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Abstract

Title of Dissertation: The Single Layer Heat Potential and Galerkin
Boundary Element Methods for the Heat Equation

Patrick James Noon, Doctor of Philosophy, 1988.

Dissertation directed by: Douglas N. Arnold, Associate Professor, Applied
Mathematics Department.

We study Galerkin boundary element discretizations of the single layer heat
potential operator equation

¢
Kiq:= / / K(z —y,t —t)q(y,t")dydt' = F(x,1), rel,t>0, (0.1
o Jr
where K denotes the fundamental solution

exp(—|x|*/4t)
K(z,t) = (4rt)3/?
0 reR? t<0

reR? t>0

We first formulate a well-posedness theory for (0.1) and show that for each
F in the anisotropic Sobolev space H'/2'/4(T"|R, ), there exists a unique
solution ¢ in its dual space H~'/%~'/4(I', R, ) which depends continuously
on the data in the sense that

HQHH—l/2v—1/4(F,R+) < CHFHH1/271/4(F,R+)'

Moreover, we show that Ky satisfies a coercivity estimate

Re (¢,K1q) > chH?if—l/2v—1/4(F,R+)'

We next develop a regularity theory for the mapping Ky and show that K4
(in the scale of anisotropic Sobolev spaces H™*(I', R, ) for r,s > 0) may be
regarded as an operator which increases regularity by one spatial derivative
and one-half time derivative. These results provide a basis for our
subsequent analysis of a class of Galerkin discretizations methods based on
test and trial spaces of piecewise polynomials. We show optimal
convergence in the energy norm H~'/%~1/4(I',R,) and investigate the rate
of convergence in L*(I" x Ry ). Finally, to test our conclusions, we present
numerical examples.



1 Introduction

The classical method of boundary integral equations uses specifically de-
fined solutions called layered potentials and reduces the given boundary value
problem into an integral equation of the second kind. Thus, a double layer
potential is used to treat Dirichlet problems, whereas a single layer poten-
tial is used to solve Neumann problems. The overwhelming reason for these
selections is the well known results on the unique solvability of second kind
integral equations. Besides being well posed in a variety of spaces, second
kind integral equations are often well suited, (in regards to both implemen-
tation and analysis), to various approximate methods such as Galerkin or
collocation type methods.

Although the layered potential approach is more commonly associated
with elliptic problems, it also has a long history in the study of parabolic
boundary value problems. Holmgren [21] initially introduced the heat po-
tentials in two variables (i.e., one time and one space variable) and used
them to show the solvability of the heat equation. Gevrey [18] subsequently
extended the argument to more general parabolic problems of two variables.
Generalizations to problems in several space dimensions were slow to appear
since the kernel of the second kind Volterra integral equation which arises was
not fully understood. Pogorzelski [35, 36, 37, 38] showed the basic solvabil-
ity of this integral equation in arbitrarily many space dimension on smooth
manifolds. His arguments helped to establish the basic well-posedness of a
wide variety of parabolic problems.

Currently, the application of boundary element methods to parabolic
problems is being actively considered. Essentially, boundary element meth-
ods refer to numerical solutions of the integral equations encountered in the
layered potential method. In contrast to the classical approach, however,
the integral equation typically used for numerical purposes is the so called
direct integral equation of heat conduction. In the case of problems with
Dirichlet boundary conditions, this equation results in a first kind Volterra
integral equation. Though this approach is often used in practice [8], [12],
[26], [42], [43], the basic convergence theory behind it has yet to be given.
In this paper, we analyze the direct integral equation method applied to an
initial-Dirichlet boundary value problem for the heat equation.

We start by recalling the direct integral equation. Let w(x,t) solve the



initial-Dirichlet boundary value problem

g—?(x,t) — Au(z,t) = 0, reQ, t>0, (1.1)
we0) = f@).  eeo, (12)
u(z,t) = gla,t), zel,t>0, (1.3)

where  denotes a bounded, open set in R?. Set K(z,1) equal to the funda-
mental solution to the heat equation, i.e.,

exp(—|z|*/4t) 5

0 reR’ t<0

Then, a simple application of Green’s theorem (see [34, pp. 42-43]) shows
that the solution u to (1.1-1.3) must satisfy the integral equation

¢ e 7 a u 7 a [X7 7 7 7
ot = [ |5t =05 ) = S = gt = Ot

+ / Ko — a0 f(2)de', e Qt>0, (1.4)
Q

where I' denotes the boundary of Q and n, the unit outward normal derivative
to I' at y. We will assume that I' is a smooth C? surface. Observe how the
direct integral equation (1.4) relates u throughout © x Ry to its initial and
boundary data.

The first term of (1.4), (where we have set ¢ = du/dn,)

t
U (1) ::/0 /FK(J; oyt — gy, )dydt', € RA\D, t>0, (L5)

is called the single layer heat potential with density ¢. Similarly, the second
term of (1.4)

t a[’
Us(a, 1) ::/0 /F Yo =yt — gly, Odydt’, xR\, 1>0 (1.6)

on,

is the double layer heat potential with density ¢g. Assuming that ¢ and ¢
are continuous on I' x R, , each of these potentials defines a C'* function on
x € R°\I" and ¢ > 0 which satisfy the heat equation there and vanish for
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t = 0. They also satisfy jump conditions (cf., [17, p. 137]) similar to those
satisfied by the corresponding single and double layer electrostatic potentials.
As 2o € R’\T tends non-tangentially to = € I', we have

thHxUl(l'o,t) == Ul(l',t), (17)
8U1 8[& P P P
Jim 5w 1) = £ gl 1)+ [ S (2 = vt = gl ) dydt (18)
al’ ! ! !
gglolgn Us(xo,t) = ZF g x, 1) —I—/ /F (x —y,t — gy, t)dydt'.  (1.9)

In these equations, the upper sign holds When the limit is approached from
the interior while the lower sign holds when the limit is approached from the
exterior.

Letting @ in (1.4) tend to the boundary I', the jump conditions yield the
boundary integral equation

a[] ! ! !
goe.t) = [ 1K=t = e’ t) = S5 = gt = Vgl 0)dye
+ /K(:z;—:z;’,t)f(:z;’)d:z;’, e, ¢>0. (1.10)

Q

This is a first kind Volterra integral equation for the unknown Neumann data

¢ = du/dn of the form
Kiq = /Ot/FK(:z;—y,t—t’)q(y,t’)dydt’ _ P(e,l), @€l 1>0, (L)
where
F(x,t) = =g(x,t +/ / ah —t"g(y, t")dydt
—/Q[x:z;—:z;,t (x)d:z;, (z,t) €T x R,.

Conversely, if we were studying the Neumann (or Robin) boundary value
problem, (1.4) would result in a second kind Volterra integral equation for
the unknown Dirichlet data u. For example, the form of this equation for
the Neumann problem would be

1
§u(:1;,t) + Kou(x,t) = F(x,1), el t>0 (1.12)



where F'(x,t) is known and where Ky denotes the integral operator

oK
Kap(a,t) / / 5 X —y,t —t")p(y, t")dydt’, rel,t>0. (1.13)
ny
The theory of (1.12) is well developed. Assuming that I' is a C'? surface,
Pogorzelski [36] showed that the kernel of (1.13) satisfies the estimate

K
|6_&(x ] < C ™ #|z|7"? for all pu € (1/2,1), (1.14)

n,
and is therefore weakly singular. From (1.14), it follows that Ky has norm
less than 1 on C(I" x (0,7T)) for T sufficiently small. Thus, I + K3 is invert-
ible for sufficiently small T'. Since K is of convolution type, however, the
existence of (I + K3)™' on C(I' x [0,T]) for any finite value of T' is easy to
show by successively considering I + Ky over subintervals of small length.
The same reasoning applies to I + Ky on L*(T' x (0,7)). In [37], Pogorzel-
ski showed that Ky defines a compact mapping on the space of continuous
functions. The compactness of the operator K is relevant to the study of
numerical discretizations. In particular, the convergence of a broad class of
methods known as projection methods (which include Galerkin and colloca-
tion methods) is assured when applied to operators of the form I + K with
K compact. More recent treatments of (1.12) have focused on the case of
unsmooth boundaries. Though K3 no longer remains compact, the basic solv-
ability of this equation holds in a wide variety of function spaces. For more
details, see [14], [27]. A treatment of the numerical solution of this equation
has been given in some generality by Costabel, Wendland and Onishi [10].

The theory of equation (1.11), however, is less straightforward then that
of (1.12). Indeed, until the recent work of Brown [7], even the basic well
posedness of this equation had not been addressed. Our first goal is to es-
tablish the well-posedness of (1.11) in such a way to provide a basis for the
subsequent analysis of discretizations. We do this by giving a variational
interpretation of (1.11), extending to the parabolic setting the argument of
Nedelec and Planchard [28] who treated the electrostatic single layer poten-
tial in this fashion. The main advantage of this viewpoint is that Galerkin
discretizations methods may then be analyzed by standard techniques.

To explain our results, we briefly summarize the argument in [28]. Let

Wl(RB) denote the closure of D(RS) in the norm
9l @ey = IVl 122, ¢ € D(R?).
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The inner product
(1, V) ) = /R Vu(e)Vo(e)de, (1.15)

induces a Hilbert space structure on W(R?). Even though W'(R?) is not
included in L*(R?), we have the dense inclusions

D(R®) c H'(R?) ¢ WHR?).

Consequently, the dual (W(R?))* of W(RR?) is identifiable with a subset of
distributions strictly contained in H~!(R?). As is customary, we denote this
space by WH(R?).

The space W!(RR?) is introduced because the natural isomorphism from
WY(R?) onto W~1(RR?) defined by the inner product (1.15) clearly extends
the distributional definition of the (negative) Laplacian operator —A. This
explains why the space W!(R?) has been well studied. Based on Sobolev’s
inequality [13],

HQHLG(RS) S CHVGHL2(R3)7 fOf ELH 0 - D(RS),

it follows that W'(IR?) is identical (algebraically and topologically) to the
subset of L(R?) functions whose gradients belong to L?(R?). Moreover, the
weighted L? estimate,

L lalu(@)fde < ClVulfagey,  we WHRT), (116)

shown by Hardy’s inequality, shows that W(R?) is a space of locally inte-
grable functions which differs from the space H'(R?) solely in its permitted
behavior at infinity. Consequently, the trace operator ~ of restriction from
R? to I' extends to a surjection of W'(R?) onto H'/*(I'). These facts enable
one to show that the operator K = v o (—=A)™ o v* defines an isomorphism

of H_I/Q(F) onto HI/Q(F). It remained for Nedelec and Planchard to show
that K extends the classical single layer potential

L [ qly)dy

= — R? D(R?).
ey "ER. g€ (R”)

Kq(z)




For our treatment, it will be necessary to work in the setting of the
anisotropic Sobolev spaces (cf., [25, Chapter 4] ). For all non-negative real
numbers r and s, we use H"* to denote the Hilbert spaces

H™ = LQ(R, HT(RS)) N H*(R, LQ(RS)),
with associated norm

[Jl[Frs = HUH%%R,HT(RS)) + HUH%IS(R,L%RS))‘
Analogously, let H™*(I', R} ) denote the Hilbert space
H7’75(F7 R-I—) = Lz(R-I-v HT(F)) N HS(R-H Lz(r))v (117)

with
e gy = Nl ey mryy + Nl po -

The utility of these anisotropic Sobolev spaces in treating the heat equa-
tion is evident in the discussion in [25, Chapter 4] and the recent work of
[6]. Accordingly, there is a well developed theory of the trace operator on
these spaces. Letting v denote an extension of the restriction operator from
functions on R? x R to functions on I' x R, the results in [25, Theorem 2.1,
p. 11] imply that v4 extends to a bounded, linear operator of H™* onto
Hr=Y/20=12s/7(D Ry ) for all » > 1/2 and any s > 0. We give a complete
review of this trace theorem in section 2 since we also require an important
additional trace result which shows that v4 even maps the smaller Sobolev
space

2 13y, JU 2 —1 /3
V ={u(x,t) € L*(R, H(R”)): E(%t) € L*(R,H(R”))},
onto HY*Y4T R,).

In section 3, we define spaces of functions over R x R which are analo-
gous to the space W(R?) and establish the mapping properties of the heat
operator on them. In section 4 we prove a major result of this paper. We
show that the single layer heat potential operator Ky extends from smooth
functions to an isomorphism of H_l/z’_l/‘l(F, R ) isomorphically onto its dual
HY?Y4T R,). Furthermore, we show that K, satisfies the coercivity esti-
mate

(¢, K1q) = CHQHJZLI—l/z—l/‘l(F,RJ,)'
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It is remarkable that the single layer heat potential satisfies such a coer-
civity estimate. This kind of estimate is more typical of elliptic operators
and it does not hold for the heat operator. Besides being of theoretical in-
terest, this coercivity has immediate applications to the study of Galerkin
discretization methods which are known to be quasioptimal when applied to
coercive operators.

Before discussing the Galerkin methods, we consider the regularity of the
mapping K. Letting (s € R),

X5 Ry) = {ue H**(I',Ry): U € H*** such that
U=wu(ae)t>0,U=0(ae)t <0},

we show that Ki: X562_1/4(F,R+) — X562+1/4(F,R+) is an isomorphism
for all non-negative r. The case r = 1/2 of these results agrees with the
results of R. Brown [7] who showed (by very different methods) that Ky is
an isomorphism of L?(I' x Ry) onto H“'/*(T',R,) for any Lipschitz surface
I'. This discussion is contained in section 5.

In section 6 and section 7, we discuss the implementation and error anal-
ysis for a Galerkin discretization of (1.11). We study the Galerkin method
since a complete error analysis for the method may be given. The error anal-
ysis shows that if the different mesh sizes in time and space concurrently
decrease in a appropriate way, the Galerkin method converges with optimal
order in L*(T'xR,). To test this and other claims, we present some numerical
examples in section 8.



2 The Anisotropic Sobolev Spaces: Trace
Theory

In this section, we review the definition and theory of the anisotropic Sobolev
spaces. In section 2.1, we recall the definitions of the spaces over R x R. The
remaining sections focus on the mapping properties of the trace operator.

2.1 Preliminaries and the Time Restriction Operator

As noted in the introduction, the anisotropic Sobolev spaces H™® are defined
for all r,s > 0 by

H™ = L*(R, H'(R*)) N H*(R, L*(R?)).

Norms over H™* may be defined using Fourier transforms in space and time.
We will denote this operator by F,; and will assume that it is defined on
smooth functions u € S(R® x R) by

Foplu) = /_OO /RS u(z,t)e” e T dadt, (&,7) € R® x R,

and extended to S’(R* x R) by Parseval’s theorem. In terms of the Fourier
transform, an equivalent norm on H™® is given by

o= [ L0+ 1Ey + 0 Y] 1 (0 () g, (2)

[l

The continuous inclusions
D(RS X R) - LQ(RS X R)) - H™5 C Hr2’52, 0 S 1 S T2, 0 S S1 S S92,

are dense. Once and for all, we note the existence of positive constants ¢, s
and C, ; such that

Grs(LH P+ 172) < {(L+ €3 + L+ 7)) < CoalL+ €1 + 1712,

for all r,s > 0.

In this paper, it will be convenient to consider the spaces H™* as being

complex valued. Thus, the appropriate definition of the spaces H™"7* is as



the antidual space to H™*. That is, the space of continuous, antilinear forms.
(An antilinear form means a mapping f: H"™* — C which satisfies

FAquy 4 Aguy) = A_lf(%) —I')\_Qf(u?)v ur,ug € H™* Ay, Ay € C)

It is not hard to show that the spaces H™"~% so obtained are equivalent to
the sum space

H™7 = LQ(R, H_T(RS)) + H*(R, LQ(RS)),
with the sum norm

1f]1? = f:iﬁlfrfz (Hfl”i?(R,H—l(RS) + Hf2H1211—1/2(R,L2(R3))) : fe H 2.

They are also equivalent to the set of locally integrable functions f for which

,7)[? i
(// dgdr) ,
R® 1+|§|+|r|5/7°>
is finite.

With r > 0 arbitrarily fixed and s € (0,1), an equivalent norm on H™* is
given by

e e I =
2. _/ e ces) t—l—/ / e 1t (2.2)

For larger values of s, let m equal the integer part of s and set 0 = s — m.
Then, the expression

s (2.3)

defines an equivalent norm on H"*. Based on (2.2-2.3), a natural definition
of the spaces H"*(R® R, ) for s € (0,1) is made using the norm

bewan = [ GOl

HT(RS)dt
Hu ( )HL2 (R?)
/ / t/|1+2cr ) dtdt’.

