0([0, T ], H1(R)×H(curl,V)) ∩ C1([0, T ], L2(R)× L2(V))

such that

(σ̇, τ) = (u, grad τ),

(ü, v) = −(curlu, curl v)− (grad σ̇, v),

for any τ ∈ H1(R), and v ∈ H(curl,V). The boundary conditions on this formulation are
natural, and are u·n = 0 and ρ×n =

∫ t
0 curlu×n = 0. We call these conditions magnetic

boundary conditions. We can also get essential boundary conditions by considering instead

H̊1(R) grad−−−→ H̊(curl,V) curl−−→ L2(V), (4.13)

with Hilbert spaces L2(R), L2(V), and L2(V). This leads to σ = 0, and u × n = 0.
We call these conditions electric boundary conditions. Now, possible discretizations for
V 0
h × V 1

h × V 2
h can be either

Pr+1 × PrΛ1 × Pr−1Λ2,

Pr+1 × PrΛ1 × P−r Λ2,

Pr × P−r Λ1 × Pr−1Λ2,

Pr × P−r Λ1 × P−r Λ2.

If the initial conditions are also such that σ(0) = 0, and u(0) and ρ(0) are divergence-
free (weakly and strongly, respectively), then σ remains zero, and u and ρ remain
divergence-free for all time afterwards. In that case, u = E and ρ = B are the electric
and magnetic fields and solve Maxwell’s equations.

Proposition 4.16. Suppose H̊(curl,V)∩H(div,V, 0) is dense in H(div,V, 0), and that
H(curl,V) ∩ H(div,V, 0) is dense in H(div,V, 0). Suppose also we have a solution
(σ, u, ρ) to (4.12). If the initial conditions are such that σ0 = 0, and u0 and ρ0 are
divergence-free, then σ remains zero, and u and ρ remain divergence-free for all time
afterwards.
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Proof. We verify the hypothesis of Corollary 4.5 to show that the constraints are
propagated. The weak formulation is equivalent to the strong formulation. We thus
study the strong formulation and set

L =


0 − div 0

− grad 0 − curl
0 curl 0


with domain

D(L) = H̊1(R)× (H̊(curl,V) ∩H(div,V))×H(curl,V),

and

K = 0×H(div,V, 0)×H(div,V, 0),

whereH(div,V, 0) = {v ∈ H(div,V) | div v = 0}. To have the first itemized hypothesis of
Corollary 4.5, we observe the following. On one hand, we take u ∈ H̊(curl,V)∩H(div,V),
and use the Hodge decomposition to write u = grad τ + curlµ, for some τ ∈ H̊1(R) and
µ ∈ curlH(curl,V), since L2(V) = grad H̊1(R)⊕ curlH(curl,V), assuming the de Rham
sequence is exact for the 1-forms. Now, curlµ ∈ H̊(curl,V) since grad τ and u are in
H̊(curl,V). Since H(div,V, 0) = curlH(curl,V), we see that

PH(div,V,0)u = curlµ ∈ H̊(curl,V) ∩H(div,V).

Thus,

PH(div,V,0)H̊(curl,V) ∩H(div,V) ⊂ H̊(curl,V) ∩H(div,V).

On the other hand, ρ ∈ H(curl,V), and use the Hodge decomposition to write ρ =
gradw+curl v, for some w ∈ gradH1(R), v ∈ curl H̊(curl,V), since L2(V) = gradH1(R)⊕
curl H̊(curl,V) (assuming the de Rham sequence is exact for the 1-forms). Now, curl v ∈
H(curl,V) since gradw and ρ are in H(curl,V). Since H(div,V, 0) = curlH(curl,V),
we see that

PH(div,V,0)ρ = curl v ∈ H̊(curl,V) ∩H(div,V),
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and so

PH(div,V,0)H(curl,V) ⊂ H̊(curl,V) ∩H(div,V).

To have the second itemized hypothesis of Corollary 4.5, we conjecture that H̊(curl,V)∩
H(div,V, 0) is dense in H(div,V, 0), and that H(curl,V) ∩ H(div,V, 0) is dense in
H(div,V, 0). The third itemized hypothesis holds since

−div(H̊(curl,V) ∩H(div,V, 0)) = 0,

− grad(H̊1(R) ∩ 0)− curl(H(curl,V) ∩H(div,V, 0)) ⊂ H(div,V, 0),

curl(H̊(curl,V) ∩H(div,V)) ⊂ H(div,V, 0).

Thus, by Corollary 4.5, the solution remains in K. �

Therefore, we can eliminate σ, and get another formulation for Maxwell’s equations:
seek

(u, ρ) ∈ C0([0, T ], H(curl,V)× L2(V)) ∩ C1([0, T ], L2(V)× L2(V))

such that

(u̇, v) = −(ρ, curl v),

(ρ̇, µ) = (curl u, µ),

for any v ∈ H(curl,V) and ρ ∈ L2(V). We can again eliminate the last equation and
seek

u ∈ C0([0, T ], H(curl,V)) ∩ C1([0, T ], L2(V))

such that

(ü, v) = −(curlu, curl v),

for any v ∈ H(curl,V).
Other formulations of the vector wave equation (and of Maxwell’s equations) can be

obtained using the complex

H(curl,V) curl−−→ H(div,V) div−−→ L2(R),
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with Hilbert spaces L2(V), L2(V), and L2(R), and considering the associated well-posed
Hodge wave equation. Moreover, we can consider the complex with essential boundary
conditions. In this approach, the primary variable is a 2-form (the magnetic field B
for Maxwell’s equations), in contrast to the approach discussed in which a 1-form (the
electric field E) is the primary variable. We will not pursue the 2-form approach here.

4.10 Application to the Linearized EB System

Having studied the vector wave equation, we are now ready to investigate the linearized
EB system. We thus realize the EB system as a Hodge wave equation. To do so, we
introduce a new variable, σ(t) = −

∫ t
0 divE, which will vanish for the exact solution for

the EB system. We consider an interval [0, T ] and restrict the problem to a bounded
three-dimensional contractible domain, where we consider the complex,

H̊1(V) grad−−−→ H̊(curl,M) curl−−→ L2(M),

with Hilbert spaces L2(V), L2(M), and L2(M). Note that this complex may be obtained
from (4.13) by tensoring with V, i.e. it is essentially the product of three copies of (4.13).
In this case, the related strong form of the mixed abstract Hodge wave equation seeks

σ ∈ C0([0, T ], H̊1(V)) ∩ C1([0, T ], L2(V)),

E = u ∈ C0([0, T ], H̊(curl,M) ∩H(div,M)) ∩ C1([0, T ], L2(M)),

B = ρ ∈ C0([0, T ], H(curl,M)) ∩ C1([0, T ], L2(M)),

satisfying

σ̇ = −divE, (4.14a)

Ė = − gradσ − curlB, (4.14b)

Ḃ = curlE, (4.14c)

where the initial conditions (σ0,E0,B0) ∈ H1(V)×H̊(curl,M)∩H(div,M)×H(curl,M).
We call this system the matrix wave equation. Using the theory developed for the Hodge
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wave equation, we can now find discretizations V 0

h × V 1
h × V 2

h for this formulations,

Pr+1Λ0 ⊗ V× PrΛ1 ⊗ V× Pr−1Λ2 ⊗ V,

Pr+1Λ0 ⊗ V× PrΛ1 ⊗ V× P−r Λ2 ⊗ V,

Pr+1Λ0 ⊗ V× P−r Λ1 ⊗ V× Pr−1Λ2 ⊗ V,

Pr+1Λ0 ⊗ V× P−r Λ1 ⊗ V× P−r Λ2 ⊗ V.

Notice that, in this approach, E and B are sought as matrix fields which are not
necessarily symmetric nor trace-free nor divergence-free. However, we now show that all
three conditions hold for the solution, as long as the initial data is selected appropriately.
Moreover, in this case, the linearized EB evolution equations in Proposition 3.4 hold.

Proposition 4.17. Suppose that

PL2(TSD)(H̊(curl,M) ∩H(div,M)) ⊂ H̊(curl,M) ∩H(div,M),

PL2(TSD)(H(curl,M)) ⊂ H(curl,M),

H̊(curl,M) ∩ H(div,M, 0) is dense in H(div,M, 0), and H(curl,M) ∩ H(div,M, 0) is
dense in H(div,M, 0). Given initial data

(σ0,E0,B0) ∈ H̊1(V)× H̊(curl,M) ∩H(div,M)×H(curl,M)

such that σ0 = 0, and E0 and B0 are TSD, let (σ,E,B) be the unique solution of the
equations (4.14). Then, for all time, σ = 0, and E and B are TSD, and the evolution
equations in Proposition 3.4 hold.

Proof. Let K be the closed subspace of W of (0,F ,G) such that F and G are TSD.
We let L2(TDS) be the subspace of L2(M) such that the matrix fields are TSD.

We verify the hypothesis of Theorem 4.5 to show that the constraints are propagated.
We set

L =


0 −div 0

− grad 0 − curl
0 curl 0


with domain

D(L) = H̊1(V)× (H̊(curl,M) ∩H(div,M))×H(curl,M).
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To have the first itemized hypothesis of Theorem 4.5, we conjecture that

PL2(TSD)(H̊(curl,M) ∩H(div,M)) ⊂ H̊(curl,M) ∩H(div,M),

PL2(TSD)(H(curl,M)) ⊂ H(curl,M).