&y e 4 [[u™]

e = |lul

[l




Similarly, for higher values of s, one can define the spaces H"*(R* R) by the

norms

[l

2
H™ (R R)*

Using (2.2-2.3), it is simple to check that the restriction of U € H™*® to
the set R® x Ry belongs to H™*(R?, R, ) for any r,s > 0. It is well known
that this restriction operator actually maps H™*(R? R) onto H™*(R* R,)
for all r,s > 0. This follows from the existence of an extension operator
which simultaneously extends H™*(R?, R ) to H™* for all r,s > 0. For many
purposes, such as ours, this weaker result suffices.

iITvS(RS,R_F) = lul JQLITv"(RS,R+) +ut

Lemma 2.1 For each positive integer M, there exists an extension operator
En which depends on M such that

Ey: H(R*Ry) — H™  for all s€[0,M], anyr >0,
with Eyru(z,t) = u(x,t) for almost all (v,t) € R® x Ry.
Remark: A standard choice for Fj; is the operator

_ [ a0, v R’ 1>0,
EMu(x7t) - { Z;n:O a]u(x7 —]t)7 T € R?), t < 07

where the coefficients «; are chosen to satisfy
S(=)faj=1 0<k<m-—1

J=1

There are two important subspaces of H™*(R?, R,) we will need to use.
One is the subspace Hy*(R?, R ) which is defined as the closure of D(R?, R,)
in the H*(R* R, ) norm. For all s > 1/2, this is a strictly proper sub-
space of H™* (R’ R;). For s € [0,1/2], however, this space coincides with
H™*(R?,R;). (The case s = 1/2 is a non-trivial result which is proven in
21])

The other subspace we need is the space Hpyy(R? R.). This space is
defined to be the space of functions u such that there exists some function
U € H™*(R? R) which agrees with u for all t > 0 and vanishes for all ¢ < 0.
It is a Hilbert space when given the norm

[l

ot ) = W10l

10



where the infimum is taken over all such U’s. Although the definition of this
space is different than the definition of the space Hy*(R? R,), it turns out
that these two spaces coincide for all r,s > 0 except for the s values which
satisfy s = m + 1/2 with m € N. For these special values of s, the space
Hgbm+1/2(R3, R, ) is a strictly proper subspace of Hg’m+1/2(R3, Ry).
Remark: Tt is customary to define the spaces Hpy (R, Ry) only for s —1/2 €
N, since they agree with Hy*(R® R, ) otherwise. In this paper, however, it
is natural to define Hyy for all r,s > 0 since they are the proper setting for
the regularity theory in section 5.

The negative indexed Sobolev spaces H™"~*(R* R, ) are defined as the
antidual spaces to Hj*(R® R, ) with corresponding norm

4,9
HQHH—h—S(RSR_I_) = su #
9€H" (I R+) gl zrsrry)

Again, these spaces can be shown to be equivalent to the sum spaces
Hr = 2Ry, H™ (RY) + H™ (R, LA(RY)),
with the sum norm

WP = it (e mmrey + 1 ey o)
It is important to note that H~"7*(I',Ry) is not the antidual space of
H™(R?, R,) for all s > 1/2.

Clearly, the spaces H™*(R>,R;) and Hyy(R?, Ry) are intimately con-
nected with the time restriction operator R, and the zero extension operator
Z4. (That is,

| u(x,t), 2R’ >0,
Zyule,t) = { 0, zcR% (<0

By definition, each of the mappings Ry: H™ — H™*(R’ R,) and Z,:
Hyy (T Ry) — H™® are bounded for all r;s > 0. Both of these operators
can be extended into the dual spaces. To extend Z,, consider the adjoint
mapping 2} : (H™*(R®,Ry))* — H~"7*. For all f € H~"7%, this map is
defined by

(RLfU) =(f,RRU) forall UeH"™.

11



Thus, for f € L*(R? x R), we have
(R f,U) :/OO/ Fla, )0z, Odadt, forall U e H™,
0o JR®

which agrees with the zero extension of f. Analogously, the adjoint operator
77 extends the restriction operator Ry. The equality of Hy*(R?,R,) with
Hyy(R? Ry for all 7,5 > 0 such that s —1/2 ¢ N shows that R,: H™"7% —
H™*(R?,R,) is bounded for these values. For easy reference, we summarize
the mapping properties of these operators in a lemma.

Lemma 2.2 Let Ry : D(R® x R) — C>*(R® x Ry) denote the restriction
operator in time. Then, Ry extends to a bounded linear mappings of

H™(R*>,R) — H™*(R>,R,) forall r,s >0,
H™*(R*R) — H"*(R*,Ry) forall r,s >0, such that s —1/2 ¢ N.

Analogously, let Z,: D(R® x Ry) — D(R® x R) denote the operator of ex-
tension by zero to t < 0. Then, Z, extends to a bounded linear mapping
of

Hyy(RPRy) — H™, forall r,s>0.

We will also use anisotropic Sobolev spaces defined over other spatial
regions besides R®. For any r,s > 0 and any open set O € R®, the spaces
H™*(O,R) can be defined as the space of restrictions to O x R of H"*. The

corresponding norm of this space is

[ull s (0,r) = inf || U] rrme,

where the infimum is taken over all U € H™* which agree with v on O x R.
Equivalently, these are the spaces

H™*(0,R) = LX(R, H'(0)) N H*(R, L2(0)).

In this paper, the set O shall either be a bounded set in R®, which we
shall denote by €2, or the complement of such a set, which we will denote by
Q°. In addition to H™*(O,R), we introduce the space Hy*(O x R) which is
defined as the closure of D(O x R) in the H"*(O,R) norm. Many properties
are known about both of these spaces. For example, we have

HP(O xR)= H*(0O xR), 0<rs<1/2,

12



with Hy?(2 x R) strictly included in H™*(O x R) otherwise. A complete
discussion of these spaces can be found in [25, Chapter 4]. For our purposes,
it will be sufficient to simply state what else we need at the appropriate time.

13



2.2 Definition of the Trace Operator

In the next two sections, we will discuss the theory of the trace operator on
the anisotropic Sobolev spaces. The trace operator considers an extension
of the restriction operator from functions on R® x R to functions on I' x R.
Although this operator is well understood [25, Chapter 4], we will present its
theory in detail. Mostly, this is because we need to develop some facts which
are not discussed in [25]. In this section, we describe the way in which the
trace operator is defined through regularization and localization.

To simplify the exposition, we assume throughout that () refers to a
bounded, open set in R® whose boundary I' is an infinitely differentiable
manifold of dimension two and that ) lies to one side of I'. This stringent
assumption on the smoothness of I' allows us to discuss the trace mapping
on the spaces H"*(R> R) for all positive values of r. The weaker assumption
that ' is a C**! surface for integer & > 1 would suffice to discuss the trace
mapping for all » < k. Even this assumption on I' could be weakened, but
we will not discuss this matter here. Throughout this section, r and s denote
non-negative real numbers with r > 1/2. We set

A=r—1/2 and p= i(7“—1/2).
r

The smoothness assumptions on I imply that there exists a finite covering
of © by bounded, open sets Oy thru Oy, such that for each integer j between
1 and M, there is a ' diffeomorphisms ¢; mapping

O] onto Y = {(y17y27y3):|yi| < 17 1= 17273}7
O]mQ onto Y—I— :{(y17y27y3):|yi| < 17 1= 1727 0<y3< 1}7
O; NI onto Yo={yeY :y; =0}
Furthermore, there exists an open subset O with closure contained in €2 such

that the sets Oy, Oy, ..., Oxr cover of Q. For each 7, we let 1; equal the inverse
mappings of ¢; and for notational convenience introduce the operators

Vi(w) (x,t) = w(p;(x),t) we H?(Y,R), (2.4)
qb; (u) (yvt) = u(%(y),t), (S HT7S(OJ7R)' (25)
We have
05 (w0)|lzre 0, < CQ)||w][revp), (2.6)
|95 (u)larevry < C()|ullmrso;r):- (2.7)



We now introduce a partition of unity subordinate to this covering of
Q. That is, for each j between 0 and M, we let (;(z) € D(R®) denote a

non-negative function which is supported in O; such that

M
Z:Q(J})Zl, J?EQ.

Details on the construction of these functions may be found in [16, pp. 19-
20]. Since we will need it shortly, we point out here that we can assume
without loss of generality that the square root (}/2 of each of these functions
also belongs to D(0;). ( If not, we define a new class of functions as the
squares of the original ones and then normalize them.) We then set

M
(i) =1 - ij(l')a z € R,

to arrive at a partition of unity {Q}jj\i}';l of R®. Using these functions, we
can write any u € H™*(R* R) as

M+1

u(x,t) = Z_: Ci(a)u(x,t), (z,t) € R? x R. (2.8)

Note that the @ support of (ay1()u(x,t) is disjoint from €, while the x
support of (o(x)u(x,t) has closure contained in 2. Thus, these two functions
vanish in a x neighborhood of I'. Introducing the maps ¥ and ¢ into (2.8)
leads to the equality

ww>=gmwww+;@@m@MWw
+ Cupr(@)u(a,t), (x,t) € R? x R. (2.9)

Equation (2.9) is the basis of localization. To formalize this process, let
W denote the product Hilbert space

M
W= Hy*(Q.R) x [] Hy(Y.R) x Hy*(Q°.R),

i=1
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with associated norm

M
105 = lwollfsamy + D llwsllirsvm)
7=1
+ HwM-I-lllztlrvS(Qc,R)v (wovwlv"'va-l-l) ew.

Now, define T: H™*(R?,R) to W by

Tu = (Cou, ¢1(Cru), - Prr(Cmu), Curyrn). (2.10)

Clearly, T' maps H"*(R® R) boundedly into W. A left inverse to T is given
by the mapping

M
v(wo,wy, ..., warg1) = wolw,1) + Zﬂb;(wj)(l'vt)

7=1
+ waryr(x, 1), (z,t) € R? x R.

Since

[l

HT,S(RSJR) — Hl/Tu’ HT,S(RSJR) S C(Q)HTUHW7 (211)

T defines an isomorphism between H™*(R* R) and its range R(T') which is
a closed subspace of W. Note that v is not a right inverse of T'.

Of course, before the trace map can be defined, we must define the Sobolev
spaces H™*(I',R). For each integer j between 1 and M, we let O; = O, N T,
and set

Gla)=¢lx),  =€0;
Note that Oy, Oy, ..., Oy cover I' and that 51, e (vM are a partition of
unity subordinate to this cover. Again, we introduce the operators

¢; (9)(z, 1) = g(¢(x),1), g € D(Yo x R),
o5 () (y, 1) = v(iy),t),  veDO;xR).

The product mapping T” defined by
T = ((Cw), - (D3, (Cur)

embeds smooth functions v into a product space, say &, of functions which
are defined over R* x R. The mapping v/ given by

M
V/(917927"'79M):Z¢;(gj)(xvt)v (xvt)EFXRv
7=1
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is a left inverse of T’. The norm

M
HU’%ITVS(FR Z_:Hﬁb ( )

induces a Hilbert space structure on functions defined over I' x R. It is well
known (see [44, Chapter 25]) that all choices of covering sets and partitions

7¢(R2,R)"

of unity lead to equivalent norms.

Let R3 denote the operator of restriction from functions defined on (y', ys,t) €
R’ x R to ones defined on (y',¢) € R* x R. We also view R3 as an operator
from W to G by

Rg(wo, Wy, W,y ... ,UJM_|_1) == (ngl, ngg, ceey RgU)M)
The trace operator v is then defined for u € H™*(R?,R) by
yu = V' RyTu.

By construction, ~ agrees with the restriction operator when applied
to smooth functions. Given that the operator Rz maps H™*(R’ R) into
HM(R? R), it follows by definition that v maps H"*(R?, R) into H™*(T', R).
Similarly, if Rz maps H"*(R? R) onto H**(R? R), then v maps H"*(R’ R)
onto HM*(T',R). We elaborate on this and show how to extend a given
v € HM(T,R) — u € H™*(R? R) such that yu = v.

Let v € HM(T,R) be given and assume that E is a right inverse to Rs.
Then, by definition, the function ¢, (énv) (y,t) belongs to HY*(R* R) for
each integer m between 1 and M. Using the extension operator F, consider

the following function in H™*(R> R):
(1) = 97 (05, (G E (0, (/)] (@.),  (2,8) €R® xR (2.12)

Expanding this definition out, one can check that u,, € H™*(R? R) and has
x support in O,, x R. Its trace on I' is

Vg (2, 1) = G () ()0 (2, 1), (z,t) € I x R.

Using the linearity of the trace operator and the fact that the functions 5m(:1;)
are a partition of unity with respect to I', it follows that the function

w(w,t) =D up(a,t), (r,t) € R> xR

m=1

17



belongs to H™*(R?,R) and satisfies yu = v.
Remark: Higher order trace operators v(®) for integer values of k are defined
by

ak

®y = ' Ry——T keZ
YWu = 38y§ u, € Zy,
where one views d/0ys as the operator from W to G defined by
8 ( ) (8w1 8wM )
—(wop, . .., war, W = e .
0, s WMy WAM+H1 ay3 9 ” ayS )

ay:a

These operators extend the classical definition of the derivatives 9%u/d*n
with respect to the surface normal direction n.

2.3 Mapping Properties of the Trace Operator

The discussion in section 2.2 shows how the properties of the trace operator
may be reduced to studying the restriction operator K3 which maps functions
w(y', ys, 1) defined on

{y = (ylvy?)) € RS: y/ S sz Yys € R}v
to functions w(y’,0,t) defined on
{y=(y,0) cR* ¢ e R"'}.

Throughout this subsection, we write y € R? as y = (y/,y3) where y’ € R
and y3 € R. We shall use £ = (¢/,&) to denote the corresponding Fourier
transform variables to (y',ys3). We set

A=r—1/2 and /,L:i)\.
r

Theorem 2.3 The operator Rs maps HT’S(REI)’_,R) onto HV(Ry,R) for all
r > 1/2, s > 0. Hence, the trace operator v maps H™*(R> R,) onto
HM(T,R, ).

Proof: It suffices to prove the claim about Rs. Let w(¢',&s,7) denote the
Fourier transform of w. The basic relationship between w and its traces is
given by

Fralyw) (€)= [~ (€ &) (213)

18



Taking absolute values in (2.13) and applying the Cauchy-Schwartz inequal-

ity, we get

Fretoe b < ([ ;Zj)(/iﬂ&&ﬁwﬂﬁéﬁﬁfgb
2.14

where

k(€ &, m) =14 €1 + &7 +|7]>.

To bound the first integral of (2.14), we change variables of integration
by letting & = (14 |€']*" + |7]**)"/* 5. We find that

©o dés /12 25\~ /Oo do
R < 1 T S S
Lmu&&n>—(+”"””) o Tior

Since 2r > 1, the integral over o is finite and thus (2.14) becomes the in-
equality

r S A/T’
(L I+ 172) 1 F e () (€ < € [ (L Gl o, 7) e
Recalling the definition of p, it follows by redefining the constant ' that

(L4 I+ 1712) e (o) (€ E S © [ (€ o m bl 7).

Integrating this inequality over £ and 7 and noting that

L] ke

we get

W(E', &, 7)PdEsde dr < C(r, s)||w]|Fre, w e H™,

H’YWHHW(R2,R) < C(r, s)||wl] H™s(R? R)* (2.15)

Equation (2.15) shows that v extends to bounded, linear mapping of
H™(R?,R) into HY*(R?* R). To show that it maps onto H *(R* R), we
construct an extension mapping. Let p(o) € D(R) be a non-negative function

/OO plo)do = 1.

— 00

which satisfies
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Given g € HM(R"™',R), let § equal its Fourier transform in space and time.

Now, define U by

U = F oy ot (U) (5/7 &3, T) = P(§3/W(§/7 T))7 (2'16)

where
Wg, )= (1L+ g1 +1r17).
Since

L [ + |7 < Cra [(W(E, 7)™ + |&al]

a simple calculation shows that

[+ PO )P < Clate WL TP (27)

Integrating (2.17) over (¢, 7), we get
1U]

H™s(R? R) < Cr,ngHHw(r,R)-
Since -

| U g mydes = (7).
it follows from (2.13) that vU = ¢. [

Remark: The proof above extends to consider the higher order trace operators
~y®). The mappings v#: H™*(R* R) — H'*0=R/"(R? R) are bounded
and surjective for all s > 0 and r — k > 1/2. See [25, Theorem 2.1] for more
details.