Similarly, to have the second itemized hypothesis of Theorem 4.5, as done for the scalar
wave equation, we conjecture that H̊(curl,M)∩H(div,M, 0) is dense in H(div,M, 0), and
that H(curl,M) ∩H(div,M, 0) is dense in H(div,M, 0), so that H̊(curl,M) ∩ L2(TSD)
is dense in L2(TSD), and that H(curl,M) ∩ L2(TSD) is dense in L2(TSD). Finally, the
third itemized hypothesis holds since

−div(H̊(curl,V) ∩ L2(TSD)) = 0,

− grad(H̊1(V) ∩ 0)− curl(H(curl,M) ∩ L2(TSD)) ⊂ L2(TSD),

curl(H̊(curl,V) ∩H(div,V)) ⊂ L2(TSD),

using Lemma 3.5. Therefore, by Theorem 4.5, σ = 0, and E and B are TSD, for all
time. This concludes the proof. �

The fact that σ = 0 remains true for divergence-free initial data for E suggests that
we can consider a simplified system: seek

E ∈ C0([0, T ], H̊(curl,M) ∩H(div,M)) ∩ C1([0, T ], L2(M)),

B ∈ C0([0, T ], H(curl,M)) ∩ C1([0, T ], L2(M)),

such that

Ė = − curlB, (4.15a)

Ḃ = curlE, (4.15b)

with intial data satisfying divE0 = 0. Theses are the evolution equations found in
Proposition 3.4. We have already shown in Proposition 3.6 that, if a solution exists with
appropriate initial data, the constraints are propagated. We now show that a solution
does indeed exist.

Proposition 4.18. The systems (4.14) and (4.15) are equivalent in the following sense.
Suppose we are given initial conditions (E0,B0) ∈ V 1×V 2 to (4.15) such that divE0 = 0.
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• If (σ,E,B) is the solution to (4.14) with initial conditions (0,E0,B0), then σ = 0
and (E,B) is the solution to (4.15) with initial conditions (E0,B0).
• If (E,B) is the solution to (4.15) with initial conditions (E0,B0), then (0,E,B)
is the solution to (4.14) with initial conditions (0,E0,B0).

Using the theory developed for the Hodge wave equation, we can now find discretiza-
tions V 1

h × V 2
h for this formulations,

PrΛ1 ⊗ V× Pr−1Λ2 ⊗ V,

PrΛ1 ⊗ V× P−r Λ2 ⊗ V,

P−r Λ1 ⊗ V× Pr−1Λ2 ⊗ V,

P−r Λ1 ⊗ V× P−r Λ2 ⊗ V.

This is thus a first formulation of the linearized EB system that we can implement. We
show a second possibility in the next section.

4.11 Another Complex for the Linearized EB System

We now introduce a formulation of the linearized EB system in which the symmetry
of the electric part is strongly imposed. By enforcing this symmetry, the hope is that
the system will be able to satisfy the constraints more easily whenever the system is
modified with coefficients or lower order terms. In order to realize this formulation as
a Hodge wave equation, we introduce the new variable σ(t) =

∫ t
0 div divE. We then

consider the second order complex with strong symmetries,

H̊2(R) grad grad−−−−−→ H̊(curl, S) curl−−→ L2(T), (4.16)

with adjoints

L2(R) div div←−−−− H(div div,S) sym curl←−−−−− H(sym curl,T), (4.17)

where

H(div div, S) =
{
u ∈ L2(S) | div div u ∈ L2(R)

}
,

H(sym curl,T) =
{
u ∈ L2(T) | sym curl u ∈ L2(S)

}
,
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The Hilbert spaces are W 0 = L2(R), W 1 = L2(S), and W 2 = L2(T), where L2(S) is
the subspace of L2(M) with symmetric matrices, and L2(T) is the subspace of L2(M)
with traceless matrices. If we show that these complexes are closed, we have that the
associated Hodge wave have an unique solution:

σ ∈ C0([0, T ], H̊2(R)) ∩ C1([0, T ], L2(R)),

E = u ∈ C0([0, T ], H̊(curl, S) ∩H(div div, S)) ∩ C1([0, T ], L2(M)),

B = ρ ∈ C0([0, T ], H(sym curl,T)) ∩ C1([0, T ], L2(T)),

such that

σ̇ = div divE, (4.18a)

Ė = − grad gradσ − sym curlB, (4.18b)

Ḃ = curlE, (4.18c)

where the initial conditions

(σ,E,B)(0) ∈ H̊2(R)× H̊(curl,S) ∩H(div div, S)×H(sym curl,T).

We show in the next chapter that these complexes are closed.
We are interested in the case when the initial conditions are such that σ(0) = 0, and

E(0) and B(0) are TSD. We show that σ = 0, and that E and B are TSD for all time.

Proposition 4.19. Suppose that

PL2(TSD)(H̊(curl, S) ∩H(div div,S)) ⊂ H̊(curl, S) ∩H(div div,S),

PL2(TSD)(H(sym curl,T)) ⊂ H(sym curl,T),

H̊(curl, S) ∩ L2(TSD) is dense in L2(TSD), and H(sym curl,T) ∩ L2(TSD) is dense in
L2(TSD). Given initial conditions

(σ0,E0,B0) ∈ H2 ×H(curl,S) ∩ H̊(div div,S)× H̊(sym curl,T)

such that σ0 = 0, and that E0 and B0 are TSD, and we let (σ,E,B) be the unique
solution of the equations (4.18). Then, for all time, σ = 0, and E and B are TSD.



70
Proof. Let K be the closed subspace of W of (0,F ,G) such that F and G are TSD.
We verify the hypothesis of Theorem 4.5 to show that the constraints are propagated.
We set

L =


0 div div 0

− grad grad 0 − sym curl
0 curl 0


with domain

D(L) = H̊2(R)× H̊(curl, S) ∩H(div div,S)×H(sym curl,T).

To have the first itemized hypothesis of Theorem 4.5, we conjecture that

PL2(TSD)(H̊(curl, S) ∩H(div div,S)) ⊂ H̊(curl, S) ∩H(div div,S),

PL2(TSD)(H(sym curl,T)) ⊂ H(sym curl,T).

To also have the second itemized hypothesis of Theorem 4.5, we conjecture that
H̊(curl,S)∩L2(TSD) is dense in L2(TSD), and that H(sym curl,T)∩L2(TSD) is dense
in L2(TSD). Finally, the third itemized hypothesis holds since

div div(H̊(curl, S) ∩ L2(TSD)) = 0,

− grad(H̊2(R) ∩ 0)− sym curl(H(sym curl,T) ∩ L2(TSD)) ⊂ L2(TSD),

curl(H̊(curl, S) ∩H(div div,S) ∩ L2(TSD)) ⊂ L2(TSD),

using Lemma 3.5. Therefore, by Theorem 4.5, σ = 0, and E and B are TSD, for all
time. This concludes the proof. �

Since the symmetry on E is imposed strongly at the continuous level, the finite
elements would also need to have symmetry imposed strongly at the discrete level.
Moreover, an appropriate discretization of H̊2(R) is needed. As we will identify a related
complex that is much simpler to discretize in the next chapter, we do not discretize this
complex directly. In addition to the first formulation found in the previous section, this
next complex will then give us a second formulation of the linearized EB system



Chapter 5

Time-Independent BGG
Construction

We introduced a formulation of the linearized EB system in which the symmetry
of the electric part is strongly imposed, using the second order complex (4.16) with
strong symmetries. However, finding finite elements with second derivatives and strong
symmetry lead to higher number of degrees of freedom. To avoid this issue, we borrow
ideas from plate bending for H̊2(R) and elasticity for H̊(curl,S). The first idea is to
replace H̊2(R) by the two spaces H̊1(R)× H̊1(V) using a multiplier, as in [24, 25] for
plate bending. The second idea is to impose the symmetry weakly, as done in [26].
Combining these two ideas results in a new complex which we analyze through a new
abstract framework. This framework enables us to build complexes out of others.

We first develop this framework in the time-independent context, and so we begin by
considering a time-independent version of the EB system by looking at the mixed Hodge
Laplacian, which is well-posed, of the complex (4.16): σ ∈ H̊2(R), E ∈ H̊(curl,S) ∩
H(div div, S), and B ∈ H(sym curl,T), such that

σ = div divE,

grad gradσ + sym curlB = 0,

B = curlE.

This is the strong form of the time-independent EB system with strong symmetries. We
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shall identify finite element spaces for the weak form of the weak symmetries formulation
of this system.

In the first section, we introduce an abstract framework for the construction of new
complexes from previous ones, and study a well-posed associated problem. In the second
section, we discuss the discretization of this problem. In the last section, we then apply
this theory to the version of the time-independent EB system just mentioned.

5.1 Abstract Framework

In this section, we develop an abstract framework to allow us to build new complexes from
previous ones, and then study the associated Hodge Laplacian. We suppose that we are
given Hilbert spaces W 0, W 1, W 2, W̃ 0, W̃ 1, and W̃ 2, along with closed, densely defined,
unbounded, and closed range, operators d0 : V 0 → V 1, d1 : V 1 → W 2, d0 : Ṽ 0 → Ṽ 1,
and d1 : Ṽ 1 → W̃ 2, and domains V 0, V 1, Ṽ 0, and Ṽ 1, in their respective Hilbert spaces,
equipped with the graph norm. We suppose that d ◦ d = 0, and thus have two closed
Hilbert complexes, which we further assume exact. We finally assume that we have
bounded linear maps S0 : W̃ 0 → W 1, and S1 : W̃ 1 → W 2 such that S0 is injective,
S0Ṽ

0 ⊂ V 1, and d1S0 = −S1d
0 on Ṽ 0,

0 V 0 V 1 W 2

0 Ṽ 0 Ṽ 1 W̃ 2

d d

S

d

S

d

to relate the two complexes. Moreover, we assume a regularity property: dSṼ 0 = dV 1.
This allows us to consider first order complex with weak symmetries,

Γ ( 0 d )−−−→ Ṽ 1
(
S
d

)
−−−→W 2 × W̃ 2, (5.1)

where

Γ =
{

(σ, φ) ∈ V 0 × Ṽ 0 | dσ = Sφ
}

=
{

(σ, S−1dσ) | σ ∈ V 0, dσ ∈ SṼ 0
}
.