Recall the Sobolev space

V = {u(x,t) € L*(R, H(R?)): 2_1;

The norm on this space can be given in terms of Fourier transforms by

(14 [P + |72 .
lelit = [~ [ )

As noted before, we have the dense inclusion

(x,t) € L*(R, H"Y(R?))}.

a(&, 7)|Pdédr. (2.18)

vV C HYY3(R®R).
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Thus, functions u(x,t) € V admit a trace yu in the space H/*'/4(I',R). We
conclude this section by showing that v maps V onto H'/2'/4(I'|R).

We will do this by constructing an operator of extension. We work first in
the local coordinates (y', y3) and show the existence of an extension operator

Es: HY2Y4R* R) — V such that
Esg(y,0,0) = g(y', 1), g€ H//R2R).
To construct such an operator, we need a lemma.

Lemma 2.4 Let
14 ¢

(L4 [€12)% + >

Then, there exists positive constants Cy and Cy such that

k(glv 537 7—) =

C(t+IeP+1n) " < [Tk 6 e < 0 (1L IER +1r)
(2.19)
Proof: By the arithmetic-geometric mean inequality,
1+ (¢ 1+ ¢
< k(¢ 6,7) <2 : 2.20
(R (e

Thus, it suffices to estimate the integral

S
— d 3.
e

We first rewrite [ as

_ n2y [ d&s
L= 0 | R

©o |§3|2
d 3.
+ e

In each integral, let

= (1417 +17) "o
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This leads to

(L g2 |7 oo (14 02)7
|)—1/2 00 o
— 00 (1 —|— 0'2)2

1+1¢? /OO do

2

+ (L+1EP+1r do.

Setting
2

o do o o
01:/_00 7(1+0—2)2 and CQ:/_OO 7(1+0—2)2d07
(2.21) shows that

Co (1417 + 1))

as desired. []
We now construct the operator Fs. Let

B = [ ke &g,

By lemma 2.4, we have
Cy S RE )L+ [P+ [7)V? < Co
For any g € HY?Y4R? R), we let

k‘lg,T ’
Foranel B (€.67) = SEE (o) (€,

By construction, we have
[ Fns (Bg) (€ 60,71 = o (9 (€17).
and thus yE3g = g. To show that F3g € V', we note that

|fy'7y3775 (E?)g) (5/75377—”2 _ k§§/7§377—)
k(§/7§377—) kz(flﬂ—)

22

2 —1/2
<I(CtC) (14 1P+ 1)

|‘7:y’,t (g) (5/7 7—)|2d§3-

(2.21)



Thus, integrating both sides over 5 and using the definition of k(§/7 T), we
get

< [y (£59) (5/75377)|2d = ~ M , " H*d
/_OO k(§/7§377—) 53 /_OO ]%2(5/77_) |fy,t(g)(§, )| 53

Fya (9) (€7
HE7)

1
< LA EP + ) F e () (€

Integrating this equation over £ and 7 immediately leads to

Bl = [ [ ] il d d'd
[ £39]lv - k(€' 537 {adE dr
< Cllgllzrens@ gy (2.22)

We now use the operator E3 to prove our claim on general surfaces I'.
Let v € H'/*'Y4(I',R) be given and consider the function

(i, 1) = 0, [65. (O Es( 8, (G0))] . (2,) €RP xR,

To show that u,, € V, we compute its L(R® x R) inner product with any
0 € D(R® x R). We have

(Um,0) = /_Oo /RS U (2, 1)0(2, t)dzdl (2.23)
= [ ) B (G0 () (9100 ) Dyt

where J(¢,,)(y) denotes the Jacobian of the transformation from O,, to Y.
Now, the mapping of D(R® x R) defined by

(9(1‘,1‘) = C:n/2(¢m(y))J(¢m) (y)0(¢m(y)vt)v

clearly defines a function of (y,t) which belongs to D(Y x R). We set ¥,,(6)
equal to this map and let \ilm(ﬁ) denote the mapping obtained by extending
W, (0) (y,t) by zero to all y € R®. We note a few facts. First, we have the
estimate

195 (0) |2 ey < COONON 2,0 25y (2.24)
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Secondly, by (2.23), we have

(t, 0 j/ j/ G2 (CH70)) W0 (0) (y, )y, (2.25)

Lastly, and most importantly, the mappings W¥,, commute with the time
derivative. That is,

T, (%) = %ﬁ;m ), 0<cDRxR). (2.26)

for each m.
From the preceding considerations, we have these expressions for the dis-
tributional time derivative of w,,(x,1):

o, B 00
<W7 0> - <um7 >

_ _/ / Byl 1/2 )
L L
- / / P (Gl *))

Taking absolute values, we deduce that

Uy, d N
(= BT ) < C(Q)HaEiﬁ(qu(Crln/zv))HL2(H—1(R3))H0HL2(H1(R3))’

which shows that

ez

o (90/01) (y, V)dydt

xi; (0) (y, t)dydt

ez Q>|Q>

m (0) (y, t)dydt.

Uy,

o "
Since we already know that u,,(z,t) belong to L*(R, H*(R?)), we conclude
that u,, € V. Finally, by the linearity of the trace operator, it follows that

t) € L*(R, H™'(R?)).

M
U= Un, (2.27)
m=1

belongs to V' and satisfies yu = v.
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3 Mapping Properties of the Heat Operator

To study the heat operator A = 9/9t — A on functions u(x,t) which are
defined for all (z,t) € R? x R, we require some special spaces of functions.
As we shall show below, these spaces coincide with certain locally anisotropic
Sobolev spaces and are natural generalizations of the types of spaces used by
[13], [20], [28] in their treatments of the Laplace operator over unbounded
regions. In this section, we first address the definition of these spaces and

then establish the mapping properties of the heat operator on them.
For all u € S(R® x R), set

e = [ [ 1€
el = [ [L06F+1)
lely = [ [ (el +17Rie?)

where 4 denotes the Fourier transform of u in space and time. Since the
weight functions in (3.1-3.3) are each locally integrable over R? xR, it follows
that each of these expression is finite for all u € S(R® x R). The estimates

a(g,7)|*dédr, (3.1)

a(¢, 7)*dgdr, (3.2)

a(¢, 7)|*dédr, (3.3)

lullwro < llullyiae < 2lully,  uwe SR xR), (3.4)

are easily derived. We denote by W', WHY2 and V the completions of
S(R? x R) in the respective norms given by (3.1-3.3). Thus we have the
dense continuous inclusions

S(R®*xR) CcV CcWh/2c who,

Our first task is to show that these spaces can be identified with a space
of locally integrable functions. We will show this using the fact that the
norms given by (3.1-3.3) differ from the norms over the anisotropic Sobolev
spaces H'0 HY“/2 and V,

210 = h 1 2
lelifne = [ [+ 1)
lelifine = [ [+ 1€+ 1)

leli = [ [ (Il 4R+ 1))

a(¢, 7)*dgdr, (3.5)

a(¢, 7)|*dédr, (3.6)

(¢, )[dédr, (3.7)
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solely because their weight functions do not contain the constant term 1.
Let W(¢) denote any non-negative function in D(R?) which satisfies 0 <
W(£) <1 for all £ € R? with

1 [¢ <1,
q’(f):{ 0 ¢ >2.

For convenience, set
B, = {£ € R*: €] < 2}.
Given any u € S(R? x R), let 4(¢, 7) denote its Fourier transform. We set
(6, m) = (1 =W(E))a(E, ), 8)
ap(6,m) = WE)a(g,7), 9)
and then define uy(x,t) and uy(x,t) to be the respective inverse Fourier

transforms of 41(&,7) and @2(&, 7). Note that both u; and uy belong to
S(R®? x R) since u € S(R? x R). Moreover,

(3.
(3.

u(x,t) = ur(x,t) + ugx, ), (z,t) € R? x R.

In the next lemma, we establish useful estimates satisfied by the functions
ui(w,t) and wuy(x,t). In stating this lemma, we denote by W1*(R?) the
Banach space

WA (RS) = {8() € L [Vo(2)] € L=(RY)},
with associated norm

0]l ey = sup (10()] + [VO(z)]).

zeR?

Lemma 3.1 For any u € S(R® x R), let ui(x,t) and uy(x,t) be defined as
above. Then,

[utl[me < 2f|ul[wro,
Hu1HH1,1/2 S QHUHW1,1/2, (310)
[[ua][v < 2fulfy,
and
lwallrz@wico@ey < Cllullnie,
lwallmre@re@y < Cllullyiie, (3.11)
|l pe@ey < Clluflv.
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Proof: Since @;(&,7) is zero in a neighborhood of |{] = 0, it is a simple
matter to show (3.10). To show (3.11), we use the fact that the inverse
Fourier transform F,' maps L'(R’) boundedly into L>(R?). Thus, to show
the first estimate of (3.11), it suffices to show

[

Since W(&) has compact support in By and is bounded in absolute value by

)i, )2 gy < Cllulyno. (3.12)

unity, we have

1L+ 1€D (8 )l resy = (L +1E7NIE
< A+

Applying the Cauchy-Schwartz inequality to the right of (3.13), we get

U2(&,7) |21 (By)
ﬁ(f,T) HLl(Bg)‘ (313)

1T+ 1€D (&, Tl ey < 11T+ 17 2o HE1AE 7) llr2 o)

Since |£|72 is locally integrable in R, it follows that

1+ 1ED a2 (6 Tl ey < CI1E

Squaring both sides of this inequality and integrating over 7, we obtain (3.12).
To show the second estimate in (3.11), it suffices to combine (3.12) with

the inequality
[

which follows from the trivial bound

u(é, ) HL2(R3)-

s, 7)oy d < Ol

ﬁQ('vT)HLl(Rg’) < C ﬁ('77—)HL2(R3) for all 7 €& R.
Since

ot
the final estimate of (3.11) is verified by combining (3.12) with

o0
| i
—00

Jus . 5
Fot ( ) (&,7) =iTte(E, T), (&,7) e R° xR,

ins W Esgendr < C [ 1P a7 gy
< Clulp. o
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Based on lemma 3.1, we can now show that each of the completed spaces
WO W2 and ¥V may be identified with a space of locally integrable
functions. Specifically, in the case of W', consider the Banach space

X = H' 4 2R, W (RY)),
with associated norm

lalli = _inf  (luallzo + sl e wes o))

u=u1+

The estimates given in lemma 3.1 immediately show that any sequence {uy}
of functions u;, € S(R* x R) which is a Cauchy sequence in the W'* norm
is also a Cauchy sequence in X. Since X is complete, there exists a unique
u € X which is the limit of the sequence {uy}. It is readily checked that
equivalent Cauchy sequences, i.e., two sequences {uy} and {u}} such that

Jimn e = 0 =0,

define the same v € X. Thus, we can identify W' with a subspace of
X. By similar considerations applied to W"'/? and V, we can make these
identifications:

WI,O C HLO + LQ(R, Wl,OO(R3))7
Wl,l/? C Hl,l/? _I_ LZ(R, WLOO(RS)) N HI/Q(R, LOO(RS)),
V C V4 LAHR,WY(R®) N HY(R, L™(R?)).
We remark that these inclusions are strict. They, however, clearly imply
the next theorem which shows that the spaces W', W'1/2 and V differ from

the anisotropic Sobolev spaces H'°, H''/? and V solely in their permitted
behavior as x tends to infinity.

Theorem 3.2 For any 0 € S(R?), there exists a constant C(0) such that

W0ullme < CO)lullyro, (3.14)
H@uHHl,l/z S C(@)Hunl,uz, (315)
[Oully < CO)lully, (3.16)

for all u € S(R® x R).
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The importance of Theorem 3.2 is that we can immediately extend the
trace operator v to the spaces W'2 and V. Furthermore, we can conclude
the following crucial theorem.

Theorem 3.3 Let v: W42 HY2Y4YT R) denote the trace operator.
Then, v4 = Ryy maps V onto HY/*Y/*4T,R).

Now, the time restriction operator R,: HY*Y4I,R) — HY>Y4T R,)
is onto. Combining this fact with the above theorem gives the following
corollary.

Corollary 3.4 The trace operator vy = Ryy maps V onto H'/*Y4 | R,).

Denote by W™, W=1=12 and V* the respective dual spaces of W',
W'2 and V. These are each spaces of tempered distributions which satisfy
the inclusions

W c w2 c yr C SY(RP x R).

Norms over these spaces may be defined using Fourier transforms as

1o = [ /RS W VEDE sy,

2 _ |f 57
HfHW_lv_l/2 - / /RS |§|2 + | |d§d7—7
2 _ 95 2
Hf’ v* - / /RS |§|4 + | |2 (577—)| dng

The mapping properties of the heat operator A on W2 and W' is the
subject of the next theorem.

Theorem 3.5 The heat operator A extends from S(R® x R) to an isomor-
phism of W2 onto W=H=Y2 and of W'° onto V*. Moreover,

Re (Au,u) = |Jull}yio  for all uwe WHY2, (3.17)
Proof: The theorem is an easy consequence of the equality
Foa(Au) = (it +[E[)a(,7),  ue SR xR),

and the density of S(R® x R) in these spaces. []
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We now give an an alternative proof of the isomorphism of A: W''/2 —
W12 We do so because this method of proof extends to Dirichlet prob-
lems, which we address in section 4. For all u,v € S(R® x R), let

B(u,v) = /_Z /R %(m,t)v(x,t)—I—Vu(x,t)Vv(:z;,t)d:z;dt, (3.18)
where the bar denotes complex conjugation. By Parseval’s theorem,

Bluw) = [ [ ira(e. )A€ + [P a(e, 1 dgdr (3.19)
A simple application of Cauchy-Schwartz’s inequality shows that B satisfies

[B(u, 0)] < l[ullwraszl[ollyrie

for all u,v € S(R®> x R). Therefore, B uniquely extends to a bounded
sesquilinear form on WHY/2 x W'/2 In the next lemma, we show that this
extension satisfies conditions which readily imply that A is an isomorphism.

Lemma 3.6 There exists a bounded, lincar operator H: WY/ — Whi/2
such that

Re B(u,u — Hu) = HuHivl,l/Q for all uwe WhHY2, (3.20)
and

Re B(v+Hv,v) = |[o|}u0 for all ve W2 (3.21)
Proof: For each u € Wh'/2 let Hu(xz,t) denote the function defined by
Foi(Hu)(&,7) = —isign(T)u(€, ), (&, 7) € R® x R. (3.22)

This defines a mapping H which is an isometry on WYY2 This map is
essentially the Hilbert transform in time. Readily, we see that

Blu,u) = /_O:O /R ir|a(e, m))? + |EP|alE, 7| dédr. (3.23)

and

BluHu) = [ [ ~rllate, n)F + isign(r)[€Fla(é. 7 Pdgdr. (324
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By subtracting (3.24) from (3.23) and then taking real parts, we get
Re Bu,u — Hu) = [[u][}11/2-

Equation (3.21) is verified analogously. [
This lemma implies [4, Theorem 5.1.2] that A: WH1/% — W=1=1/2 defined
by
(Au,v) = B(u,v) forall v € Wwhi/2, (3.25)

is an isomorphism.
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4 Mapping Properties of the Single Layer
Heat Potential

In this section, we set out the mapping properties of the single layer heat
potential. We recall our notation for this operator

1
Kig(z,t) = /0 /F K(x — o't — tq(a', t)de'dt!, (x,t) €T x Ry, (4.1)

Let (' x Ry) denote the space of functions obtained by restricting func-
tions g(x,t) € D(I' x R) to t > 0. In Theorems 4.2 and 4.3 below, we will
show that Ky extends from an operator on C7°(I' x Ry) to an isomorphism
from H=Y2=Y4T,Ry) onto HY*Y4,Ry). First, we need a preliminary
lemma.

Lemma 4.1 Forall ¢ € C°(I'xRy), let &, denote the tempered distribution
defined by

(64,0) = /OO / q(2' 1Y0(2' t)d2'dt’  for all 6 € S(R® x R).
o Jr

Then, with K denoting the fundamental solution to the heat equation and
x convolution in the sense of distributions, we have K x &, € S'(R®> x R).

Furthermore,
Foi(8g) (6, 7)

fx,t (I(*(Sq) (577—) = 52 + i

(4.2)
in the sense of tempered distributions.

Proof: Since ¢ equals zero for large ¢, 0, is a distribution with compact
support. Because K € S'(R? x R), standard results of distribution theory
(cf., [40, pp. 178-179],) show that K xd, € S'(R’ x R) and that (4.2) holds. [

We now establish a basic factorization result which equates the operator
K1 on C¥(I',R;) with an operator whose extension to H=Y2=YU4 Ry is
immediate.

Theorem 4.2 Let A: W2 — W=E=Y2 denote the heat operator and . :
Wwhi/2 HY2YYT Ry the trace operator. The integral operator Ky defined
on C(I x Ry) by (4.1) agrees with the composition v; o A7 o 4% and
consequently extends to a bounded linear operator of H=Y/*=Y4T Ry) into
H1/2’1/4(F,R+).

32



Proof: Since v,: WU/2 5 HY2U4T R,) is bounded, its adjoint ¥; maps
H=Y2=Y4T Ry) boundedly into WLY2 Tor each ¢ € H=Y2=Y4D Ry,
define u, = A™'y%¢. Since A: WHY2 s WL=12 g an isomorphism, we
have

[wgllwrire < Cllall-1r2-11ar gy - (4.3)

By Theorem 3.5, the Fourier transform of u, is

For (’Y.T.Q) (&, 7)
e +ir

Fai(ug) (§,7) = . (&7 eR*xR (4.4)

Now, suppose that ¢ € C{°(I' x Ry ). Since v} ¢ is defined by

(vig,v) = (g, 74v) forall ve WH/2 (4.5)

it follows that v} ¢ agrees with d, (defined in Lemma 4.1). Therefore, by
Lemma 4.1, we have

ug(x,t) = Kxd,
¢
= / / K(z —a' )t —t)q(a' t")d2'dt’, (z,1) € R® x R.
o Jr

Taking the trace of u,, we get

¢
oA oyig :/ /K(:L'—x’,t—t’)q(m',t’)dw’dt', (x,t) € I' xRy (4.6)
o Jr

Thus, (4.6) shows that on C7°(I' x Ry ) the single layer heat potential Ky
coincides with the bounded operator y4 A%, Because C'°(I' x Ry ) is dense
in H=Y/2=Y4T x Ry), the operator K; uniquely extends to H~"/>=/4(T x
Ry). 0

We now give one of the main results of this paper.

Theorem 4.3 The single layer heat potential Ky = ~y o A7V o 4% is an
isomorphism of H=Y/2=Y4T Ry) onto H/*Y*,R). Furthermore, il sat-
isfies the coercivity estimate

Re (¢,K1q) > chH?if—l/2v—1/4(F,R+)7 (4.7)

for some positive constant c.
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Proof: We consider the duality pairing (¢, K1q) for ¢ € H=Y/3V4T,R,).
Using the definition of 77, we have

(¢, K1q) = (via, A" q).

Now, since v4: V — HY2Y4T Ry) is surjective, it follows ( see [40,
Theorems 4.12 and 4.14]) that its adjoint v} maps H=Y2=Y4T Ry) iso-
morphically onto a closed subspace of V*. Hence, there exists some positive
constant ¢ such that

H’YiQHV* 2 CHQHH—1/27—1/4(F,R+) for all ¢ € H_l/z’_1/4(F7R+)- (4.8)

The argument

Re (¢,K19) = Re (AA"'5q,A"yq)
> ATl by (3.17),
> cllvially,- by Theorem 3.5,
> cllalliemsep,, by (48),

then proves the coercivity statement. By the Lax-Milgram theorem, Ky is
an isomorphism. [J

In studying the regularity of the single layer operator Ky, it will be con-
venient to work mainly with the operator K1 = yA~'y*. We have

ICl — R+I€1Ri,

where Ry: HY?Y4T,R) — H'Y*Y4T R,) denotes the time restriction op-
erator. Clearly, K1 defines an isomorphism of H=Y2=Y4( R) onto HY3Y4(T', R).
For later use, we note that this implies that the adjoint operator 161 =
Y(A*)~'y* is also an isomorphism of H~Y/*~/4(I'|R) onto HY*Y/4I,R).
The map Ia extends the backward heat potential

/C:p(x,t) = /too /F K(z — 2’ t' — t)p(a', ' )d'dt’, (z,t) € R’ x R.
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We now adapt an argument due to Nedelec and Planchard which further

characterizes the inverse operator 161_1 The starting point is a variational
formulation of the homogeneous Dirichlet problem

Qu _ Au=f on R’\I'xR (4.9)

ot
u=0 on I'xR. (4.10)
To treat this problem, let
Wr 112 = {u e Wh/2 4y = 0}.

Thus, Wllﬂ’l/z corresponds to the subspace of W''/? functions u(x,t) which
vanish for « € I'. Equivalently, Wl /2 is the closure in the W'"/2 norm of

S(R’\T' x R). (Note therefore that the dual space (W;’lﬂ)* is contained in
D(R’\T' x R) but not in D(R® x R).) Since Wllﬂ’l/Q is a subspace of Wh/2,
the bilinear form B introduced in (3.19)

(wo) = [ [ i+ 1eP)ale. 7)o(E T)dedr,

is well defined for all u,v € Wl 12, Thus, for any f € (W 1 112 )*, we may

consider the variational problem of finding u € Wl 2 guch that

B(u,v) = (f,v) forall ve W 112 (4.11)

A standard argument shows how Problem (4.11) extends the Dirichlet
problem (4.9-4.10). Let u denote any smooth solution u to problem (4.11).
By a smooth solution to (4.11), we mean a C'(R® x R) function u (vanishing
sufficiently rapidly at infinity say) which is twice continuously differentiable
in each of the sets 1 x R and Q¢ x R. Clearly, for such a function, we have

/ /( — Au(z, t)) v(x,t) de di
+ / / ( — Au(z, t)) v(,t) de dt,
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for any v in the Schwartz class S(R* x R). Hence, by Green’s theorem,

/ /Rg( — Au(z, t)) v(x,t) dedt

+ / / (au (#,1) lint — (:1; t) |ext) v(x,t)dxdt,
v € S(R® x R).

Since u by assumption solves (4.11), it follows that

/ /R3 ( — Au(z, t)) v(a,t)dedt = /:: /RS fla, v(a,t) de dt,

for any arbitrary function v € S(R? x R) which vanishes on the boundary I,
Hence, u satisfies (4.9).

Lemma 4.4 The variational problem (4.11) defines an isomorphism of u €
W;,1/2 onto [ € ( W 1/2) and consequently extends the homogeneous Dirich-
let problem (4.9-4.10).

Proof: As in the proof of Lemma 3.6, let H denote the Hilbert transform
defined by

Foi(Hu) (&, 7) = —isign(7)Foi(u)(&,7) forall ue S'(R®xR).
Already, we have shown that

B(u,(I—Hu) > |[uf|}. forall ueW"/?
and (4.12)
B((I+H)v,v) > Hva/\}Lm for all v e Wh/2,

Since the Hilbert transform is an operator only in time, it is easy to see
that H maps Wllﬂ’l/Q onto Wllﬂ’l/z. This along with (4.12) clearly implies the
lemma. ]

Using trace theory, we extend this result to a Dirichlet problem with in-
homogeneous boundary data in the next theorem. Without loss of generality,
we assume that the forcing function f equals zero. (We can always add to
solutions given below a function uy determined by lemma 4.4 which vanishes
on the boundary and satisfies (4.9).)
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Theorem 4.5 For each g € HY?Y4T,R), there exists a unique solution
u € WHY2 o the Dirichlet problem

du_ Au=0 on R’\I xR, (4.13)

ot
u=g on I'xR. (4.14)

Proof: Given g € H'/>'4'|R), we may find u, € W"Y? such that yu, =
g. If we let ug € W}’l/z denote the unique solution to

B(ug,v) = —B(uy,v) forall ve W;,1/27

we then obtain a solution u = u, + ug € W2 with yu = g. Noting that u
satisfies

B(u,v) =0 forall vé W;,1/27 (4.15)

it easily follows that this solution is unique, that is, independent of the
extension of g to Wh/2.

We continue to denote by u the solution to the Dirichlet problem (4.13—
4.14). We will define an interior and exterior normal derivative of u in the
function space H~'/%~1/4(I'|R). First, we define the spaces Wl’l/z(ﬂc x R)
and Wl’l/z(ﬂ xR). Let R(Q°) denote the restriction operator R(2°): S(R® x
R) — C*(Q° x R). By density, R(€°) extends to W2 We now define
WHY2(Q° R) to be the image of R(Q°) on WHY2 We analogously define
WLI/Q(Q, R). Poincaré’s lemma shows that this latter space coincides with

HY'2(Q,R). We set

B(u,v; Q%) = /_O:O/Qcint(u)(x,T)ft(v)(x,T)

+ VFi(u)(x, 7)VFi(v)(x, 7)dedr,
for all w,v € WH/3(Q° R),

and define B(u,v; ) analogously.
Now, let u represent the solution to (4.13-4.14) and denote by wy and
u_ its restrictions to © and Q°. We define linear functionals duy/dn and

Ou_/dn over HY*Y4T' R) as

Ouy

(G 9) = B(u,€g;) forall g€ HY2YAT R), (4.16)

37



Ou_

(G 9) = Blu,Eg; ) forall g€ HY2YAT R), (4.17)

where £g denotes any bounded extension of ¢ € HY*Y4(I',|R) to Wi/,

Because u solves (4.13-4.14) and thus (4.15), it is easy to check that (4.16)

and (4.17) uniquely define duy/0n and du_/dn in H=/>~Y4( | R). (That

is, they are independent of the choice of extension £.) By applying Green’s

theorem, it can be shown that (4.16) and (4.17) agree with the classical

definitions of these normal derivatives when u is a smooth solution.
Consider

gz e Ou- (4.18)

Clearly, ¢ belongs to H=Y/2=Y4(I', R) and solves
(q,9) = B(u,Eg) forall ge HY*YYI R). (4.19)
Since (4.19) holds independent of the choice of extension,
(q,yv) = B(u,v) forall ve Wwhi/2, (4.20)
Equivalently, v*¢ = Au, so YA™'v*¢ = yu = ¢, or

Kig=g. (4.21)
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5 Regularity of the Single Layer Operator

The objective of this section is to establish a regularity theory for the single
layer operator K'y. Most of our efforts in this section will concentrate on
studying the regularity of the related operator Ky and proving Theorem 5.1.
Once we prove this theorem, we shall apply the mappings properties of the
restriction and extension operator to conclude regularity results for the op-
erator K.

Theorem 5.1 For all v > 0, the operator K1 maps Hr=4/20 12214 R) onto
11'_]7’-|—1/2,7’/2-|—1/4(F7 R)

Thanks to interpolation theory [25, p. 9], we may confine our attention
to non-negative integer values of r. We will denote such values by m.
The proof of Theorem 5.1 naturally divides into two separate investiga-
tions. In section 5.1, we will show that the map Ki: Hr=4/20 2214 R) —
Hr+Y/20 /2414 R) is bounded. In section 5.2, we will then show that this
mapping is also surjective and hence an isomorphism.

5.1 Boundedness

For any non-negative integer m, let ¢ € H™~'/27/2=V/4 R) be given. Our
goal in this subsection is to show the estimate

HI&quHm-I-l/2,m/2+l/4(1“7R) < C(m) HqHHm—l/2,m/2—1/4(F7R)7

for some positive constant C' which depends on m. We will prove this by
establishing the pair of estimates

HKIQHH’"/HU‘*(R,L?(F)) < Cl(m)HQHHm—l/%m/?—l/‘l(r,R)v (5.1)
and

HKIQHB(R,H’"H/?(F)) < 02(7”)HQHHm—l/%m/?—l/‘l(r,R)- (5.2)

Our first lemma addresses estimate (5.1) and considers the regularity of
the operator Ky with respect to time. For convenience, we set

Qs = HTVY R, LA(T)) N H* (R, H'*(T)), s €eR,
and note that
(Q-o) = H VAR, L)) + H*(R,H"V*(T)),  s€R.

39



Theorem 5.2 The single layer operator Ky maps (Q_,)* into Q, for all
s> 0.

Observe that Theorem 5.2 reduces to Theorem 4.2 for s = 0 because
Qo = HY>Y*T',R) and

(Qo) = H VYR, LA(D)) + LR, H/*(I))
_ H_I/Q’_1/4(F,R).

This theorem implies (5.1) since

lqll trrae 2y < lldllo., s € R,
and
lall@- < HQHHs—l/‘l(R,L%F))v s € R,
< HQHHs—l/Zs—l/‘l(r,R)a s> 1/4.

Its proof requires a definition. For each 1 € R, we define the operator d;:

S'(R*> x R) — S'(R® x R) by
Foldiu)(x,7)=(14+ |T|2)“/2ft (u) (z,7), (z,7) € R’ x R,

The mapping d} naturally extends the notion of a differentiation operator
in time to distributions and for all real orders. It defines an isomorphism
between a variety of Sobolev spaces. For example, it maps H*(R, H"(R?))
isometrically onto H*"*(R, H"(R?)) for all real numbers r, s, and p. It is
also easy to see that d: W2 5 W2 and ¢4 W12 5 W=h=Y2 gpe
bounded for all ;1 < 0.

We also introduce the analogously defined operator S'(I'xR) — S'(T'xR)
which we also denote by d}'. Clearly, d maps Qs isomorphically onto (,_,
for all s,u € R. Because

1]

2 _ : 7112 7112
Qr, = qi_l_}élid?qHq1HH5—1/4(R,L2(F))—I_HQQHHS(R,H—U?(F))?

< qurglf:q ’\d¢91’\%s—1/4(R,L2(r)) + Hd?%qus(R,H—lﬁ(r))v

= qur{g:q quH%IS—M—l/‘I(R,L%F)) + ’\612”1211s—u(R,H—1/2(r))v

- HqH(Q—S-l-M)*7
it follows that d} also maps (Q_s)* into (Q_s4,)* for all s, p € R.
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Proof of Theorem 5.2 Let s > 0 be fixed. We must show that l@lq € Qs
for all ¢ € (Q_s)*. Equivalently, we will show that

AKyq € HY*YYT R) forall q€ (Q_,)" (5.3)
To show (5.3), we establish these two claims:
Kidiq € HY*YYT R) forall ¢ € (Q_,)%, (5.4)
and ) )
diK1g = K1diq for all ¢ & D(I' x R). (5.5)

By a simple density argument, (5.3) then follows from (5.4) and (5.5).

Since d: (Q_,)* —= (Qo)* and Ky: (Qo)* — Qo are isomorphisms, (5.4) is
apparent. To prove (5.5), we note some identities. For example, by Fourier
transforms, it follows that

d7PATVf = AT f forall f € SR < R). (5.6)
Analogously, if we let Sy equal the subspaces (of S’'(R® x R))
Sy = {0 e WHPdaf g e w2y,
we can extend
(yodf)o=(dF0y)0 forall 0eSR*xR), (5.7)
to § € Sy. Observe that S, C W'/ while S_ is identical to W /2, Note
also that (5.7) implies
d7°y'p=~"d°p forall pe H_l/z’_1/4(F, R), (5.8)
since for p € H='/2=1/4T R) and 0 € W2 we have
{d*y"p,0) = (p,ydi°0)
= (p,d;°0),
= (y'd;’p.0).
Now, for ¢ € D(I' x R), we have
VAT g = v didit AT Y g
= &y AV APy Al g, by (5.6) and (5.7),
= iy ATy ddig, by (5.8),
= d;Kyq,
which proves (5.5) and completes the proof of the theorem. J

by (5.7),
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We turn to proving estimate (5.2). Here, the use of localization is neces-
sary. We shall follow the notation of section 2.2, though this time we do not
index the sets. Hence, let ¢ denote a '™ diffeomorphism defined over some
open set O € R? which maps

O onto Y = {(ylvy?)): |y/| < 17 -1 S Ys S 1}7
and

ONT onto Yy={y€Y:ys =0}

We again denote the inverse mapping of ¢ by ¢ and let ( € D(O) denote
the cutoff function which corresponds to the set O. Finally, we recall the
operators

T (w) (x,t) = w(o(x),t) w E Hl’l/z(Y, R),
¢ (u) (y. 1) = u(dy),t), we H'?O,R).