The associated Hilbert spaces are sΓ, W̃ 1, and W 2 × W̃ 2, where sΓ is the completion of Γ
in the norm ‖(σ, φ)‖ = ‖σ‖. The injectivity of S0 is used here for defining the norm for
sΓ. This complex inherits some properties from the other two Hilbert complexes.
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Proposition 5.1. Suppose we have two exact closed Hilbert complexes, namely V i and
Ṽ i with respective Hilbert spaces W i and W̃ i, for 0 ≤ i ≤ 2. Suppose also we have
bounded linear maps S0 : W̃ 0 → W 1, and S1 : W̃ 1 → W 2 such that S0 is injective,
S0Ṽ

0 ⊂ V 1, d1S0 = −S1d
0 on Ṽ 0, and the regularity property holds. The first order

complex with weak symmetries (5.1) is a closed Hilbert complex, with associated Hilbert
spaces sΓ, W̃ 1, and W 2 × W̃ 2.

Proof. We show that the operator ( 0 d ) is closed. Consider a sequence (σn, φn) ∈ Γ
converging to (σ, φ) ∈ sΓ in sΓ such that dφn converges in W̃ 1 to u ∈ W̃ 1. We want to
show that (σ, φ) ∈ Γ and dφ = u. Since dφn converges in W̃ 1 to u ∈ W̃ 1 and d has
closed range, we have u = dφ0, for some φ0 ∈ Ṽ 0. Since the bottom sequence is exact at
Ṽ 0, we have that φn converges in Ṽ 0 to φ0 = φ. Moreover, we know that dσn = Sφn

which converges to Sφ in W 1. However, since (σn, φn) ∈ Γ converges to (σ, φ) in sΓ, we
know that σn converges in W 0 to σ ∈ W 0. Therefore, since d is a closed unbounded
operator, dσ = Sφ, and (σ, φ) ∈ Γ, as desired.

We show that (
0 d

)
has closed range. Consider a sequence

(
0 d

)σn
φn


converging to u in W̃ 1, with (σn, φn) ∈ Γ for all n. Hence, we have dφn converging to u
in W̃ 1. Since d has closed range, u = dφ, for some φ ∈ Ṽ 0. Since the bottom complex is
exact at Ṽ 0, φn converges to φ in W̃ 0. However, we have dσn = Sφn which converges to
Sφ in W 1, since S is continuous. Thus, dσn converges in W 1, but, since d has closed
range, dσn converges to dσ in W 1, for some σ ∈ V 0. Since the top complex is also exact
at V 0, σn converges to σ in W 0. We note that dσ = Sφ, and

(
0 d

)σn
φn


converges to

u =
(
0 d

)σ
φ
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in W̃ 1, as desired.

We now note that the operator S
d


is clearly closed, and show that it has closed range. We take a sequenceS

d

un →
ρ
µ


in W 2 × W̃ 2, with un ∈ Ṽ 1. Since the bottom complex has a Hodge decomposition
and is exact at Ṽ 1, we have un = dφn + wn, for some φn ∈ Ṽ 0 and wn ∈ Z̃

⊥
Ṽ , where

Z̃ is the null space of d0. Since dwn = dun converges to µ in W̃ 2 and wn ∈ Z̃
⊥

Ṽ , we
have that, for some w ∈ Ṽ 1, wn converges to w in W̃ 1 and µ = dw. Now, we note
that −dSφn = Sdφn = Sun − Swn converges to ρ − Sw in W 2. However, d1 has
closed range, so −dSφn converges in W 1 to −dλ for some λ ∈ V 1, and −dλ = ρ− Sw.
Now, by the assumed regularity property dV 1 = dSṼ 0, there exists φ ∈ Ṽ 0 such that
−dSφ = −dλ = ρ − Sw. Hence, we set u = dφ + w ∈ Ṽ 1, and see that ρ = Su and
µ = du, as desired.

Finally, we need to show that

0 =

S
d

(0 d
)

Γ.

Thus, given (σ, φ) ∈ Γ, we need to show that Sdφ = 0. However, this is true, since
Sdφ = −dSφ = −d(dσ) = 0. This concludes the proof. �

We note that, since we have the closed Hilbert complex (5.1), we have the following
Poincaré inequalities. For any (σ, φ) ∈ Γ,

‖σ‖ ≤ Cp‖dφ‖,

and, for any u ∈ Ṽ 1 such that u ⊥ N (d) ∩N (S) ∩ Ṽ 1,

‖u‖ ≤ Cp (‖S1u‖+ ‖du‖) .
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The associated well-posed Hodge Laplacian problem is to find (σ, φ) ∈ Γ and u ∈ Ṽ 1

such that

(σ, τ)− (u, dψ) = 0, (τ, ψ) ∈ Γ, (5.2a)

(dφ, v) + (Su, Sv) + (du, dv) = (f, v), v ∈ Ṽ 1, (5.2b)

with f ∈ W̃ 1. To impose the constraint used to define Γ, we introduce a Lagrange
multiplier λ ∈W 1, and so the modified problem is to find (σ, φ) ∈ V 0× Ṽ 0, u ∈ Ṽ 1, and
λ ∈W 1 such that

(σ, τ)− (u, dψ)− (λ, dτ − Sψ) = 0, (τ, ψ) ∈ V 0 × Ṽ 0, (5.3a)

(dφ, v) + (Su, Sv) + (du, dv) = (f, v), v ∈ Ṽ 1, (5.3b)

(dσ − Sφ, µ) = 0, µ ∈W 1, (5.3c)

with f ∈ W̃ 1. We let a : (V 0 × Ṽ 0 × Ṽ 1)× (V 0 × Ṽ 0 × Ṽ 1)→ R be defined by

a(σ, φ, u; τ, ψ, v) = (σ, τ)− (u, dψ) + (dφ, v) + (Su, Sv) + (du, dv),

and b : (V 0 × Ṽ 0 × Ṽ 1)×W 1 → R be defined by b(τ, ψ, v;λ) = −(λ, dτ − Sψ).
Clearly, a solution (σ, φ, u, λ) to the system (5.3) is a solution (σ, φ, u) to the system

(5.2) without Lagrange multiplier. If we show that the second system (5.3) is well-posed,
we would have that a solution (σ, φ, u) to the first system is also a (unique) solution
(σ, φ, u, λ) to the second one, for some unique λ.

We now suppose SṼ 0 is dense in W 1, so that the seminorm

~λ~ := sup
(τ,ψ)∈V 0×Ṽ 0

(λ, dτ − Sψ)
‖τ‖V + ‖ψ‖V

,

is actually a norm. We denote by ĎW 1 the completion of W 1 with this norm. This is
analogous to the derivation of error estimates for the Reissner–Mindlin equations in the
limiting case t = 0 [25].

Proposition 5.2. Suppose the hypothesis of Proposition 5.1 holds. The problem (5.3)
is well-posed over V 0 × Ṽ 0 × Ṽ 1 ×ĎW 1, where ĎW 1 the completion of W 1 with the norm
~ · ~ just defined.
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Proof. We use Brezzi’s Theorem 4.11. The kernel Z of b is Γ× Ṽ 1. First, we note that
the inf-sup condition for b holds by definition of the norm on ĎW 1.

Second, we consider any (σ, φ) ∈ Γ and u ∈ Ṽ 1. Since u ∈ Ṽ 1, we can use a Hodge
decomposition with the complex (5.1), so that u = dχ+ w, where χ ∈ Ṽ 0, Sχ = dρ, for
some ρ ∈ V 0, and w ∈ (Z1)⊥V , with Z1 denoting the null space of the operator

(
S
d

)
. We

can now fix a small ε > 0, and take (τ, ψ, v) = (σ − ερ, φ− εχ, dφ+ dχ+ εw) ∈ Z, since
d(σ − ερ) = S(φ− εχ), to show the inf-sup conditions for a over Z × Z holds. Indeed,
this choice yields

a(σ, φ, u; τ, ψ, v)

= (σ, τ)− (u, dψ) + (dφ, v) + (Su, Sv) + (du, dv)

= (σ, τ)− (dχ, dψ)− (w, dψ) + (dφ, v) + (Sdχ, Sv) + (Sw, Sv) + (dw, dv)

= (σ, τ)− (dχ, dψ) + (dφ, v) + (Sw, Sv) + (dw, dv),

as w ∈ (Z1)⊥V and dψ ∈ Z1, since Sdφ = −dSφ = −d(dσ) = 0, and similarly Sdχ = 0.
Now, substituting τ , ψ, and v,

a(σ, φ, u; τ, ψ, v) = ‖σ‖2 − ε(σ, ρ)− (dχ, dφ) + ε‖dχ‖2

+ ‖dφ‖2 + (dφ, dχ) + ε(dφ,w) + (Sw, Sdφ) + (Sw, Sdχ) + ε‖Sw‖2

+ ε‖dw‖2

= ‖σ‖2 − ε(σ, ρ) + ε‖dχ‖2 + ‖dφ‖2 + ε‖Sw‖2 + ε‖dw‖2,

since Sdφ = 0, Sdχ = 0, and w ∈ (Z1)⊥V again. Thus,

a(σ, φ, u; τ, ψ, v) ≥ 1
2‖σ‖

2 − ε2

2 ‖ρ‖
2 + ε‖dχ‖2 + ‖dφ‖2 + ε‖Sw‖2 + ε‖dw‖2

≥ −ε
2

2 ‖ρ‖
2 + ε‖dχ‖2 + ‖dφ‖2 + ε

(
‖Sw‖2 + ‖dw‖2

)
≥ −ε

2

2 ‖ρ‖
2 + ε

2C2
p

(
‖ρ‖2 + ‖χ‖2V

)
+ 1

2C2
p

(
‖σ‖2 + ‖φ‖2V

)
+ ε

C2
p

‖w‖2V ,

by the Poincaré inequalities ‖ρ‖2 + ‖dχ‖2 ≤ C2
p‖dχ‖2, ‖σ‖2 + ‖dφ‖2 ≤ C2

p‖dφ‖2, and
‖w‖2V ≤ C2

p

(
‖Sw‖2 + ‖dw‖2

)
, given by Proposition 5.1, and the Poincaré inequalities

for V 0 and Ṽ 0, ‖χ‖V ≤ Cp‖dχ‖ and ‖φ‖V ≤ Cp‖dφ‖. Thus, for small ε > 0,

a(σ, φ, u; τ, ψ, v) ≥ C
(
‖σ‖2V + ‖ρ‖2V + ‖φ‖2V + ‖χ‖2V + ‖w‖2V

)
≥ C‖τ, ψ, v‖V ‖σ, φ, u‖V ,

since ‖u‖2V = ‖dχ‖2 + ‖w‖2V . This concludes the proof. �
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5.2 Discretization