Now, for g € H='/2=V4T R), let u, = A~'y*q. We need to consider the
trace of u, since this is by definition the image K'y¢. Using the principles of
localization, we can instead work in local coordinates and consider the trace

of w, = ¢*(Cuy). Clearly,

quHHLW(Y,R) < CHQHH—l/%—l/‘l(F,R)- (5-9)

In the next theorem, which is the key to proving (5.2), we consider the exis-
tence of the higher order spatial derivatives of w,. We will use the multiindex
notation
5 9P 92 P
 Oyr Oyz Dys”

where 3 = (1, 02, 33) € N2,

Theorem 5.3 Let m be a non-negative integer and 3 any multiindex with
|| < m and B3 = 0. Then, there exists a positive constant C' which depends
on m such that

Haﬁwq HH1,1/2 (Y,R) S CHqHHm_l/2vm/2_1/4(F,R) . (510)
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This is a standard result in the regularity theory of boundary value prob-
lems. The condition 33 = 0 occurs since it is necessary to insure the distri-
butional equality

Oy f = ~*0" f, f € D'(R’ xR).

Although its rigorous proof (based on the method of finite differences) is
straightforward, it is rather tedious. Thus, we shall give the proof in Ap-
pendix A.

Although Theorem 5.3 does not say that w, belongs to L*(R, H™t(Y)),
it does supply enough information to conclude that the trace of w,, (i.e.,
yw,), belongs to L2(R, H™+'Y/2(I")). This is an obvious corollary to the next

lemma.

Lemma 5.4 For any non-negative integer m, let (x) € H'(R?) satisfy
9°0 € H'(R?),

for all multiindices 3 with |3] < m and B3 = 0. Then, v8 € H™Y/2(R?) and

satisfies

H70H1211m+1/2(R2) < C(m) Z HaﬁeH%?(R,Hl(RB’))' (5.11)
|81<m
B3=0

Proof: By Fourier transforms. The basic equation relating 6 to its trace 6
is

Fy(40) () = / 0(&,&)dés, (5.12)
where 8 denotes the Fourier transform of . Setting

R e) = (1+1¢P)" (14 1eP) .

we apply the Cauchy-Schwartz inequality to (5.12) to get

FrOOE < 1) [ 6)I0E &) s

where

I (R O
< C(itlep)y T
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Therefore,

)m—|—1/2 |

L+ 1) 1EA 0@ < ¢ [T REL)IIE ). (5.13)

Integrating (5.13) over ¢ € R*, we get

501 e grsrngey < C [ K€ EIAE) e (5.14)

The lemma now follows since it is easy to verify that

L HE IO < C S 107wl . (5.15)

[8]<m
B3=0

for some positive constant C. ]
Combining Lemma 5.4 with Theorem 5.3, we have thus shown that w,
satisfies

H’quHB(R,HmH/?(YO) < C(m)HQHH’"—l/2vm—1/4(F,R)7 m € N. (5.16)

In other words, w, satisfies the analogous estimate to (5.2) in the local coor-
dinates. Therefore, since the function u, in the neighborhood of I' is simply
a finite sum of functions like w,, we conclude that yu, = K1q satisfies (5.2),
le.,

H’)/uqHHm+1/2,m+1/4(F7R) < C(m)HqHHm—1/2,m—1/4(F7R), m € N.
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5.2 Surjectivity

To complete the proof of Theorem 5.1, it remains to show the surjectivity of
the map K1: Hr=420 /2214 R) — H+Y2r22U4T R). As we shall see, this
surjectivity follows from regularity results for the Dirichlet problem (4.13),
(4.14). Over the interior set 2 x R, the regularity theorem we need is well
known [25, Theorem 4.2 and Theorem 5.3] and is recalled for convenience.

Theorem 5.5 Let Q denote any bounded, open set in R®. Then, for each
non-negative real number r, the Dirichlet problem

a—u—Au:F on xR,
ot

u=g on ' xR,
defines an isomorphism of u € H™tW/2¥Y2(Q R) onto
(F,g) c Hr—l,r/?—l/?((LR) « Hr+1/2’r/2+1/4(F,R).

To extend this result to the Dirichlet problem posed over the exterior set,
we need to introduce a new class of function spaces. We shall first define
these spaces over R® x R and then by restriction over Q. x R. For each
positive integer m and u € S(R® x R), set

a(¢, 7)*d¢dr,

lellymomse = [ (U 1€+ 7)™ 1€f + I

where 4 again denotes the Fourier transform of u. We now define the spaces
W™ ™% as the completions of S(R? x R) in these norms.
Clearly, this definition agrees with the definition of W2 when m = 1
and
WHEEZ o ymml2 for integers 1 <m < k.

By an identical argument to the one used in section 3, we can show that
O(x)u(x,t) € H™™? if (z) € S(R®) and u(x,t) € W™ ™2 The spaces
Wk’k/z(ﬂc, R) are defined as the space of restrictions to 2° x R of wmmi2,
The next lemma shows our motivation for introducing these spaces.

Lemma 5.6 The heat operator A maps W™™'?* onto H™=2m/2=1nyy~1—1/2
for all integers m > 1.
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Proof: Observe that the lemma reduces to Theorem 3.5 for m = 1 since
Wb-1/2 — -1-1/2,

Thus, we assume that m > 2. There is no natural embedding between
WY2 and H™=2m/2-1 for such m.

Let u € S(R? x R) and let @ denote its Fourier transform in space and
time. Clearly,

Fouo(Au) (& 7) = (i +[EP)a(é, ), (§7) €R* xR,
implies

< P (M) (€ 7)1

P p S P IDEE P (5.17)

(Ifl2 +171)

a(g, 7)<

We now multiply this equation by (1 + [£]* 4 |7])™! and then integrate over
(&, 7). Using the definition of W2 we get

SNulynns < [ [ b€ F s () (6 ) Pdedr < iy

where
(L4127 + )™
kn(&,1) =

N

To complete the proof, it suffices to show that

1/2
P { [ [me i enkaart L (53
defines a norm over H™=2m/2=1 A W™L=1/2 which is equivalent to

1/2
F o {1z + 1 fyra )

But, since m > 2 and

Wy = [ LR + 1) 16 m) g,
and

[ Wmesmies = [ [ (U167 + 7)™ 217 (€ 7) P
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this is an obvious corollary of the binomial theorem. []
Remark: Intuitively, the reason that the W™ "1/2 term must be explicitly in-
cluded above is because the space W™ ™% imprecisely describes the behavior
of solutions at infinity.

Using Lemma 5.6, Theorem 5.5 and the principles of localization, the
next result can be shown. As before, the proof is tedious but straightforward.
Thus, we give the proof in appendix B.

Theorem 5.7 Let g € H™Y/ 224 R) for some integer m > 0. Then,
the solution v € W% 1o

u_ Au=0 on R’\I xR, (5.19)

ot
u=g on I'xR, (5.20)
satisfies

ulg € ™ 2HY2(Q R)  and  ulge € W20 R).

From Theorem 5.7, the surjectivity of the mapping K; is easily deduced.

Theorem 5.8 For all v > 0, the operator Ky maps H"=*/27/>=14T R) onto
11'_]7’-|—1/2,7’/2-|—1/4(F7 R)

Proof: Suppose that r equals a non-negative integer m. Given g € H™+Y/2m/2H1/4(T R),
let u denote the solution to (5.19-5.20). Set
B au_|_ au_
7= on on
From Theorem 5.7 and a trace theorem (cf., the remark after Theo-
rem 2.3), it follows that each of the normal derivatives satisfies the inclusions

0

% Hm—l/2,m/2—1/4(F7R)
and 5

% c Hm—l/?,m/2—1/4(F7R)‘

Hence, we have ¢ € H™~'/2m/2=1/4T R) and by (4.18) and (4.20), K1q = g.

The surjectivity for all non-negative values of r follows by interpolation. [
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With the proof of Theorem 5.1 complete, we apply it to consider the
regularity of the operator Ky in the next theorem.

Theorem 5.9 The single layer potential Ky maps
Hggl/“/?‘l/“(F,RJr) onto HSS_I/Z’T/2+1/4(F,R+), for all r>0.
To prove this result, we need a few preliminary results

Theorem 5.10 The heat operator A maps {u € WHY? © v =0 ¢ < 0}
isomorphically onto {F € W2 =0t < 0}.

A proof of this result is given in [22, pages 403-408]. We state a useful
corollary to this result.

Corollary 5.11 Let g € HY*Y4T R) be such that ¢ = 0 almost every-
where for t < 0. Then, the unique solution u € W"'? to the Dirichlet
problem (4.13—4.14) equals zero fort < 0.

Proof: Let g € HY*Y4I',R) with ¢ = 0 for t < 0 be given. The crux
of the matter is to note there exists a trace extension g € W''/2 of ¢
which satisfies £€g = 0 for ¢ < 0. It is not to hard to see that there are
many extensions which satisfy this. For example, in the local coordinates,
the multiplication map

9" = plya)e(y), (V. uys) € R,

where p € D(R) with p(0) = 1 is clearly such an extension, as is the extension
defined by it using the procedure described in section 2.2.

Now, recall how the Dirichlet solution u is determined. We have that
u = &g+ ur where ur € Wllﬂ’l/Q is determined by

(Aur,v) = —(A€g,v) forall v e Wllﬂ’l/z.

Since £g vanishes for ¢t < 0, it follows that A€g also vanishes for ¢ < 0 and
by Theorem 5.10, so does ur. [

In the next theorem, we show that K satisfies properties quite analogous
to the ones in Theorem 5.10 satisfied by the heat operator A.

Theorem 5.12 The operator Ky maps {qg € H/>"Y4T,R) : ¢=0, t <0}
isomorphically onto {g € H'/*Y4T R) : ¢g=10,1<0.}
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Proof: Let ¢ € H~'/2=Y4T R) with support in ¢ > 0 be given. Since the
trace operator v is purely a spatial operator, it is easy to see that y*¢q €
W12 also has support in ¢ > 0. Hence, by Theorem 5.10, the function
Ay g € W2 has support in ¢ > 0. Thus, so does YAy g = Kig.

Conversely, let ¢ € H'Y*Y4',R) with support in ¢ > 0 be given. It
suffices to show that

~—1
<IC1 97P> = 07

for any arbitrarily fixed p € H'/?'/4(y, R) which equals zero for ¢t > 0. To
show this, let u, denote the unique solution to the Dirichlet problem (4.13-
4.14). By Corollary 5.11, u, vanishes for ¢ < 0. Now, recall our discussion at

the end of section 4. In this section, we showed that I@l_lg agrees with the
jump in the normal derivatives of u, across the boundary I'. Clearly, these
normal derivatives and thus ¢ vanish for ¢t <0.

It is now a simple matter to prove Theorem 5.9. Given any ¢ in the
Sobolev space HSJI/Z’T/2_1/4(F,R+), it follows that its zero extension R} q
satisfies

Riq c [_]7’—1/2,7’/2—1/4(F7]R)7

and vanishes for ¢ < 0. Hence, I@le_q belongs to H"T1/2/2+1/4 R) and
vanishes for ¢ < 0. By definition, its restriction to R, namely R+I€1]i’j_q =
K1q belongs to HSJ1/2’T/2+1/4(F, R, ). The other direction follows with equal

case.
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6 Galerkin Discretization of the First Kind
Boundary Integral Equation

In the remaining sections, we discuss the numerical solution of the first kind
boundary integral equation

Kig(z,t): //[& (x —y,t —s)qly, s)dyds = F(z,1), (z,1) e I x Ry

(6.1)
by Galerkin methods. The coercivity of single layer potential Xy implies
the quasioptimality of Galerkin approximations. That is, if ()5 denotes any
closed subspace of H='/2=1/4T R, ) and ¢, € Q), the unique solution to the
Galerkin equations

<pvlCIQh> = <p7 F> for all pe th (62)
then
g — anllg-1r2. —1AT Ry S C 125 g — apllg-1r2 —1/4(T Ry ) (6.3)
h

In section 6.1, we describe a standard class of tensor product spaces
th’dt =V"® de which are based on polynomials of degree d; in time
and polynomlals of degree d, in space. In sections 6.2 and 6.3, we consider
the implementation of the Galerkin method using the space V)2 of piecewise
constants in time. In section 6.4, we consider the Galerkin equations when
higher order polynomials are used in time.

6.1 Construction of the Trial Space

Let h; denote the stepsize of a uniform partition of R,. We define V0 as the
space of piecewise constant functions subordinate to this mesh. This space
is conveniently described as the span of the basis functions

)1, (k— Dhe <t < khy, B
Xi(t) = { 0, otherwise ’ k=12....

The L? projection operator P;: L*(Ry) — V)P is defined by
> 1
Pou(t) = Z h_ w, Xk)Xk(T). (6.4)

k=1
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Note that P; extends to an operator on H*2(Ry) for sy > —1/2, since the
functions yj belong to H*'(Ry) for s < 1/2. Analogously, for any d; > 0, we
define V™ to be the space of piecewise, discontinuous polynomials of degree
dy.

A description of X} is more involved. We assume that [ can be divided
into M closed subsets 1',,, such that

M
I'= U [, and T, N1, is a curve, a point, or empty for my # ma.
m=1

(6.5)
We assume that each piece I',,, can be smoothly mapped in a 1 to 1 fashion
onto the unit square

S, = {(01,02):0 < oy, 09 < 1}

We denote the mappings '), — 5*1 by ®,, and assume that each ®,, is the
restriction to I' of some C'* diffeomorphism which maps an open R® neigh-
borhood of T, onto some open R? neighborhood of S Thus, it makes sense
to define the inverse mappings W ,,: S = I',,. Without loss of generality, we
will suppose that the various Jacobians of ®,, and W, are strictly positive.
The mappings W, will be used to define interpolation over I'. For this
purpose, it is necessary that they piece together correctly. Precisely, we
require that ®,,, o W,, : &, (', NTh,) = @y (U, NTLy,) is an isometry
if U,y N, # 0.
Remark: Our assumptions on I' are fairly general and apply to most surfaces
encountered in practice. For example, they apply to any convex surface. The
same sort of assumptions have been made by [2], [28], and [41]. An important
case which does not require an elaborate boundary decomposition is when I’
is a polygonal surface. Our analysis, however, does not strictly apply to this
case since regularity assumptions which are justified on smooth surfaces by
our regularity results fail to hold on polygonal surfaces.

For each m, let 7%;7 denote a regular triangulation of S by rectangular
elements. For each rectangle 7 € R, define curvilinear rectangles r by

r={r e Rs: P, () €r}.
Let R} be the set of all such rectangles r as 7 varies in 7%;7 The union

Ry =JRY,
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is a triangulation of the surface I' by curvilinear rectangles. We set

h, = maxdiam r.
T’ERh

The spaces Xffm are now defined as images of spaces of piecewise poly-
nomials defined over the triangulation Rj;. For any non-negative integer d,

and any set 7 € 7%;” let 75(f, d;) denote the tensor product space of d, degree
polynomials in each variable. We then define

Xt = {q, € LXD1):  qul, 0V, € P(f,dy); forallr e RP', m=1,...,M}.

Basis functions for Xffm are defined as the images of standard polynomial
basis functions.A Let 77/(oy,09) (for 5 = 1 to (d, + 1)?) denote the basis
functions of P(51). (For example, if d, = 1, these four functions are
191(01702) = 0102, 193(01702) = (1—01)027
192(0'1,0'2) = 0'1(1—0'2), 194(0'1,0'2) = (1—0'1)(1—0'2).

Given r € R}, let # = W, (r) and denote by O the dilation from # onto
Sy. Then, for each r € R}, it is easy to check that the set of functions

v =1"0000,, g=1,....(dy + 1) (6.6)

r

defines a basis for X}, |,. Thus, the collection of functions

{vi j=1,...(ds + 1%, r € R}

ro

forms a basis for Xffm In formulating the Galerkin equations, it will be conve-
nient to reindex the basis functions in X{* and to denote them by {v,(z)}.
Note that the doubly indexed set {v,(2)x.(f)} forms a basis of ta’dm.
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6.2 Implementation

The Galerkin equations (6.2) in the subspace Q}L’O are the linear system
<VozXn7IC1qh> = <VaXn7F>7 a = 1727"'7Nx7 n e Z+7 (67)

where N, denotes the dimension of Xj,. Since the Galerkin solution ¢ belongs

1.0 L. . .
to Q,°, we can expand it in terms of the (), basis functions as

(e, t) =D > qowvs(@)xa(t).