We just developed an abstract framework and obtained the system 5.3, the Hodge
Laplacian of the complex (5.1). We now discretize this problem, identify a method to
solve numerically this problem, and find a priori error estimates. We do so by going
back to how the new complex was generated to find finite elements. We suppose that
we have finite element spaces V 0

h , V 1
h , W 2

h , Ṽ 0
h , Ṽ 1

h , and W̃ 2
h , satisfying the subcomplex

property, namely that they are subsets of their respective spaces and each form a complex.
Moreover, we want them to be related in the following way,

0 V 0
h V 1

h V 2
h

0 Ṽ 0
h Ṽ 1

h Ṽ 2
h

d d

Sh

d

Sh

d

and equipped with canonical cochain projections Π0
h onto V 0

h , Π1
h onto V 1

h , Π2
h onto V 2

h ,
Π̃0
h onto Ṽ 0

h , Π̃1
h onto Ṽ 1

h , and Π̃2
h onto Ṽ 2

h . We also set S0,h := Π1
hS0 and S1,h := Π2

hS1,
and see that dS0,h = −S1,hd. We suppose that S0,h is bounded uniformly in h from Ṽ 0

h

to V 1
h . We also suppose that S0,h satisfies a surjectivity hypothesis, namely that

S0,hΠ̃0
hψ = Π1

hS0ψ, (5.4)

for any ψ in the domain of Π̃0
h such that Sψ is in the domain of Π1

h. Since Π1
hS0 is

surjective, this hypothesis implies that S0,hΠ̃0
h also is, so that S0,h maps Ṽ 0

h onto V 1
h .

We then have the following discrete version of the second order complex (5.1) with weak
symmetries,

0→ Γh
( 0 d )−−−→ Ṽ 1

h

(
S1,h

d

)
−−−−−→ V 2

h × Ṽ 2
h , (5.5)

where

Γh =
{

(σh, φh) ∈ V 0
h × Ṽ 0

h | dσh = S0,hφh
}
.

Proposition 5.3. Suppose the hypothesis of Proposition 5.1 holds. Suppose also we
have finite element spaces forming two exact complexes, namely V i

h and Ṽ i
h, for 0 ≤ i ≤ 2,

equipped with canonical cochain projections πih and π̃ih. We set S0,h := Π1
hS0 and
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S1,h := Π2

hS1, and suppose that S0,h is bounded uniformly in h from Ṽ 0
h to V 1

h , and
satisfies the surjectivity hypothesis. The following discrete Poincaré inequalities hold
with constants independent of h. For any (σh, φh) ∈ Γh,

‖σh‖ ≤ C‖dφh‖,

For any uh ∈ Ṽ 1
h such that uh ⊥ N (d) ∩N (Sh) ∩ Ṽ 1

h ,

‖uh‖ ≤ C (‖S1,huh‖+ ‖duh‖) .

Proof. Take (σh, φh) ∈ Γh. Then,

‖σh‖ ≤ Cp‖dσh‖ = Cp‖S0,hφh‖ ≤ C‖φh‖ ≤ C‖dφh‖,

using the Poincaré inequalities for V 0 and Ṽ 0, and the hypothesis that S0,h is uniformly
bounded in h. This concludes the first inequality.

We now turn to the second inequality. We show that, for any (ηh, ρh) ∈ V 2
h × Ṽ 2

h

in the range of
(
Sh
d

)
, there exists uh ∈ Ṽ 1

h such that ηh = Shuh and ρh = duh and
‖uh‖ ≤ C (‖ηh‖+ ‖ρh‖), with a constant independent of h.

We start by taking vh ∈ Ṽ 1
h such that ηh = Shvh and ρh = dvh. We then use the

continuous bottom complex to apply a Hodge decomposition, vh = dψ + w, for ψ ∈ Ṽ 0

and w ∈ (Z̃1)⊥, such that

‖w‖V ≤ C‖dw‖ = C‖dv‖ = C‖ρh‖.

We then see that

−dΠhSΠ̃hψ = ΠhSΠ̃hdψ = Shvh − ShΠ̃hw = ηh − ShΠ̃hw =: η′h,

so that η′h is in the range of d. Thus, we can use the regular decomposition, which says
that V 1 = SṼ 0 + dV 0 continuously, to see that there exists φ ∈ Ṽ 0 with −dSφ = η′h and

‖φ‖V ≤ C‖η′h‖ ≤ C
(
‖ηh‖+ ‖ShΠ̃hw‖

)
≤ C (‖ηh‖+ ‖w‖) ≤ C (‖ηh‖+ ‖ρh‖) .

We now set

uh := Π̃h(w + dφ) = Π̃hw + dΠ̃hφ,
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and verify that Shuh = ηh and duh = ρh. We thus compute

Shuh = Sh(Π̃hw+ dΠ̃hφ) = ShΠ̃hw− dShΠ̃hφ = ShΠ̃hw− dΠhSφ = ShΠ̃hw−ΠhdSφ

= ShΠ̃hw+Πh(ηh−ShΠ̃hw) = ShΠ̃hw+Πhηh−ΠhShΠ̃hw = ShΠ̃hw+ηh−ShΠ̃hw = ηh,

and

duh = d(Π̃hw + dΠ̃hφ) = Π̃hdw = Π̃hρh = ρh,

as desired. Finally, we have that

‖uh‖ = ‖dφ‖+ ‖w‖ ≤ C (‖ηh‖+ ‖ρh‖) ,

with a constant independent of h, as desired. This concludes the proof. �

The method to solve (5.3) is then to find (σh, φh) ∈ V 0
h × Ṽ 0

h , uh ∈ Ṽ 1
h , and λh ∈ V 1

h

such that

(σh, τ)− (uh, dψ)− (λh, dτ − Shψ) = 0, (τ, ψ) ∈ V 0
h × Ṽ 0

h , (5.6a)

(dφh, v) + (Shuh, Shv) + (duh, dv) = (f, v), v ∈ Ṽ 1
h , (5.6b)

(dσh − Shφh, µ) = 0, µ ∈ V 1
h . (5.6c)

We note that dσh − Shφh = 0 exactly. Since the Lagrange multiplier makes the system
easier to discretized, this is the system that we discretize. We show this system is
invertible.

Proposition 5.4. Suppose the hypotheses of Proposition 5.3 hold. The discrete system
(5.6) is invertible.

Proof. The system is square, so we only need to show that given f = 0, the only solution
is (σh, φh, uh, λh) = (0, 0, 0, 0).

Taking (τ, ψ, v, µ) = (σh, φh, uh, λh) in the equations (5.6) of the method, we get that
0 = ‖σh‖2 + ‖Shuh‖2 + ‖duh‖2, so that σh = Shuh = duh = 0. In this case, the second
equation with v = dφh says that dφh = 0, and, since the complex is exact at Ṽ 0

h , we
have that φh = 0.

We now need to show that uh = 0. Using the Hodge decomposition of the discrete
version of the complex (5.1), we first note that uh = dχh+wh for some wh ∈ (Z1

h)⊥Vh , and
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(ρh, χh) ∈ V 0

h × Ṽ 0
h such that dρh = Shχh. Since dwh = duh = 0 and Shwh = Shuh = 0,

we have wh ∈ Z1
h, so wh = 0. Using the first equation of the discrete system with ψ = χh

and τ = ρh, we have that −‖dχh‖2 = 0, so that χh = 0 using the Poincaré inequality
‖χh‖ ≤ Cp,h‖dχh‖ for Ṽ 0

h . Thus, uh = dχh + wh = 0.
Finally, we need to show that λh = 0. To do so, we use the first equation of the

discrete system with τ = 0. Since S0,h is surjective, we set ψ to be a pre-image of λh
under S0,h, and see that λh = 0 since uh = 0. This completes the proof. �

We now define ‖w‖Γh
to be the graph norm of Γh, and show the following error

estimate.

Theorem 5.5. Suppose the hypotheses of Proposition 5.3 hold. Assuming also that
‖(I−Πh)SΨ‖ ≤ Ch‖Ψ‖V for any Ψ ∈ Ṽ 0

h , and ‖(I−Πh)Sv‖ ≤ Ch‖v‖V for any v ∈ Ṽ 1
h ,

we have

‖σ − σh‖2V + ‖φ− φh‖2V + ‖u− uh‖2Γh

≤ C
(
‖Πhσ − σ‖2V + ‖Π̃hu− u‖2Γh

+ h2‖λ‖2 + ‖Π̃hφ− φ‖2V + h2‖Su‖2 + ‖(I −Πh)Su‖2
)
.

We start by writing the error equation.

Proposition 5.6. Suppose the hypotheses of Proposition 5.3 hold. The error equation is

(Πhσ − σh, τ)− (Π̃hu− uh, dψ)− (λ− λh, dτ − Shψ)

+ (d(Π̃hφ− φh), v) + (Sh(Πhu− uh), Shv) + (d(Π̃hu− uh), dv)

= (Πhσ − σ, τ)− (Π̃hu− u, dψ)− (λ, (S − Sh)ψ)

+ (d(Π̃hφ− φ), v)− (Su, (S − Sh)v)− ((S − Sh)u, Shv) + (Sh(Πhu− u), Shv)

+ (d(Π̃hu− u), dv).

Proof. We consider τ ∈ V 0
h , ψ ∈ Ṽ 0

h , v ∈ Ṽ 1
h , and obtain the error equation. Thus, we

take the difference between the equations for the exact solution and for the approximate
solution,

(σ − σh, τ)− (u− uh, dψ)− (λ, dτ − Sψ) + (λh, dτ − Shψ)

+ (d(φ− φh), v) + (Su, Sv)− (Shuh, Shv) + (d(u− uh), dv) = 0,
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or, introducing projections,

(Πhσ − σh, τ)− (Π̃hu− uh, dψ)− (λ, dτ − Sψ) + (λh, dτ − Shψ)

+ (d(Π̃hφ− φh), v) + (Su, Sv)− (Shuh, Shv) + (d(Π̃hu− uh), dv)

= (Πhσ − σ, τ)− (Π̃hu− u, dψ) + (d(Π̃hφ− φ), v) + (d(Π̃hu− u), dv).

Moreover, since

−(λ, dτ − Sψ) + (λh, dτ − Shψ) = −(λ− λh, dτ − Shψ) + (λ, (S − Sh)ψ),

and

(Su, Sv)− (Shuh, Shv) = (Su, (S − Sh)v) + ((S − Sh)u, Shv) + (Sh(u− uh), Shv)

= (Su, (S − Sh)v) + ((S − Sh)u, Shv) + (Sh(Πhu− uh), Shv)

− (Sh(Πhu− u), Shv),

we also have

(Πhσ − σh, τ)− (Π̃hu− uh, dψ)− (λ− λh, dτ − Shψ)

+ (d(Π̃hφ− φh), v) + (Sh(Πhu− uh), Shv) + (d(Π̃hu− uh), dv)

= (Πhσ − σ, τ)− (Π̃hu− u, dψ)− (λ, (S − Sh)ψ)

+ (d(Π̃hφ− φ), v)− (Su, (S − Sh)v)− ((S − Sh)u, Shv) + (Sh(Πhu− u), Shv)

+ (d(Π̃hu− u), dv),

as desired. �

We are now ready to prove the inequality given in Theorem 5.5.

Proof of Theorem 5.5. We consider the error equation, and use the discrete decompo-
sition Π̃hu− uh = dχh + ωh, where χh ∈ Ṽ 0

h , such that Shχh = dρh for some ρh ∈ V 0
h ,

and ωh ∈ Ṽ 1
h such that ωh ⊥ N

(
Sh
d

)
∩ Ṽ 1

h . Hence,

(Πhσ − σh, τ)− (dχh + ωh, dψ)

− (λ− λh, dτ − Shψ) + (d(Π̃hφ− φh), v) + (Shωh, Shv) + (dωh, dv)

= (Πhσ − σ, τ)− (Π̃hu− u, dψ)− (λ, (S − Sh)ψ) + (d(Π̃hφ− φ), v)

− (Su, (S − Sh)v)− ((S − Sh)u, Shv) + (Sh(Πhu− u), Shv)

+ (d(Π̃hu− u), dv),
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since Shdχh = −dShχh = −d(dρh) = 0.

Now, we take τ = Πhσ − σh − ερh ∈ V 0, ψ = Π̃hφ − φh − εχh ∈ Ṽ 0, and v =
d(Π̃hφ− φh) + dχh + εωh ∈ Ṽ 1. Using the surjectivity hypothesis (5.4), the constraints,
and the commutativity property of d and the projections, we see that

dτ = d(Πhσ − σh)− εdρh = Πhdσ − dσh − εShχh = ΠhSφ− Shφh − εΠhSχh

= ΠhSΠ̃hφ−ΠhSφh − εΠhSχh = ΠhS(Π̃hφ− φh − εχh) = Shψ,

for this particular choice of test functions. Thus, (τ, ψ, v) ∈ Zh = Γh × Ṽ 1
h for the choice

of test functions made. Using this, the left hand side of the error equation becomes

‖Πhσ − σh‖2 − ε(Πhσ − σh, ρh)− (dχh + ωh, d(Π̃hφ− φh)) + ε‖dχh‖2 + ε(ωh, dχh)

+ ‖d(Π̃hφ− φh)‖2 + (d(Π̃hφ− φh), dχh) + ε(d(Π̃hφ− φh), ωh) + ε‖Shωh‖2 + ε‖dωh‖2

≥ ‖Πhσ − σh‖2 −
1
2‖Πhσ − σh‖2 −

ε2

2 ‖ρh‖
2 + ε‖dχh‖2 + ‖d(Π̃hφ− φh)‖2

+ ε‖Shωh‖2 + ε‖dωh‖2,

since ωh ⊥ N
(
Sh
d

)
∩ Ṽ 1

h , and Shv = Shωh. Using the Poincaré inequalities for V 0
h , Ṽ 0

h ,
and Proposition 5.3,

1
2‖Πhσ − σh‖2 −

ε2

2 ‖ρh‖
2 + ε‖dχh‖2 + ‖d(Π̃hφ− φh)‖2 + ε‖Shωh‖2 + ε‖dωh‖2

≥ 1
2‖Πhσ − σh‖2 −

ε2

2 ‖ρh‖
2 + ε

C2
p

(
‖ρh‖2 + ‖χh‖2V

)
+ 1
C2
p

(
‖Πhσ − σh‖+ ‖Π̃hφ− φh‖2V

)
+ ε

C2
p

‖ωh‖2Γh
.

Now, we can again use Proposition 5.3 to see that ‖ρh‖ ≤ C‖χh‖. Thus, for small ε > 0,

1
2‖Πhσ − σh‖2 −

ε2

2 ‖ρh‖
2

+ ε

C2
p

(
‖ρh‖2 + ‖χh‖2V

)
+ 1
C2
p

(
‖Πhσ − σh‖+ ‖Π̃hφ− φh‖2V

)
+ ε

C2
p

‖ωh‖2Γh

≥ 1
C

(
‖Πhσ − σh‖2V + ‖Π̃hφ− φh‖2V + ‖ρh‖2V + ‖χh‖2V + ‖ωh‖2Γh

)
.
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Returning to the error equation, we then have

1
C

(
‖Πhσ − σh‖2V + ‖Π̃hφ− φh‖2V + ‖ρh‖2V + ‖χh‖2V + ‖ωh‖2Γh

)
≤ ‖Πhσ − σ‖‖Πhσ − σh‖+ ε‖Πhσ − σ‖‖ρh‖+ ‖Π̃hu− u‖

(
‖d(Π̃hφ− φh)‖+ ε‖dχh‖

)
+ ‖λ‖‖(I −Πh)S(Π̃hφ− φh − εχh)‖+ ‖d(Π̃hφ− φ)‖

(
‖d(Π̃hφ− φh)‖+ ‖dχh‖+ ε‖ωh‖

)
+ ‖Su‖‖(I −Πh)S(d(Π̃hφ− φh) + dχh + εωh)‖+ ‖(I −Πh)Su‖‖Shωh‖

+ ‖Sh(Πhu− u)‖‖Shωh‖+ ‖d(Π̃hu− u)‖‖dωh‖,

so that

‖Πhσ − σh‖2V + ‖Π̃hφ− φh‖2V + ‖ρh‖2V + ‖χh‖2V + ‖ωh‖2Γh

≤ C
(
‖Πhσ − σ‖2 + ‖Π̃hu− u‖2 + ‖λ‖‖(I −Πh)S(Π̃hφ− φh − εχh)‖

+ ‖d(Π̃hφ− φ)‖2 + ‖Su‖‖(I −Πh)S(d(Π̃hφ− φh) + dχh + εωh)‖

+‖(I −Πh)Su‖2 + ‖Sh(Πhu− u)‖2 + ‖d(Π̃hu− u)‖2
)
.

Assuming that ‖(I − Πh)SΨ‖ ≤ Ch‖Ψ‖V for any Ψ ∈ Ṽ 0
h , and ‖(I − Πh)Sv‖ ≤

Ch‖v‖V for any v ∈ Ṽ 1
h , we get that

‖Πhσ − σh‖2V + ‖Π̃hφ− φh‖2V + ‖ρh‖2V + ‖χh‖2V + ‖ωh‖2Γh

≤ C
(
‖Πhσ − σ‖2 + ‖Π̃hu− u‖2 + h2‖λ‖2 + ‖d(Π̃hφ− φ)‖2 + h2‖Su‖2

+‖(I −Πh)Su‖2 + ‖Sh(Πhu− u)‖2 + ‖d(Π̃hu− u)‖2
)
.

We then write the left hand side in terms of Π̃hu− uh,

‖Πhσ − σh‖2V + ‖Π̃hφ− φh‖2V + ‖Π̃hu− uh‖2Γh

≤ C
(
‖Πhσ − σ‖2 + ‖Π̃hu− u‖2 + h2‖λ‖2 + ‖d(Π̃hφ− φ)‖2 + h2‖Su‖2

+‖(I −Πh)Su‖2 + ‖Sh(Πhu− u)‖2 + ‖d(Π̃hu− u)‖2
)
.

Finally, applying the triangle inequality, we get the desired inequality. �
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5.3 Application to the Time-Independent EB System

We now apply the abstract framework and its discretization to the complex (4.16), as
mentioned in the introduction of this chapter. In this application, we have

0 H̊1 H̊(curl) L2(V)

0 H̊1(V) H̊(curl,M) L2(M)

grad curl

I

grad

vskw

curl

along with W 0 = L2(R), W 1 = L2(V), W 2 = L2(V), W̃ 0 = L2(V), W̃ 1 = L2(M),
and W̃ 2 = L2(M). The spaces are summarized in Table 5.1. We have that the
regularity property curl H̊(curl) = curl H̊1(V) is satisfied, from the regular decomposition
H̊(curl) = H̊1(V) + gradH1, [27, Section 3] and [28, Lemma 2.4]. The problem given by
equations (5.3) is to find (σ, φ) ∈ H̊1(R)× H̊1(V), u ∈ H̊(curl,M), and λ ∈ H−1(div,V)
such that

(σ, τ)− (u, gradψ)− (λ, grad τ − Iψ) = 0, (τ, ψ) ∈ H̊1 × H̊1(V),

(gradφ, v) + (skw u, skw v) + (curl u, curl v) = (f, v), v ∈ H̊(curl,M),

(gradσ − Iφ, µ) = 0, µ ∈ H−1(div,V),

where

H−1(div,V) :=
{
λ ∈ H−1(V) | divλ ∈ H−1(R)

}
,

is the completion ĎW 1 of W 1 = L2(V) in the norm

~λ~ := sup
(τ,ψ)∈H̊1(R)×H̊1(V)

(λ, grad τ − Iψ)
‖τ‖H1 + ‖ψ‖H1

.