Substituting this expansion into (6.7), we get

oo Ng

SN {vaxn Kivsxe)qsr = (VaXn, F), a=1,...,Ny,,n€Zy. (6.8)
k=1 p=1

Since (6.8) is indexed by four integers, its solution requires some ordering
or partitioning of the unknowns. For each positive integer n, we define vectors
dn of length N, by

an

o 42,n

Gn — . ’ n e Z-I-'
quyn

Similarly, we let F, denote vectors of length N, whose components are given

by

. nht
(F). = / Va(x)/ Fle,O)dide, 1<a<N, neZ.
r (

n—l)ht

Finally, we define square matrices, 1, of order N, for each n,k € Z, by

(Gt )os = /F /F Val(@)gni(@ — &' )vp(a’)de' d, (6.9)

where for any = € R®, g, x(z) denotes

nht kht
» = K(x,t —t)dt'dt. 6.10
guse)= [ [ K= (6.10)
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With this notation, the Galerkin system (6.8) partitions in the form

Gy G G ..\ [ G Fy
Ga Gaa Gas ... 7 Fy
Gs1 Gsy Gssz ... G| = F’S . (6.11)
Now
(Xn, Kixk) =0 for n >k, (6.12)

so G, = 0 for n > k. Thus, (6.11) has the block lower triangular form

G 0 0 ... 0 F
Gy Gy 0 ... 0> F,
Gs1 Gsy Gssz ... G| T F’S . (6.13)

We point out that this lower triangular form occurs because the supports
Xk, (1) and xp, (¢) for different values of ky and ky are disjoint. Therefore, a
lower triangular form would still result if one defined V}, using a non-uniform
mesh.

Expanding (6.13) out, we get the set of order N, linear systems

SN Gk =Fo,  n=1,2,...,N,,

k=1
or 1
Gnnq)n:ﬁn_ZGqu)kv n=12...,N (614)
k=1

Observe how (6.14) successively determines the solution at each timestep as
the solution to a linear system of order N,. We remark that the invertibility
of the matrices G, is a direct consequence of the coercivity of the operator
Ki. (Consider the pairing (p,Kip) for any p € Q}° which is support in the
interval (n — 1)h; < t < nhy.)
For constant time steps, an important savings occurs since the matrices
G, i satisty
Gk, = Gk, wWhen  ng — kg = ny — ky. (6.15)
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Equation (6.15) is very important since the computation of the solution ¢,
at each additional time step now only requires the generation of one new
matrix. Moreover, the only matrix that needs to be inverted in solving
(6.14) is G'11. Thus, a standard matrix decomposition algorithm, such as the
Cholesky decomposition, may be applied to this matrix at the beginning of
an algorithm and subsequently stored in GGy;. These savings are so significant
that non-constant meshes are never used in computations.

To implement (6.14), it remains to compute the matrix elements. Fortu-
nately, the time integrations required to evaluate g,; () can be done analyti-
cally. To see this, let [ =n —k in (6.10) and scale the variables of integration
to get

1 1
gor(z) = h,?/ dt/ Ky ho(t — 1+ 1))dt"
0 0

1 t+1
— hf/ dt/ K (2, hes)ds.
0 t+(1-1)

Changing the order of integration, we get

{ s—I1—1
Gopl(z) = hf/l_l/o K, shy)dtds
+1 1
+ hf/ / Kz, she)dtds. (6.16)
{ s—I

In this equation the first integral is to be considered zero when [ = 0. Per-
forming the integration over ¢, we have

!
gnk(x) = hf/ K(x,shy)(s—141)ds
!

-1

I+1
+ hf/ K(x,shy) (I +1—s)ds.
!

Since
t 5 4% %]
/ st e=r /A g — —_ o te 7 do, (6.17)
0 25 2 4
for all real k, we see that g, x(x) may be expressed in terms of the family of
functions

Y(k,z) = /OO e o o, k> 0. (6.18)
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Setting

1,2

Alhy

and working out the details, we get

l e Zy, (6.19)

a; =

3/2
T gnale) = L1+ V@) (Ve 1/2) = Yo 1/2)

— (= U D) (X 1/2) = Y, 1/2)]
+ [2le7 = (4 Ve — (1= D)emm] L (6.20)

for all values of (n, k) such that { > 1. (When [ = 1, one uses the limits

limze /=0 and lim T(z)=0.)

z—0 2—00

The appropriate expression for g, ,(x) is

() = o (1 V) S0 (01, 1/2) = 7).

The functions T are known as the complementary incomplete gamma
functions and are customarily denoted by I'(k,z) (we avoid this notation
because it conflicts with our notation for the spatial surface). They have been
extensively studied and tabulated. For all positive values of «, they tend to
a finite limit as z tends to zero (namely, the value of the complete gamma
function). When z tends to infinity, these functions decrease exponentially
to zero. More precisely, we have

Y(k,2) ~e "2 " as 2z — oo, k> 0.

For our purposes, we only need Y(k, z) for k = j + 1/2 where j € N. Since
we have the recurrence relation

T(k+1,2) =€ 72"+ T(k,2),

(derived by integration by parts), the only non-trivial evaluation required is
determining the value of Y(1/2,z). Further, the change of variable ¢ = w?
shows that -
T(1/2,z :2/ e_‘”2dw, z e Ry.
jze =2 ,
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Thus, T(1/2, z) is related to the complementary error function whose values
are extensively available.
Unfortunately, the computation of the spatial integrals over the boundary

(Guk)ap = AAVa(x)gn7k(x — 2 )vg(a')dada’,

must be done numerically. Based on the behavior of the gamma functions, it
follows that g, ,(x) has a |z|™! type singularity as = tends to the origin. (This
singularity is completely analogous to the behavior of the electrostatic single
layer potential near the origin.) Accordingly, a special type of integration
rule must be used to compute the diagonal elements of G, ,,. Fortunately,
this issue has received considerable attention in the literature. For example,
see [15] and [41]. Since the functions g, () for k < n are smooth, a regular
Gaussian integration rule can be used to compute the matrices G, .

6.3 Application to the Direct Integral Equation

Throughout this paper, our motivating example of the single layer operator
equation K'yg = F has been the direct integral equation. To recall, the forcing
function F' of this equation is given by

F(z,t) = =g(x,t) —I—/ /6[& —3)g(y, s)dyds
+ /QK v — o ) f(e)de’, (1) €T xRy, (6.21)

where g € HY/*Y4',R,) and f € L*()) are known. (They represent the
prescribed Dirichlet and Cauchy data of the boundary value heat equation
under consideration.) In this section, we describe an approximation Fj to
F and address the evaluation of integrals required to apply the Galerkin
method to this equation.

Define
Mf = / K(z —a',t)f(z")d2', x €N t>0,
Q
and recall the notation

|
Kaog(a,t) = //aa:l (x —y,t—s)g(y, s)dyds, zel,t>0.
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Thus, F' = (1/2 + K3)g + M f. Our approximation of this function will be
based on polynomial interpolations of g and f. Since interpolation over the
set I' x Ry has already been discussed, we concentrate on interpolation over
the set ().

Unfortunately, this necessitates some sort of triangulation of €). To in-
clude non-polygonal sets 2 in our discussion, we shall use an isoparametric
triangulation [9]. We let T represent such a triangulation (regular and quasi-
uniform) of © and set

Qr = U T and hy = sup diam(T).
TeT TeT
For simplicity, we will assume that the open set {7 is contained in 2. This
assumption is often true in practice and is simply made to allow us to properly
consider f over {27.

Since {27 is a polygonal set, it makes sense to define the piecewise linear
interpolant II;f of f with respect to the triangulation 7. Because Il f is
defined only over {1, it is necessary to define the operator

M, f = / K(z— o ) f(2)da', €0, t>0,
Q7

and approximate the domain term by M1l f.

Analogously, our approximation of the double layer term (1/2 + K3)g is
based on replacing g by its tensor product interpolant P, FP,g € Q}L’O. Note
that the use of linear (or higher) degree polynomials in space is required to
ensure the inclusion P,Pg € HY*'Y4T R;). Combined with our remarks
above, we define the function £},

Fi(z,t) = (1/2 + Ko) P Pl g(x,t) + M1 f(x,1).
To implement the Galerkin method, we must evaluate the integrals
nht
/ I/a(l')/ F(x,t)dtdz, 1<a< N, n€Z,,
F (n—l)ht

The integral in time may be taken exactly, with the spatial integrals requiring
numerical quadrature. We refer the reader to [5],[34] for details. Incorpo-
rating these approximations into the Galerkin equations (6.14), we get a
discretized system which in matrix form looks like

> GowGe =Y Luygs + M, f, n € Ly, (6.22)
k=1

k=1
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where (for each n,z € Zy), G, and L, denote square matrices of order
N, and M, € RNT"*"=,

An immediate observation from (6.22) is the great deal of storage this
method requires. (We point out that the excessive storage is not due to the
use of a Galerkin method.) Shortly, we mention an alternate formulation of
the boundary element equations which minimizes the needed storage.

Often, the goal of computations is not the computation of the fluxes ¢,,
but in using these values to obtain estimates of the solution u(x,t) to the
given boundary value problem. Such estimates are obtained from the repre-
sentation formula (1.4). With ¢, denoting the Galerkin solution, M1l f,
and P, P,g as above, the function

t i oK
uh(:zj,t):/o /F[]&’ (x —y,t—s)quly, s) — a—n(:p —y,t — )P, Pig(y, s)]dyds

+ /Q K(x — o )L f(z)de, (z,t) € R® x Ry. (6.23)

defines a natural approximation to the solution u. In practice, uy is only
evaluated at a finite number of points. A typical procedure is to evaluate
uy, at the node points of Q7 x Ry, with values of uj at other points being
approximated by interpolation.

An alternate approach to solving the boundary element equations is based
on (6.23) and the time invariance of the heat equation. Specifically, let ¢
denote the solution to the Galerkin equations. As discussed above, this
value determines the approximate values of u(x,,%;) in the interior. We now
consider these values to represent the initial values in (6.23) . This procedure
greatly reduces storage since it only requires the solution of the linear system

GG, = LG, + Myt (6.24)

along with an interior equation of the form

n

iy = > (G%G+LG) + M fuy,  n>1.

k=n—1

Note how this approach couples the computation of the boundary values
OJu/0n and the interior values of u. The drawback this has it that it requires
a triangulation of the domain ) even if the initial data f is zero. It therefore

59



would not be used in this case. (Also if f satisfies Laplace’s equation. See
[5] for details.) On the other hand, for problems where f is non-zero and
interior values are desired, this method would seem to be worthy of some
further attention. To date, the most complete investigation of this method
has been given in [30].

6.4 Higher Order Methods in Time

We consider the Galerkin equations when we base V, on piecewise linear
polynomials. (Higher degree polynomials can be handled similarly.) First,
we treat the case of discontinuous polynomials. Over the reference interval
(0,1), we set

plo)=1—0 and p*(o)=o,

and then introduce the basis functions
P =P+ 1 k) and gl =+ 1k, ke,
¢ ¢

We now write each ¢ € (), as
Nz oo

=33 vsl@) (gheph () + Bepi(1) . (6.25)

=1 k=1

and introduce over each subinterval the pair of vectors

i i
o 9y, = 9y,
=] and @2=| " |, neN (6.26)

To express the Galerkin equations in ()}, let k1 and ky denote numbers
which either equal one or two. Then, for each [ € N, we define matrices

GV each of order N, by

G = Va % g (2 — a')dada!
a,p ﬁ
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where

(I+1)h
/11,/12 / / pl—l—l ]X l’ t—t) ( )dt dt T € RS.
lht
By defining matrices of order 2NV, as
GG
G : ( G2 G%Q ) ., leN, (6.28)

we can write the Galerkin equations in ()}, as

6 (2)=(B) Forr(B). wem  om

where the vectors F! and F? are defined by

. nht
(Fra = [vale) [ Flanpi(tdide, 1< a < Noyry=1,2
r (

n—l)ht

Since piecewise,continuous linears are discontinuous linears which satisfy
-2 o1
9y — 911> keZy,

the form of the Galerkin equations in the basis of continuous linears may be
deduced from (6.29). A more direct approach defines the hat functions

pi(t) = pipa(t) + p7 (1), L €N,
(where we set p2(¢) = 0), and explicitly computes the integrals. Because
(pS,Kpg) =0 forall n>k+1, (6.30)

it is not hard to determine that the Galerkin equations would have a (par-
titioned) lower Hessenberg form. In other words, they would have non-zero
matrices on the superdiagonal. These terms would seem to preclude any
simple and economical solution scheme.

Remark: The Hessenberg form of Galerkin equations in this basis sharply
contrasts with the lower triangular form of the matrix equations obtained
using continuous linear polynomials and the method of point collocation
in time. On the other hand, there is some reason to believe that degree
of polynomials needed by a collocation method to achieve a given order of
accuracy must be larger than the degree of polynomials used in a Galerkin
method, (see [1]). Thus, the question of method selection appears to be more
delicate than it would originally seem.
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7 Error Analysis of the Galerkin Method

The error analysis of the Galerkin method follows directly from the quasiop-
timality (6.3) and appropriate approximation theory. For generality, we will
consider the general trial spaces th’dt. We begin by recalling some standard
facts from approximation theory.

7.1 Approximation Theory in the Anisotropic Sobolev
Spaces

For the approximation error in V,*, we have [3], [4, Theorem 4.12],[6, Lemma
5.1, [1, p. 46]

[ — PtdtuHHﬁl(R+) < Chtﬁ2_ﬁl HUHH52(R+)7 u € Hﬁ2(R)a (7.1)
for all values of (1, 32) which satisfy
(A ) <P < Ba<did+l, By>—1/2, and B <1/2. (7.2

The corresponding error estimates for the projection operator P, assuming
sufficient smoothness on I', are (also see [28], [46])

Ju— Pelroney € CHulliosry, w€ H(), (1.3
for all (aq, az) which satisfy
—(dy+ 1) <oy <ax<d,+1, az>-1/2, and ap < 1/2. (7.4)

In the next lemma, we bound the difference u— P, P;u in negative anisotropic
norms, that is, in H**(I', R) norms for which A,z < 0.

Lemma 7.1 Let (A, p,r,s) denote values which satisfy

and

Then, for all w € H™*(I',Ry), there exists a positive constant C' which de-
pends on (A, p,r,s) such that

lu = PPl gy < C (b7 + b)) (W + b3) [lul

HT,S(FJR_I_). (76)

62



Proof: Fix A, p, r, and s. We bound v — P, Pu in the L*(I' x Ry ) norm
by applying the triangle inequality to

u— P Pou = (u— Pyu)+ Py(u— Pu).
We get

IA

Hu _ PthUHL2(F><R+) Hu — quHL2(FXR+) + HPx(u — PtU)HL2(F><R+)
< C (Wllulliegey iy + Bl e, 2y )
by (7.1) and (7.3). Thus,

|lu — Py Pl r2rumyy < C(hL + h7)|ul

H o (DR ) (7.7)

To deduce bounds on u — P, Pyu in the HV*(T', R, ) norm, we use duality.
By definition, we have

u— P, Pu,v
Hu_PthuHHX’M(F,R_F) = Sup |< t >|
vEH M TH(I RS ) HUHH—X,—M(RR”
- PP
= sup [, v i) (7.8)

UEHO_X,—M(F’R_F) HU HH_X’_“(F,R_F)

(Recall that HO_A’_“(F, R, ) is the completion of test functions D(I' x Ry ) in
the H="~#(T', R, ) norm.) Substituting

(w0 = Pobw)| < lv = PPl raosey) ullzzeses)
< Ch + h ol g=rmn ey lullrzwxey)s by (7.7),
into (7.8), we get
[ = Po Pl ey < O+ b |lull 2 rxey ) (7.9)
Finally, to show (7.6), we combine (7.7-7.9) with the identity
(I = PP = (I — PP,
as follows:

(1 — Pth)zuHHw(r,RJ,)
C(h7* + hi")|lu — PoPoullz2rzyy, by (7.9),
C(h + he )+ b)) |lull e gy, by (7.7). 0

|u— PthUHHW(r,RJ,)

VAVANI
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In the next two lemmas, we consider u — P, Pu in H»*(I', R) norms for
positive values of A and p.