In order to find finite elements for this problem, we recall that they need to satisfy
• the subcomplex property,
• the existence of bounded cochain projections,
• the surjectivity hypothesis.

We choose the following finite element spaces: V 0
h = P1Λ0, the Lagrange P1 elements,

V 1
h = P−1 Λ1, the lowest order Nédélec H(curl) elements of the first kind, V 2

h = P−1 Λ2,
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V W Vh Variables

H̊(R) L2(R) P1Λ0 σ, τ

H̊(V) L2(V) P2Λ0 ⊗ V φ, ψ

H̊(curl,V) H−1(div,V) P−1 Λ1 λ, µ

H̊(curl,M) L2(M) P−2 Λ1 ⊗ V u, v
L2(V) L2(V) P−1 Λ2

L2(M) L2(M) P1Λ2 ⊗ V

Table 5.1: Spaces used in the formulation.

the lowest order Raviart-Thomas elements, Ṽ 0
h = P2Λ0 ⊗ V, the vector-valued Lagrange

P2 elements, Ṽ 1
h = P−2 Λ1 ⊗ V, and Ṽ 2

h = P1Λ2 ⊗ V. Thus, we have

0 P1Λ0 P−1 Λ1 P−1 Λ2

0 P2Λ0 ⊗ V P−2 Λ1 ⊗ V P1Λ2 ⊗ V

grad curl

Π1
h

grad

Π2
h vskw

curl

and impose Dirichlet boundary conditions for the 0-forms, null tangent component for
the 1-forms, and null normal component for the 2-forms. The finite elements used are
summarized in Table 5.1. We use the canonical projections, which satisfy the surjectivity
hypothesis (5.4). The problem is then to find σh ∈ P1Λ0, φh ∈ P2Λ0⊗V, u ∈ P−2 Λ1⊗V,
and λh ∈ P−1 Λ1 such that

(σh, τ)− (uh, gradψ)− (λh, grad τ −Π1
hψ) = 0, (5.7a)

(gradφh, v) + (Π2
h vskw uh,Π2

h vskw v) + (curl uh, curl v) = (f, v), (5.7b)

(gradσh −Π1
hφh, µ) = 0, (5.7c)

for any τ ∈ P1Λ0, ψ ∈ P2Λ0 ⊗ V, v ∈ P−2 Λ1 ⊗ V, µ ∈ P−1 Λ1. We note the use of the
canonical projections Π1

h from Lagrange to Nédélec H(curl) elements, and Π2
h from the

skew-part of Nédélec H(curl) elements viewed as vectors to Raviart-Thomas elements.
They appear due to the presence of S0 and S1 at the continuous level.

Proposition 5.7. With this choice of finite elements, the surjectivity hypothesis (5.4)
holds.
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Proof. By density, it is enough to consider ψ ∈ Λ̃0. We need to show that(

Π1
hS0 − S0,hΠ̃0

h

)
ψ = 0.

If we set ω = (I − Π̃0
h)ψ ∈ Λ̃0, then the condition becomes Π1

hS0ω = 0, so that we need
to show that all the degrees of freedom of ω are zero,∫

f
trf (S0ω) ∧ µ = 0

for any µ ∈ P1+1−d−1Λd−1(f), f ∈ ∆d(Th), 1 ≤ d ≤ 1. More precisely, we need to show
that ∫

f
S0ω ∧ µ = 0

for any µ ∈ P0Λ0(f), f ∈ ∆1(Th). These degrees of freedom can further be written as∫
f
ω ∧ ζ = 0 (5.8)

where ζ = (S0)′µ ∈ P0Λ̃1(f). (Indeed, using Leibniz rule, we have that (Sω) ∧ µ =
(−1)kω ∧ S′µ, for ω ∈ Λ̃k, where S′ = dK ′ −K ′d : Λk → Λ̃k+1 and K ′ is the adjoint
of K.) However, the last equation holds. Indeed, we have that Π̃0

hω = 0, so that the
degrees of freedom are zero, ∫

f
trf ω ∧ ζ = 0

for any ζ ∈ P−2−dΛ̃d(f), f ∈ ∆d(Th), and 0 ≤ d ≤ 1. In particular, for d = 1,∫
f
ω ∧ ζ = 0

for any ζ ∈ P−1 Λ̃1(f), f ∈ ∆1(Th), so that equation (5.8) certainly holds. This concludes
the proof. �

Proposition 5.8. Consider the canonical projection Π̃0
h mapping onto P2Λ0 ⊗ V. We

have that S0,h = Π̃0
h is bounded uniformly in h from P2Λ0 ⊗ V to P−1 Λ1,



87
Proof. We note that ‖ψ‖h := h3/2∑

v∈∆0 |ψ(v)| + h1/2∑
e∈∆1 |

∫
e ψ| is a norm for ψ ∈

P2Λ0 ⊗ V, and ‖u‖h := h1/2∑
e∈∆1 |

∫
e u · τe| for u ∈ P

−
1 Λ1. These two norms are

equivalent to ‖ψ‖ and ‖u‖, respectively. Then, for ψ ∈ P2Λ0 ⊗ V, we see that

‖S0,hψ‖ ≤ C‖S0,hψ‖h ≤ C‖ΠhIψ‖h ≤ C

∑
e∈∆1

h1/2
∣∣∣∣∫
e
(ΠhIψ) · τe

∣∣∣∣


= C

∑
e∈∆1

h1/2
∣∣∣∣∫
e
ψ · τe

∣∣∣∣


≤ C

∑
e∈∆1

h1/2
∣∣∣∣∫
e
ψ

∣∣∣∣
 ≤ C

h3/2 ∑
v∈∆0

|ψ(v)|+ h1/2 ∑
e∈∆1

∣∣∣∣∫
e
ψ

∣∣∣∣


= C‖ψ‖h ≤ C‖ψ‖,

with a constant independent of h, as desired.
We note that ‖v‖h := h−1/2∑

e∈∆1

∑
p∈B |

∫
e(v × n)p|+ h1/2∑

F∈∆2 |v(F )|, where B

is a basis of P1Λ0, is a norm for v ∈ P−2 Λ0 ⊗ V, and ‖u‖h := h1/2∑
e∈∆1 |

∫
e u · τe| for

u ∈ P−1 Λ1. These two norms are equivalent to ‖ψ‖ and ‖u‖, respectively. Then, for
ψ ∈ P2Λ0 ⊗ V, we see that

‖S0,hψ‖ ≤ C‖S0,hψ‖h ≤ C‖ΠhIψ‖h ≤ C

∑
e∈∆1

h1/2
∣∣∣∣∫
e
(ΠhIψ) · τe

∣∣∣∣


= C

∑
e∈∆1

h1/2
∣∣∣∣∫
e
ψ · τe

∣∣∣∣
 ≤ C

∑
e∈∆1

h1/2
∣∣∣∣∫
e
ψ

∣∣∣∣


≤ C

h3/2 ∑
v∈∆0

|ψ(v)|+ h1/2 ∑
e∈∆1

∣∣∣∣∫
e
ψ

∣∣∣∣
 = C‖ψ‖h ≤ C‖ψ‖,

with a constant independent of h, as desired. �

Moreover, we have that the hypothesis of Theorem 5.5 is satisfied.

Proposition 5.9. Consider the canonical projections Π1
h mapping onto P−1 Λ1 and

Π2
h onto P−1 Λ2. We have that ‖(I − Π1

h)ψ‖ ≤ Ch‖ψ‖H1 for any ψ ∈ P2Λ0 ⊗ V and
‖(I −Π2

h) vskw v‖ ≤ Ch‖v‖H(curl) for any v ∈ P1Λ1 ⊗ V are satisfied.
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Proof. For any tetrahedron T , since, on a finite dimensional space, all linear maps are
bounded and all norms are equivalent,

‖(I −Π1
T )Iψ‖T = inf

χ∈P0Λ0(T )⊗V
‖(ψ − χ)−Π1

T (ψ − χ)‖T

≤ CT inf
χ∈P0Λ0(T )⊗V

‖ψ − χ‖H1(T ) ≤ CT |ψ − χ|H1(T ) = CT |ψ|H1(T ),

for any ψ ∈ P2Λ0(T ). Thus, we have

‖(I −Π1
h)Iψ‖ ≤ Ch|ψ|H1 ,

for any ψ ∈ P2Λ0, where the constant depends only on the shape regularity of the mesh.
This concludes the first estimate.

For any tetrahedron T , since, on a finite dimensional space, all linear maps are
bounded and all norms are equivalent,

‖(I −Π2
T ) vskw v‖T = inf

w∈P0Λ1(T )⊗V
‖ vskw(v − w)−Π2

T vskw(v − w)‖T

≤ CT inf
w∈P0Λ1(T )⊗V

‖ vskw(v − w)‖H(curl,T ) ≤ CT inf
w∈P0Λ1(T )⊗V

‖v − w‖H(curl,T )

≤ CT |v − w|H(curl,T ) = CT |v|H(curl,T ),

for any v ∈ P1Λ1(T ). Thus, we have

‖(I −Π2
h) vskw v‖ ≤ Ch|v|H(curl),

for any v ∈ P1Λ1, where the constant depends only on the shape regularity of the mesh.
This concludes the second estimate. �

We have verified the hypotheses of the abstract framework for the complex (4.16) and
its discretization, as mentioned in the introduction. Therefore, the theory developed in
this chapter thus applies to this particular case. However, we will not show the resulting
precise estimates, as we are more interested in the case of the wave equation.



Chapter 6

Time-Dependent BGG
Construction

We now carry the abstract framework developed in the previous chapter for the Hodge
Laplacian to the Hodge wave equation. This enables us to study the time-dependent
problem introduced in Section 4.11 rather than the time-independent problem discussed
in the previous chapter.

We first revisit the abstract framework of the previous chapter and associate a
time-dependent problem. We then find a discretization and apply this to the linearized
EB system.

6.1 Abstract Framework

We recall the framework developed in Chapter 5. We are thus given two exact Hilbert
complexes linked by bounded linear maps S0 : W̃ 0 →W 1, and S1 : W̃ 1 →W 2 such that
S0 is injective, S0Ṽ

0 ⊂ V 1, and d1S0 = −S1d
0 on Ṽ 0,

0 V 0 V 1 W 2

0 Ṽ 0 Ṽ 1 W̃ 2

d d

S

d

S

d

with Hilbert spaces W 0, W 1, W 2, W̃ 0, W̃ 1, and W̃ 2. A key assumption is that a
regularity property holds: dSṼ 0 = dV 1. This setup allows us to build the closed complex
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(5.1). The associated well-posed Hodge wave problem is to find

(σ, φ) ∈ C0([0, T ],Γ) ∩ C1([0, T ], sΓ),

u ∈ C0([0, T ], Ṽ 1) ∩ C1([0, T ], W̃ 1),

(M,ρ) ∈ C1([0, T ],W2 × W̃2),

such that

(σ̇, τ)− (u, dψ) = 0, (τ, ψ) ∈ Γ, (6.1a)

(u̇, v) + (dφ, v) + (M,Sv) + (ρ, dv) = (f, v), v ∈ Ṽ 1, (6.1b)

(Ṁ,N)− (Su,N) = 0, N ∈ V 2, (6.1c)

(ρ̇, µ)− (du, µ) = 0, µ ∈ Ṽ 2, (6.1d)

with f ∈ W̃ 1, and initial conditions in (σ, φ, u,M, ρ)(0) ∈ Γ× Ṽ 1 × (W2 × W̃2).
To impose the constraint used to define Γ, we introduce a multiplier λ := (S∗)−1d∗u ∈

W 1 and denote by ĎW 1 the completion of W 1 with the norm ~λ~ defined in Chapter 5.
The modified problem is to find

(σ, φ) ∈ C0([0, T ],Γ) ∩ C1([0, T ], sΓ),

u ∈ C0([0, T ], Ṽ 1
0 ) ∩ C1([0, T ], W̃ 1),

ρ ∈ C0([0, T ], Ṽ2) ∩ C1([0, T ], W̃2),

λ ∈ C0([0, T ],W1) ∩ C1([0, T ],ĎW1),

such that

(σ̇, τ)− (u, dψ)− (λ, dτ − Sψ) = 0, (τ, ψ) ∈ V 0 × Ṽ 0, (6.2a)

(u̇, v) + (dφ, v) + (M,Sv) + (ρ, dv) = (f, v), v ∈ Ṽ 1, (6.2b)

(Ṁ,N)− (Su,N) = 0, N ∈ V 2, (6.2c)

(ρ̇, µ)− (du, µ) = 0, µ ∈ Ṽ 2, (6.2d)

(dσ − Sφ, ζ) = 0, ζ ∈W 1, (6.2e)

with f ∈ W̃ 1, and (σ, τ, u,M, ρ, λ)(0) ∈ Γ× Ṽ 1
0 × (W̃2×W2)×W1. Uniqueness is shown

using an energy argument. Existence follows from the following proposition.
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Proposition 6.1. The systems (6.2) and (6.1) are equivalent in the following sense.
• Suppose (σ0, φ0) ∈ Γ, u0 ∈ Ṽ 1, M0 ∈ W 2, ρ0 ∈ W̃ 2, and λ0 ∈ W 1. If

(σ, φ, u,M, ρ, λ) is a solution of (6.2) with (σ, φ, u,M, ρ, λ)(0) = (σ0, φ0, u0,M0, ρ0, λ0),
then dσ = Sφ, and (σ, φ, u,M, ρ) is a solution to (6.1) with (σ, φ, u,M, ρ)(0) =
(σ0, φ0, u0,M0, ρ0).
• Suppose (σ0, φ0) ∈ Γ, u0 ∈ Ṽ 1

0 ∩(Ṽ 1
0 )∗, and ρ0 ∈ Ṽ ∗2 . Suppose also that (σ, φ, u, 0, ρ)

is a solution of (6.1) with (σ, φ, u,M, ρ)(0) = (σ0, φ0, u0, 0, ρ0). Moreover, we pick
any λ0 ∈W 1. Then, if we set λ := (S∗)−1d∗u, we have that (σ, φ, u,M, ρ, λ) is a
solution to (6.1) with (σ, φ, u,M, ρ, λ)(0) = (σ0, φ0, u0, 0, ρ0, λ0).

Proof. Suppose (σ0, φ0) ∈ Γ, u0 ∈ Ṽ 1, M0 ∈ W 2, ρ0 ∈ W̃ 2, and λ0 ∈ V 1. Let
(σ, φ, u,M, ρ, λ) be a solution of (6.2) with (σ, φ, u,M, ρ, λ)(0) = (σ0, φ0, u0, 0, ρ0, λ0).
Since dσ and Sφ are in W 1, the last equation of (6.2) gives that dσ = Sφ. Restricting
the first equation to Γ shows that (σ, φ, u,M, ρ, λ) also satisfies (6.1). This completes
the first part of the proposition.

Suppose (σ0, φ0) ∈ Γ, u0 ∈ Ṽ 1
0 ∩ (Ṽ 1

0 )∗, ρ0 ∈ Ṽ ∗2 , and λ0 ∈W 1. Let (σ, φ, u, 0, ρ) be
a solution of (6.1) with (σ, φ, u,M, ρ)(0) = (σ0, φ0, u0, 0, ρ0). By Theorem 4.7,

u ∈ C0([0, T ], Ṽ 1
0 ∩ (Ṽ 1

0 )∗) ∩ C1([0, T ],W 1),

so we can let λ := (S∗)−1d∗u. With this definition, for any (τ, ψ) ∈ V 0 × Ṽ 0,

(σ̇, τ)− (u, dψ)− (λ, dτ − Sψ) = (σ̇, τ)− (u, dψ)− ((S∗)−1d∗u, dτ − Sψ)

= (σ̇, τ)− (u, dψ)− ((S−1)∗d∗u, dτ − Sψ)

= (σ̇, τ)− (u, dψ)− (u, dS−1dτ − dS−1Sψ)

= (σ̇, τ)− (u, dψ)− (u, dS−1dτ − dψ) = (σ̇, τ)− (u, dS−1dτ) = 0

since (τ, dS−1dτ) ∈ Γ. Thus, (σ, φ, u,M, ρ, λ) is a solution to (6.1) with (σ, φ, u,M, ρ, λ)(0) =
(σ0, φ0, u0, 0, ρ0, λ0). �

6.2 Discretization

We now discretize the abstract Hodge wave (6.2) associated to the complex (5.1). We
assume that we have the finite element spaces V 0

h , V 1
h , V 2

h , Ṽ 0
h , Ṽ 1

h , and Ṽ 2
h , forming
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subcomplexes of the original complexes. Moreover, we assume they are related as

0 V 0
h V 1

h V 2
h

0 Ṽ 0
h Ṽ 1

h Ṽ 2
h

d d

Sh

d

Sh

d

and equipped with canonical cochain projections Π0
h onto V 0

h , Π1
h onto V 1

h , Π2
h onto V 2

h ,
Π̃0
h onto Ṽ 0

h , Π̃1
h onto Ṽ 1

h , and Π̃2
h onto Ṽ 2

h . We set S0,h := Π1
hS0 and S1,h := Π2

hS1,
assume S0,h is bounded uniformly in h from Ṽ 0

h to V 1
h , and that S1,h is from Ṽ 1

h to V 2
h .

We also assume S0,h satisfies a surjectivity hypothesis (5.4). The method to solve (6.2)
is then to find

(σh, φh) ∈ C1([0, T ], V 0
h × Ṽ 0

h ),

uh ∈ C1([0, T ], Ṽ 1
h ),

(Mh, ρh) ∈ C1([0, T ], V 2
h × Ṽ 2

h ),

λh ∈ C1([0, T ], V 1
h ),

such that

(σ̇h, τ)− (uh, dψ)− (λh, dτ − Shψ) = 0, (τ, ψ) ∈ V 0
h × Ṽ 0

h , (6.3a)

(u̇h, v) + (dφh, v) + (Mh, Shv) + (ρh, dv) = (f, v), v ∈ Ṽ 1
h , (6.3b)

(Ṁh, N)− (Shuh, N) = 0, N ∈ V 2
h , (6.3c)

(ρ̇h, µ)− (duh, µ) = 0, µ ∈ Ṽ 2
h , (6.3d)

(dσh − Shφh, ζ) = 0, ζ ∈ V 1
h . (6.3e)

We note that dσh − Shφh = 0 exactly if the initial conditions satisfy this condition.

Proposition 6.2. Given initial conditions (σ0,h, φ0,h) ∈ Γh, u0,h ∈ Ṽ 1
h , M0,h ∈ V 2

h , and
ρ0,h ∈ Ṽ 2

h , the system (6.3) has a unique solution.

Proof. Since the system is square, we only need to show that the zero solution is the
only solution whenever the initial condition, the boundary conditions, and the source
term are all zero. Using an energy argument, we see that σh = 0, uh = 0, Mh = 0,
ρh = 0. Now, with the first equation, with τ = 0, we have (λh, Shψ) = 0. Since S0,h is
surjective, we see that λh = 0. This completes the proof. �
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We set

(σh, φh, uh,Mh, ρh; τ, v,N, µ) := (σh, τ) + (uh, v) + (Mh, N) + (ρh, µ),

and

a(σh, φh, uh,Mh, λh; τ, ψ, v,N, ζ)

:= −(uh, dψ) + (dφh, v) + (Mh, Shv) + (ρh, dv)− (Shuh, N)− (duh, µ),

and

b(σh, φh, uh,Mh, λh; τ, ψ, v,N, ζ) := (dσh − Shφh, ζ).