Lemma 7.2 Let (A, p,r,s) denote values which satisfy

0<A<r<d,+1, A<d,+1/2, (7.10)
0<pu<s<d;+1, p<d;+1/2. (7.11)

Then, for all
ue HY(T,Ry) N HAR, H(T)) N H**(R,, H(T)), (7.12)

there exists a positive constant C' such that

lu — PoPullgnrryy < CRL 4 BT ) ([l s r ey
+ ullgnm, w2y

+ [lul

Hr=n(ry,HA 1) T-13)
Proof: Fix the values of A, p,  and s and set
a=r—XA and [F=s—p.
Assuming that u satisfies (7.12), we first apply the triangle inequality to
u— Py Pou = (u— Pyu)+ Pp(u— Pu),
to get

| — P Prul| e, 2@y < 1w — Poull ey 220y
+ [[Pelu — Pa)| mugey 2(ry)
C(thUHHM(RJ,,Ha(r))
+ htﬁHuHHS(RJ,,L%r)))- (7.14)

IA

Analogously, applying the triangle inequality to
u— P Pu=(u— Pu)+ P(u— Pu),
we get

Hu — Pl’PtuHL2(R+,H>‘(F)) S C(htﬁHuHHﬁ(R+,H>\(F))
+ b2 @y mrryy). (7.15)

Clearly, (7.13) follows from (7.15) and (7.14).
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Though (7.13) is optimal with respect to powers of h, and hy, it is some-
what unsatisfactory since it requires more than v € H"*(I',R;) regularity.
Actually, we can use interpolation theory to show the next result.

Lemma 7.3 Let (A, pu,r,s) satisfy (7.11) and

r A
r_A 1
ST (7.16)

Then, there exist positive constants Cy(r,s) and Cy(r,s) such that

HUHHM(R_I_JJT—A)(F) S Cl(r,s)Hu] Hrs(T')Ry) (717)

and

"u"Hs_“(R+,H>‘(F)) S CQ(T,S)HU’ HT’S(F7R+)' (718)

Hence, for such values of (X, u,r,s), the approxzimation error (7.13) satisfies
the symmetrical form

lu — PoPrullgnrryy < Crys) (AL + B ||ul

HT,S(FJR_I_).
Proof: Let u € H"*(I',Ry). This means that
u€ H(Ry, H'(T)) and u € H*(Ry, H°(I)).

By interpolation theory, (see [24, chapter 1] and [25, chapter 4]), it follows
that
u e H(Ry, H1="(T)) for each & € [0,1].

Hence, by setting o = p/s and then o =1 — u/s, we get

HUHHM(R.F,HT—%(F)) < ClHu’Hm(r,Rw

and

HUHHs—M(RJ,,Hk(F)) < C?H“’HTvS(F,R+)-D

Besides approximation estimates, we need to develop an inverse inequality
for sz’dt. For such an inequality, we must henceforth assume that the trian-
gulation of I' is quasi-uniform. Informally, this means that the ratio of the
maximum to minimum diameter of the partition is bounded from above and
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below. Practically, this is not a restrictive assumption on the triangulation
and implies the inverse inequalities [1, pp. 359-360], [9], [46],

[l gaary < Ch; 27D ||u|gor ) for all w € X}, (7.19)
for all values —oo < a7 < ay < 1/2. We also have
lllmerey < Chi ™™ ullga @ forall we Vi, (7.20)

for all values —oo < 31 < B2 < 1/2. From these results, we deduce the next
lemma.

Lemma 7.4 Let A\,u > 0. Then, there exists a positive constant C (A, )
which is independent of the subspace sz’dt such that

lallzamury < COLp)max (A2 A7) llallg-r-w, g€ QE™.  (7.21)

Proof: Let ¢ € Q1™ be given. We use (7.19) and (7.20) in

HQH%INM(F,R) = HQH%IM(R,H(F)) + HCIH%%R,HA(F)a A, p> 0,
to get
lallipmrr < COLRT + ) allZe )
< O ) (B + 07 lall ey (7.22)

Substituting (7.22) on the right of the inequality

lallZ2py < llallmreemllalm-s-srz), — Ap =0, (7.23)
we get
lallzz@xry < COLp)(h 4+ b )lqlm-> e )
< O\ ) max(h; b gl g-x-s gy 0
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7.2 Error Estimates I

The purpose of this section is to give error estimates in a variety of anisotropic

z,dt

norms between the Galerkin approximation ¢, € QZ and the exact solution

to K1g = F. Our first result which estimates ¢ — ¢, in the so called energy
norm H~'/%=Y4,R,) clearly follows from (6.3) and (7.6).

Theorem 7.5 Let q), € sz’dt denote the Galerkin approximation to Kiq =
F. Then,

lg — qhHH—l/%—l/‘l(r,RJ,) < Cllg— Pl’PtqhHH—1/27—1/4(F,R+)'

Thus, if ¢ € H=TL4F LT Ry),

lg = gulla-1z-1ar gy < CORY? + bR+ B ] s a0y -
(7.24)

We remark that if d, + 1 = 2(d; + 1) then (7.24) becomes

lg — QhHH—l/%—l/‘l(r,RJ,) < C(hi + ht)dt+5/4HQHH2(dt+1)7dt+1(r,R+)-

Now, in the main theorem of this section, we consider the error ¢ — ¢, in the

L*(T' x R) norm.

Theorem 7.6 Assume that th’dt satisfies the inverse inequality (7.21) and
that ¢ € H¥+ 4+ YT R, ). Then, the Galerkin solution q, satisfies

g = qullzzesry) < Clho, he) (RS + ) || gl grassracer (r py ). (7.25)

h2 1/4 h2 —1/4
C(hy,ht) < C'max (h—j) , (h—j) ) (7.26)

Proof: For clarity, we will number the constants which appear, using the
letters C' to denote constants which are independent of the stepsizes h,, h;
and the letters C to denote specific constants which depend on (A, h:).

where

To estimate the difference ¢ — g3, we write

q—qn=q— P Pq+ P, Piqg— qp.
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Applying the triangle inequality, we get

g — anllzrueyy < la = Pebagllrz@xey) + 1P Pig — qull 2 ouey)-

By (7.7), we have
lg = PrPegllrarxmyy < Cr(hg ™ 4 R lgll gacssac g, ). (7.27)

Thus, it remains to estimate g, — P, P;q € (J;,. By the inverse inequality
(7.21), we have

lan — PPl r2(rsyy < Camax(hy Y2 b ]|gn — Pobeqllg-12-1030 g4 -
(7.28)
Since g, — Py Pig = (¢ — P.Piq) — (¢ — qn), equations (7.6) and (7.24) show
that

H% - PthQHH—l/2v—1/4(F,R+) < Hq - PthqHH—1/2v—1/4(F,R+)
+ [lg— QhHH—l/%—l/‘l(r,RJ,)
< Ca(hl + h) (e 4 R gl praess e

We now substitute this inequality into (7.28). This yields
HPthq — QhHL2(FXR+) S Cl(hx, ht)(him-l—l ‘|’ h;lt-l—l)HqHHd:r‘l'l,dt-I-l(FJR_l_). (729)

where

C(hyyhy) < CyComax(h; Y2, b)WY + by,
Thus, by combining (7.27) with (7.29), we conclude that
g — gnllr2rxry) < Calha, he)(RET + hftH)HCIHHdHLdtH(r,RJ,)a (7.30)

where

Co(hy, hy) = Cy(hy, hy) + Ch.

To conclude the proof, we note that

max(h7/2, by (BY2 4 )< 2max(h72, Y max(hl/, b

B2 1/4 B2 —-1/4
= 2max (h_t) ,(h—t) ,
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for all h,, hy > 0. Hence, it follows that

52 1/4 52 —-1/4
Ca(hy, ht) < Cymax (h—j) , (h—j) , (7.31)

for some positive constant Cy. Substituting (7.31) into (7.30) proves the

theorem.
p2\ M g2 A
GG

The factor
seems to suggest that the ratio £2/h; must remain bounded throughout com-
putations in order to achieve optimal order convergence in L*(I" x R,).

7.3 The Aubin-Nitsche Lemma and Interior Error
Estimates

In this section, we apply the Aubin-Nitsche lemma to derive error estimates
between the Galerkin solution ¢, and the exact solution ¢ in lower Sobolev
spaces. We then use these estimates to deduce L™ error estimates between

t
u(x,t) = / / K(x —y,t— s)q(y, s)dyds, z € R’ t>0,(7.32)
o Jr
and

¢
up(x,t) = /0 /FK(:L' —y,t—s)quly, s)dyds, z € R t>0.(7.33)

Theorem 7.7 Let g, € sz’dt denote the Galerkin approximation to Kiq =
F. Then, for all 0 < p < min(d; 4+ 5/4,d./2 + 3/4), there exists a positive
constant C' such that

g = anllg-ar242i - /atn) (T)Ry) < C(hi + he)"|lq — qhHH—l/%—l/‘l(r,RJ,)- (7.34)
Thus, if ¢ € H=TL4F LT Ry),

Hq - QhHH—(1/2+2M)7—(1/4+M) (TR4) < C(M, dy, di, hy, hl’)HqHHd-’E+17dt+1(F7R+)7

where

Clpty oy dyy hoyhy) < C(R2 + he) (A" + W) (R + BE). (7.35)
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Proof: For brevity, we introduce some temporary notation. For all real
numbers 3, we let

X% = H*%(,R,) and X?=H*FT R).
We further define the spaces
Xoﬁ = Hgﬁﬁ(FvR-l-)v ﬁ Z 0.

Recall that Ho”’(T',R,) was defined as the completion of D(I' x Ry) in the
H?**+*(T',Ry) norm. Therefore,

X7 =(x7). Bz

Set o = min(d; + 5/4,d, /2 + 3/4). For any 0 <y < g, we have

Hq - QhHX—(l/4+M) = sup mﬂ
peEXI/AtH p x1/a+n

Let Ry: X% — X7 denote the restriction operator and Ey: X? — X7 any
(fixed) operator of extension. Since Ry F1p = p almost everywhere, we have

(¢ — qn R+ E4p)]

g = anllx-aratm = sup
pextin Pl e
R (q— E
— (B3 (q = an), Evp)|
pEXé/4+“ HpHXé/‘H'M

Since F, is bounded, it follows that

R (g — F
1= qollcem < € sup  WHl0= @) Eap)|
peX}/itr £ pll 1754

Setting p = Eyp, it therefore follows that

R (g —
Hq - QhHX—(l/4+M) < C sup |< +(q Qh)7p>| ‘
pexviatn |lpllxisen

(7.36)
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Now, define § € X#~'/* as the unique solution to the adjoint equation
K,0 = p. Since K;: X#~1/4 5 X#+1/4 js an isomorphism, there exists some
positive constant ¢ such that

CHIOHXMHM S HGHXM—1/4'

Therefore, substituting this into (7.36), we have

[(R7(q = 1), K10)]

lg = arllx-araw < € sup

gexn-1/4 10| 174
KiR(qg—q,),0
= C sup (K +(q qn), >| (7.37)
geXn—1/4 HeHXﬂ—lﬂ

We now use the fact that the Galerkin solution ¢, satisfies
(KiR:(q—q1),0) =0 forall 0€ Q.

(This is easily seen since R} corresponds to, or more precisely extends, the
zero extension operator.) Therefore,

g — qullx—arem < C  sup (KiRi(q—aqu), (1 — P.P)0)]
B geXxn-1/4 10| 5 1-1/4

. 0 — PP g1/
< CIRAR: (a0 = a)llguys Ol

T . (7.38)

The boundedness of the operators K; and Ry imply

HlélRi(q —q)llxs < Cllg— QhHH—l/%—l/‘l(r,RJ,)-
Using this estimate and the approximation inequality
10 = PPl grresrmyy < Clhg +he) |10l gumrre, 0= p < o, (7.39)
in (7.38), we get
g — anll - /242174110 TRy = C(hi + he)*|lg — QhHH—l/%—l/‘l(r,RJ,)-

This shows (7.34). Assuming the greater regularity on ¢, we get the next
result by applying the energy estimate (7.24). [J
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We make two brief remarks. First, observe that it is the approximation
inequality (7.39) which limits the range of u. Secondly, we can only simplify
the constant C in special cases. For example, if d, + 1 = 2(d; + 1), it can be
written in the more attractive form

C(Mvdwvdtvht7h$) S C(hazc + ht)u+5/4+dt7 0 S H S dl‘ + 5/4

Theorem 7.8 Let ¢ € H-Y/*~Y4,R,) denote the solution to Kiq = F
and q, € th’dt the Galerkin solution. Define uw and up, by (7.32) and (7.33).
Then, for all x € R® such that dist(I',x) > § > 0 and for each 0 < p <
min(ds + 5/4,d, /2 + 3/4), there exists a positive constant C(, ) such that

|u(:1;, t) - uh(xv t)| < 0(57 /“L)C(/“Lv dyy diy o, ht)HQHHd%dt (T\R4)» (740)

where
C(M? dl’v dtv htv hl’) S C(hazc —I_ ht)u(hl}/él —I_ halc/z)(him —I_ hft)

Proof: Set p1o = min(d; +5/4,d./2 4+ 3/4). We subtract (7.33) from (7.32)
and take absolute values. We get

jute,t) = w0 < | [ [ K=yt = s)a = a)y, $)duds|

< CH[(HX“‘H/“HQ - qhHX_(l/‘H-M)

for any 0 < p < pg. Now, because x is bounded away from I', the heat kernel
K is a C* function which decays sufficiently rapidly at infinity. Hence, it be-
longs to X* for any s € R. The proof now follows by applying estimate (7.34)
to the difference ¢ — ¢,. [

7.4 Error Estimates II

The analysis of the previous section assumed that no approximation of the
forcing function F' (in the equation K1q = F') occurred. This is not a rea-
sonable assumption, even if one neglects the effects of numerical integration.
Often, a better model is to assume that the Galerkin solution ¢, solves the
equations

(p,K1gn) = (p, Fn) forall peQ,cC H V>V, Ry), (7.41)
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where F), is some approximation of F'. In the next lemma, we adjust the error
bounds between ¢, and ¢ = K7'F to reflect this additional approximation.
Since the proof is obvious, we omit the details.

Lemma 7.9 Lel Fy, € H'Y/*Y4T,Ry) and let g, denote the solution to the
Galerkin equations (7.41). Then,

g — arllg-12-1rpyy < Cllla— LePranllg-1o-18 0 py)
‘I’ HF_ FhHHl/271/4(F,R+)}‘ (742)

Sitmilarly, for a quasi-uniform mesh,

lg = allereyy < Cllla— PePanll 2 my)
+ HF— FhHH1/271/4(F,R+)}7 (743)

where C is defined in (7.26).

In the rest of this section, we examine the error term F — [} for our
application of the Galerkin method to the direct integral equation. That
is, we study the difference between F' = (3 4+ K3)g + Mf and F, = (1 +
K2) P, Pig+ M 7111 f. (Recall that II; f denotes the linear interpolant of f with
respect to a isoparametric triangulation 7 of ©Q and P, P;g a tensor product
interpolation of g by piecewise constants in time and piecewise linears in
space.)

We consider the error due to our approximation of the domain term first.
We begin with a preliminary lemma.

Lemma 7.10 Let O denote any bounded, open set such that
O C {xr € R%|z| < R}, some R > 0.

For any f € L*(O), let

Uz, t) = / K(x—a )f(z)d2’, z€R 1>0,  (7.44)
O

where K denotes the fundamental solution to the heat equation. Then, there
exists a positive constant C(R) such that

TNV @ gy < CAEIAIZ 0 (7.45)
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Proof: Let

o) fle), x €0,
flx) = { 0, z € R°\O,

so that

Uz, t) = / K(x— o )f()de!,  z€R ¢>0.
RS
We take the Fourier transform in space of both sides. This yields
Uu(61) = PP, () (), €eRY >0, (7.46)

where U, denotes the Fourier transform in space of U.

Since
/Oo Py = L
0 2|

it follows that

N o0 ntaedr = L[ (LHIER)
[ Lol npaa - 5 [ B

To bound the right hand side of (7.47), note that f having compact support
implies

7 (F) (©)12de,  (7.47)

Fo (F) O < 1], F)e " dal
< [ 1f()lde
<

C(R) [ 1f(o)da.

Since (B denotes the unit ball in R?)