We then define the elliptic projection

(Πhσ − σ, Π̃hφ− φ, Π̃hu− u,ΠhM −M,Πhρ− ρ; τ, v,N, µ)

+ a(Πhσ − σ,Πhφ− φ,Πhu− u,ΠhM −M,Πhλ− λ; τ, ψ, v,N, ζ)

+ b(τ, v,N, µ; Πhσ − σ, Π̃hφ− φ, Π̃hu− u,ΠhM −M,Πhρ− ρ) = 0, (6.4a)

b(Πhσ − σ, Π̃hφ− φ, Π̃hu− u,ΠhM −M,Πhρ− ρ; τ, v,N, µ) = 0, (6.4b)

for any (τ, ψ) ∈ V 0
h × Ṽ 0

h , v ∈ Ṽ 1
h , N ∈ V 2

h , µ ∈ Ṽ 2
h , and ζ ∈ V 1

h .
We now note the following error equations, using an argument similar to Proposition

5.6.

Proposition 6.3. The error equations are

(Πhσ̇h − σ̇h, τ)− (Π̃hu− uh, dψ)− (λ− λh, dτ − Shψ)

= (Πhσ̇ − σ̇, τ)− (Π̃hu− u, dψ)− (λ, (S − Sh)ψ),

(Π̃hu̇− u̇h, v) + (d(Π̃hφ− φh), v) + (ΠhM −Mh, Shv) + (Π̃hρ− ρh, dv)

= (Π̃hu̇− u̇, v) + (d(Π̃hφ− φ), v) + (ΠhM −M,Shv)− (M, (S − Sh)v) + (Π̃hρ− ρ, dv),

(ΠhṀ − Ṁh, N)− (Sh(Π̃hu− uh), N)

= (ΠhṀ − Ṁ,N)− (Sh(Π̃hu− u), N) + ((S − Sh)u,N),

(Π̃hρ̇− ρ̇h, µ)− (d(Π̃hu− uh), µ)

= (Π̃hρ̇− ρ̇, µ)− (d(Π̃hu− u), µ),

for any (τ, ψ) ∈ V 0
h × Ṽ 0

h , v ∈ Ṽ 1
h , N ∈ V 2

h , µ ∈ Ṽ 2
h , and ζ ∈ V 1

h .
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6.3 Application to the Linearized EB System

We are now intersted in applying the framework just developed to the linearized EB
system formulated with the complex (4.16). In this setting, we take

0 H̊1 H̊(curl) L2(V)

0 H̊1(V) H̊(curl,M) L2(M)

grad curl

I

grad

vskw

curl

along with W 0 = L2(R), W 1 = L2(V), W 2 = L2(V), W̃ 0 = L2(V), W̃ 1 = L2(M), and
W̃ 2 = L2(M). Table 6.1 summarizes the spaces used. This problem can be written in
the form of equations (6.2) by finding

(σ, φ) ∈ C0([0, T ], H̊1(R)× H̊1(V)) ∩ C1([0, T ], L2(R)× L2(V)),

u ∈ C0([0, T ], H̊(curl,M)) ∩ C1([0, T ], L2(M)),

(M,ρ) ∈ C1([0, T ], L2(V)× L2(M)),

λ ∈ C0([0, T ], L2(V)) ∩ C1([0, T ], H−1(div,V)),

such that

(σ̇, τ)− (u, gradψ)− (λ, grad τ − Iψ) = 0, (τ, ψ) ∈ H̊1 × H̊1(V),

(u̇, v) + (gradφ, v) + (M, skw v) + (ρ, curl v) = (f, v), v ∈ H̊(curl,M),

(Ṁ,N)− (skw u,N) = 0, N ∈ L2(V),

(ρ̇, µ)− (curlu, µ) = 0, µ ∈ L2(M),

(gradσ − Iφ, ζ) = 0, ζ ∈ L2(V).

We recall that ĎW 1 = H−1(div,V).
We choose the following finite element spaces: V 0

h = P1Λ0, the Lagrange P1 elements,
V 1
h = P−1 Λ1, the lowest order Nédélec H(curl) elements of the first kind, V 2

h = P−1 Λ2,
the lowest order Raviart-Thomas elements, Ṽ 0

h = P2Λ0 ⊗ V, the vector-valued Lagrange
P2 elements, Ṽ 1

h = P−2 Λ1 ⊗ V, the vector-valued second lowest order Nédélec H(curl)
elements of the first kind, and Ṽ 2

h = P1Λ2 ⊗ V, the vector-valued lowest order BDM
elements. These are the same choice of spaces done in Section 5.3 for the time-independent
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V W Vh Variables

H̊(R) L2(R) P1Λ0 σ, τ

H̊(V) L2(V) P2Λ0 ⊗ V φ, ψ

H̊(curl,V) H−1(div,V) P−1 Λ1 λ, µ

H̊(curl,M) L2(M) P−2 Λ1 ⊗ V u, v
L2(V) L2(V) P−1 Λ2 M,N
L2(M) L2(M) P1Λ2 ⊗ V ρ, ξ

Table 6.1: Spaces used in the formulation.

EB system. Thus, we have

0 P1Λ0 P−1 Λ1 P−1 Λ2

0 P2Λ0 ⊗ V P−2 Λ1 ⊗ V P1Λ2 ⊗ V

grad curl

Π1
h

grad

Π2
h vskw

curl

and impose Dirichlet boundary conditions for the 0-forms, and null tangent component
for the 1-forms. The finite elements are summarized in Table 6.1. As done in Section
5.3, we set S0,h := Π1

hS0 = Π1
hI and S1,h := Π2

hS1 = Π2
h vskw.

The method is then to find

(σh, φh) ∈ C1([0, T ], V 0
h × Ṽ 0

h ),

uh ∈ C1([0, T ], Ṽ 1
h ),

(Mh, ρh) ∈ C1([0, T ], V 2
h × Ṽ 2

h ),

λh ∈ C1([0, T ], V 1
h ),

such that

(σ̇h, τ)− (uh, gradψ)− (λh, grad τ − Shψ) = 0, (τ, ψ) ∈ V 0
h × Ṽ 0

h , (6.5a)

(u̇h, v) + (gradφh, v) + (Mh, Shv) + (ρh, curl v) = (f, v), v ∈ Ṽ 1
h , (6.5b)

(Ṁh, N)− (Shuh, N) = 0, N ∈ V 2
h , (6.5c)

(ρ̇h, ξ)− (curluh, ξ) = 0, ξ ∈ Ṽ 2
h , (6.5d)

(gradσh − Shφh, µ) = 0, µ ∈ V 1
h . (6.5e)

The hypotheses of the abstract framework hold for this method, and so the theory
developed in this chapter thus applies to this particular case.



Chapter 7

Numerical Implementation

The example we consider is gravitational waves in vacuum f = 0. We take the exact
solution on [0, T ] to be

E =


−A+ −A× 0
−A× A+ 0

0 0 0

 sinω(z − t).

We take T = 7.5, ω = 20, A+ = 2, and A× = 1/2, on a unit cube mesh. We use
polynomials of degree r = 1, and, for the time integration, we use the second order
Crank-Nicolson methods. The mass matrices are inverted using CG preconditioned with
Jabcobi; other matrices are inverted with MINRES preconditioned with AMG.

We first implement the EB system as given by equation (4.14) with the vector de
Rham complex, and present the results in Table 7.1 and Figure 7.1. We then implement
a reduced version of this EB system as given in equation (4.15), and display the results in
Table 7.2 and Figure 7.2. This experiment hints to the fact that, for divergence-free initial
conditions, these two formulations might give equal approximations for corresponding E
and B.
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Mesh size Cell count Time step Step count Memory

0.433013 384 0.00833333 900 945
0.216506 3072 0.00589256 1272 1357
0.108253 24576 0.00416667 1800 4613
0.0541266 196608 0.00294628 2545 30417

(a) Code information about each run

Relative Error for E Norm of E Absolute Error for E Rate

375.83% 1.05E+00 3.95E+00
144.69% 1.71E+00 2.47E+00 +0.68
53.43% 1.95E+00 1.04E+00 +1.24
13.89% 2.03E+00 2.82E-01 +1.89

(b) Errors for E

Relative Error for B Norm of B Absolute Error for B Rate

438.13% 9.62E-01 4.22E+00
78.58% 1.72E+00 1.35E+00 +1.64
18.89% 1.96E+00 3.71E-01 +1.87
8.24% 2.03E+00 1.67E-01 +1.15

(c) Errors for B

Table 7.1: Example for the EB system in 3D with Crank-Nicolson integration.
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Figure 7.1: Example for the EB system in 3D with Crank-Nicolson integration on mesh
with 196608 cells.
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Figure 7.2: Example for the EB system in 3D with Crank-Nicolson integration on mesh
with 196608 cells.
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Mesh size Cell count Time step Step count Memory

0.433013 384 0.00833333 900 904
0.216506 3072 0.00589256 1272 1129
0.108253 24576 0.00416667 1800 2910
0.0541266 196608 0.00294628 2545 17071

(a) Code information about each run

Relative Error for E Norm of E Absolute Error for E Rate

375.84% 1.05E+00 3.95E+00
144.68% 1.71E+00 2.47E+00 +0.68
53.42% 1.95E+00 1.04E+00 +1.24
13.90% 2.03E+00 2.82E-01 +1.89

(b) Errors for E

Relative Error for B Norm of B Absolute Error for B Rate

438.13% 9.62E-01 4.22E+00
78.58% 1.72E+00 1.35E+00 +1.64
18.88% 1.96E+00 3.71E-01 +1.87
8.24% 2.03E+00 1.67E-01 +1.15

(c) Errors for B

Table 7.2: Example for the reduced EB system in 3D with Crank-Nicolson integration.
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(d) Skew part of E.

Figure 7.3: Example for the EB system in 3D with Crank-Nicolson integration on mesh
with 196608 cells.
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Figure 7.4: Example for the reduced EB system in 3D with Crank-Nicolson integration
on mesh with 196608 cells.
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