LS (e = [ S (1) @rae

S 4k B[]

* /RS\Bl %'ﬂ (F) ()[de

ClllEzco) ), (€17 + 1)t
v [ 1 (7) @

IA
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it follows that

[P (1) ©F < sl
Applying this in (7.47), we have
10y < CORIS B o) (7.49)
for some positive constant C(R). Analogously, because

d 2 x
£ () €0 = e E () @, cers0 ()

we have
ou ., o o1 ou ,
HWHL2(R+,H—1(R3)) = /0 /Rs(l + 1€15) 7 Fs (W) (& )] dedt

o It ey ; )
/o /R m'% P, () (&)ded

1 .
S e

IA

1
= §HfH%2(0)- O (7.50)

Using Lemma 7.10, we can now analyze the error between M f and

M’THlf

Theorem 7.11 Let Q denote an open, bounded set in R® and f € L=(Q).
Set

E(x,t) = Mf(x,t)— MsI f(2,1), reR? ¢t>0.
Then, there exists a positive constant C which depends on ) such that

1]y @ ) < Cmeas(Q — Qr) + h7)|| fll g2 es)- (7.51)
Proof: For each (z,1) € R® x Ry, let

Ei(x,t) = Mf(a,t) — Mrf(a,t),

and
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FEy(x,t) = Mgf(a,t)— M7l f(a,t).
Clearly, ¥ = Fy + F,. By Lemma 7.10, we have

HE2HV(R3,R+) < C(Q)Hf_HIfHL2(R3,R+)
< R fllre@), (7.52)

by familiar approximation theory [9, Section 4.2].
Thus, it remains to estimate F;. Set

Floy={ g e

for each 2 € R®. Then, we have
FEi(x,t) = /Q\QT K(z —a',t)f(2")da',
= / K(z — 2’ ) f(2")da’,
Q
for all x € R®, ¢ > 0. Hence, by Lemma 7.10,
B0 s ) < CFNZ2(0): (7.53)
for some positive constant C'. The theorem now follows since
r 22 — / 2d /
Iy = [, 1P
< [meas(Q = Q7) I [ fl7ee):

and
HfHLOO(RS) < CHfHH2(R3)7
by a Sobolev embedding theorem [16, p. 243]. [
Since I4Ky: HY2YHD,Ry) — HY2Y4T,R,) is bounded, the error due
to our approximation of the double layer term is easily deduced. We have
[(1/2 + K2)(g — Pthg)HHl/%l/‘l(r,RJ,) < Cllg— PthgHHl/%l/‘l(r,RJ,)
< ChE+ 1) gl ez ey
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8 Numerical Examples

In this section, we report the results of some numerical experiments. Since
these experiments are preliminary in nature, we shall consider the analogous
single layer potential K1 which is defined on surfaces I' € R®. (The operator
defined by (1.11) with the fundamental solution now given by

exp(—|x|*/4t) 2
. —_— R*%¢>0
K(x,t)= (4rt) ve = )
0 reR* t<0

The objective of these experiments is to solve the initial-Dirichlet value
boundary value heat equations

a—u(x,t) — Au(z,t) = 0, reN, t>0,

ot
u(z,0) = 0, xel, (8.1)
u(z,t) = gla,t), zel,t>0,

using the direct integral equation
1
Kig(x,t) = 59(:1;,1‘) + Kag(z, 1), el CR*t>0.

Throughout, our basic assumption on I' is that there exists a 1-periodic
parametrization ®(6): 0 € [0,1] — I'. To recall, our method consists in
replacing the given Dirichlet data by its projection g in the subspace @)}, of
piecewise linear in space and piecewise constant in time and to then solve
the Galerkin equations

1
<U,IC1(]h> = <U7 §gh(x7t) + IC?gh(xvt» for all v € th

for g5 € @)y,. As shown in the text, this procedure reduces to solving the set
of linear systems

> Gur@e =Y Lukn, for each n € Z, (8.2)
k=1 k=0

where ¢, and g, represent average values of the approximate Neumann data
gr, and given Dirichlet data ¢ at time step n.
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To accurately determine the convergence of the method, the examples
chosen have known solutions. In general, except for the first run, each run
consists of two parts. In the first part, we solve (8.2) for the fluxes ¢,. In
the second part, we then use the representation formula

o

! Ju 0K
= — (Y t)K(z =y, t =) F ——(x —y.t — Yu(y, ') | dydt’
/0 /F [an (y7 ) 4% (:E y7 ) :F an ((E y7 )u(y7 ) y ,
x € RA\I,t >0,

to recover approximations to the corresponding solutions w. (The minus
sign holds for the interior problem, while the plus sign holds for the exterior
problem.)

In the first three of our examples, {2 is the unit disk. We will describe
the points of the disk by polar coordinates (r,6), with the angular variable
6 scaled to lie between 0 and 1. In this case, exact solutions to (8.1) are
available in series form. We supply some details on the construction of these
solutions in appendix C. In each of these examples, approximations were
sought over the space-time cylinder 9B; x (0,4).

Example 1:
Dirichlet data
g(0,t) =%
Exact solution
= Jo(aygr) 1 0
6,t) = —4 — (1 — e !
u(r Y | L),

where Jo(a) = 0.

Exact Boundary Flux

q(0,1) _t—42 _M) (8.3)

k

(Note: 0.Jy(2)/0z = —J1(2).)

This example was ran for debugging purposes since it could be compared
to runs previously reported in the literature [42], [34]. Note that the Dirichlet
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Figure 1: Absolute Errors versus Reciprocal Timestep 1/h;. A) Ly Error. B)
L Error. C) Midpoint {* Error.

data ¢g and the exact flux ¢ are independent of the # coordinate. This is
reflected in numerical computations since each component of the vectors ¢,
were found to be identical. Considering that the Galerkin method makes no
spatial discretization error, a reasonable assumption is that the number of
boundary nodes can remain at constant value independent of the timestep
hi. We found this observation to be true with 8 boundary nodes sufficient.

In Figure 1, we graphically examine the rates of convergence between the
Galerkin solution and the exact flux in both the L? and L* norms. Clearly,
the rates of convergence are linear in both norms. Since the L> comparison
between the Galerkin and exact solution is pessimistic, we also looked at
the maximun of the absolute errors |¢(t,_1/2) — qn(ta—1/2)| at the midpoints
tu_1j2 = (n — 1/2)h;. Here, we see evidence that the rate of convergence at
the midpoints is faster. To determine the rate, we looked at the midpoint
errors at selective points. In Table 8, we display the relative errors at the
points t = 1. and ¢ = 3.0. These results show quadratic convergence with
respect to the time step.

hy Rel Error Rate hy Rel Error  Rate
2 4.44601e—01 2 5.6458e—02

2/3 | 2.82556e—02 2.5085 2/3 | 8.7235e—03 1.699
2/9 | 4.52148¢—03 1.6679 2/9 | 9.7534e—04 1.994
2/27 | 5.06173e—04 1.9932 2/27 | 1.1071e—04 1.980
2/81 | 5.66493e—05 1.9934 2/81 | 1.2486e—05 1.986

Table 0.1: Relative L* Errors as a Function of A,
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Figure 2: Relative L? Errors versus Reciprocal Timestep
Example 2

Dirichlet data
g(0,t) = t* cos 27.

Exact solution

ulx = — Jl ﬁkr —i —e_ﬁit]}cos T
it = { 425$J1(5k) [t 5k(1 ) s

where J1(Br) = 0.

Exact Boundary Flux

q(0,t) = {t2 — 25t 4+ 4 Z 7%)} cos 2mf.
k=1 ﬁk

We start by investigating the total L? approximation error over the cylin-
der 9By x (0,4). Since the optimal rate of convergence to expect is O(h2+h,),
we performed a sequence of runs in which the time and spatial steps were
related by 8h, = h,}/Z. The results are shown in the left graph of Figure 2.
They indicate that the method is converging linearly with respect to h;.

Considering the excessive demands on storage this algorithm makes, (each
successive run in Figure 2 increased the demand on storage by a factor of
16), it is important to recognize the relative importance of the stepsizes h;
and h,. We performed a set of experiments with various values of h; and
h,. In order to conserve a bit of storage, we reduced the time axis of interest
in this investigation to (0,1/2). The results are graphically summarized in
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Figure 3: Interior Approximations

Figure 2. They indicate that a consistent choice of time and space step is
needed for efficiency.

We now consider the approximation of the solutions in the interior. To
recall, our approximation consists in collocating the representation formula
at a desired interior point (x,t) (or points) and then replacing the densities
g and ¢ by their piecewise and Galerkin interpolants. Since the point z is
away from the boundary, the spatial integrals can be computed using a order
4 Gaussian rule.

We determine the solution as a function of time for various values of r
and 0. Figure 3 clearly shows how the rate of convergence is slower for the
point closest to the boundary I'. Observe how the Galerkin approximation
with hy = 1/16 is identical to the exact solution when r = .1.

Example 3:

Dirichlet data
g(0,1) = cos2ml

Exact solution

u(r,0,t) = rcos 2 (8.4)

Exact Boundary Flux
q(0,t) = cos 276 (8.5)

This example illustrates the effect a discontinuity between the boundary
and initial data has on the solutions. In Figure 4, we show the Galerkin
approximations to the flux and to the interior solution.
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Figure 4: Galerkin Approximations

Clearly, the method behaves quite poorly near the origin ¢ = 0. For-
tunately, however, the effect of this discontinuity decays fairly rapidly with
time. Indeed, away from the origin, we found the method to be converging
optimally.

Example 4: In this example, we consider an exterior problem. It is for
such exterior problems that the boundary element method seems to be most
useful. We take the boundary I' to be the ellipse

2y
EO::{ (:zj,y):?—l—?zl },
0 0

with (zo,y0) = (3/2,1).

82



Flux

Approximations to the flux for theta=0.
1 T T T

Timestep 1/5 Spacestep 1/8 X
Timestep 1/10 Spacestep 1/8 *
x Timestep 1/10 Spacestep /16 o

0.9

0.8

0.7+

0.6+

0.5+

0.2+

0.1+

0 I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time

Figure 5: Galerkin Approximation to Flux

In order to have a problem with a known solution, we choose the Dirichlet
g so that the exact solution u to the heat equation in the exterior is the
fundamental solution

—|z|?/4t
u(x,t) = %, re R t>0.

Note that ¢ has both a spatial and time dependence since the radius p(8) of
EO is

1/2

p(0) = { z8 cos® 2m0 + yi sin® 2m0 } . (8.6)

It is easy to check that the exact Neumann flux is

exp(—(0)/41) |
4¢2 [:1;(2) sin2(27rqb) +y2 COSQ(QWQb)} i

q(0,t) =
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Approximations to the temperature at r=1.6, theta=0.
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Figure 6: Galerkin Approximation to Solutions

In Figure 5, we consider the Galerkin approximations to the flux. The
results indicate that its spatial step which is controlling the error. The same
remarks can be made about the approximations of the solution. Some of
these are shown in Figure 6.

We conclude with some observations. In the first example, we saw evi-
dence that the Galerkin method when applied to smooth functions not only
converges optimally in L? by also exhibits superconvergence at the midpoints.
In the second example, we saw the competitive effect of the discretizations in
space and time. In the third example, we examined how the Galerkin method
behaves when applied to a problem with incompatible Dirichlet and initial
data. Very encouragingly, we saw that although it behaves quite poorly near
the discontinuity, the Galerkin method damps out its effects fairly rapidly.
Lastly, we applied the method to an exterior problem to show how the bound-
ary element is well suited to such problems.
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A Proof of Theorem 5.3

In this appendix, we give the proof of Theorem 5.3 in Section 5.1. Since the
proof employs the method of finite differences, we begin with a quick review of
these operators before proving the theorem. For each integer : = 1, 2,3, and
any h > 0, the first order difference operator d, (h) is defined on H*'/%(R” R)
by

hei, t) — w(y,
dy (Wyulyr) = ERe ) Z el

where e; denotes the unit vector in the y; direction.

ye R’ teR,

The higher order difference operators are defined by successive applica-
tions of this map. For any multiindex 3 and any set H of positive real
numbers (h;;, 0 =1,2,3, j =1,..., ;) the notation

3 0
Diw =TT T] dy. (hiy ). w e HYY(R? R),
i=1j7=1

defines the finite difference operators D]ﬁ;[. Set

91= 2015

and let |H| denote the largest number in the set H. The following lemma
relates Dg to the partial differential operator

5 9P 92 P
B y1 Oy, ay:a'

For more details, see [16, pg 258].

Lemma A.1 Let r,s be any non-negative real numbers and suppose that

w € H™*(R* R) satisfies

lim supHD%w[ e < Co,

|H|—0

for some finite constant Cy and some multiindex 3. Then, 3w € H™*(R*, R)
and satisfies

107w

HT,S(RS ,R) S CO-
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We note some properties satisfied by the difference operators. If v denotes
the restriction operator, (i.e.,

yw(yr,yz.t) = w(y,y2,0,t),  (y,t) € R xR,)
and 3 = (01, $2, B5) any multiindex such that g3 = 0, then

FYD]ﬁ'Jw(ylv Y2, Ys, t) = Dlgﬁyw(yh Y2, t)
Another useful property of the finite difference operator is that it commutes
with differentiation, i.e.

Dgaaw = aaDgw, for any multiindices «, 3,

for w € S(R® x R), say. Finally, by a simple change of variables, it is easy
to prove the important equality

| [ ity oty tdydt. = (=) [ w(y.) D7 oy, dyat.
for all w,v € L*(R® x R). (A.1)

We are now ready to begin the proof. First, we remind the reader of some
previous notation:

A = Heat operator Wh/2 5 W=1=1/2,

vy = Trace operator W — H'>V4T x R),
YV = {yeR: |y <1,i=1,2,3},

Yo = {yeVYiy; =0},

O = An open set in R®. A representative

of the sets in a finite covering of (2,

¢ = Isomorphism from O — Y .

Here is what we want to prove. Given m € N and ¢ € H™~Y/2m=V4T R),
let

wo(y, 1) = " (Cug)(y: 1),  y€Y,LER
Theorem 5.3 states that all of the partial derivatives 9°w, exist and belong
to L*(R, H'(Y')) so long as |3| < m and 33 = 0. Moreover, they each satisfy

an inequality of the form

HaﬁquHlvlﬁ(Y,R) < CHCIHHm—l/%m/?—l/‘l(r,R)- (A.2)
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Proof of Theorem 5.3: Let HS’I/Q(Y, R) denote the closure of D(Y x R)

in the H"'/2(Y,R) norm. (In other words, functions with compact support

in Y x R.) Define A: Hy'/*(Y,R) x Hy'/*(Y,R) = C by
Alw, v) = (Ay™(w), ¥ (v)) . (A.3)

It is simple to check that A can be written in the form

/ /@rﬂ V) (y, ) (y)dydr
+Z [ st Gt St . (A

for each w,v € HY'/?(Y,R), where J(y) denotes the Jacobian of 1> and where
a; j(y) € C=(Y) with the matrix of coefficients {a; ;(y)} being uniformly pos-
itive definite. (That is, there exists a positive constant ¢ which is independent
of y € Y such that

3 3
Zyiai7j(y)yj > CZVZ»Q forall v € R%) (A.5)
— —
Consequently, there exists some positive constant ¢ such that
Alw, (I = H)w) = clwl|} gy forall we HZ*(V,R),  (A6)

where H: Hé’1/2(Y, R) — Hé’1/2(Y, R) denotes the Hilbert transform.
We substitute w, for w in (A.3). Using the product rule, we get

Awgv) = {(Aug, (0 (0)) + / [ il V(@) V(0] (. Ddads
—/ / o (0) (2, )V ((2)Vuy(z, t)dzdt,

where u, = A~'y*q. Hence,
Afw,,v) = (yq,cem () + [ /R g, )V () (0) (2, ) ddt

- / [ ) (@) V(@) Vuy(a, t)dadt, (A7)
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for all v € Hy'*(Y,R).

To estimate Dgwq, we will consider the pairing A(Dgwq, v). Before we
can take this step, however, we must verify that this pairing makes sense for
all multiindices  such that |3| < m. Fortunately, this only requires a careful
choice of the set H so that |H| is sufficiently small. To be precise, let r < 1
be such that

supp wq('vt) C }/7’ = {y S RS: |y2| < T,i = 17273} C Y7

uniformly with respect to ¢ € R. (The definition of w, shows that such an r

exists.) Set
1 N 2 d 2 N 1
or=gtgr and o=+
so that r < oy < 03 < 1. Then, it is easy to check that Dgwq has support
in the set Y,, for all sets H which satisfy

1
|H| < 3—m(1 _T)-

Moreover, we have

DﬁHDqu S H(}’l/z(}/% ” R)

which we will need later.
Let v € Hé’1/2(Y, R) be given. Without loss of generality, we choose v so
that its support lies in the cylinder Y, x R. (This ensures the inclusion

ng C Hé’1/2(Y, R) for any multiindex 3.)

We now consider the pairing A(D]ﬁ;[wq, v). By (A.4) and (A.1), we have

A(Dlﬁ'—lqu U) = (_1)|5|A(qu DéHU) + El(qu U)v (A'S)
where

3 G )
By (wy,0) = ] H / / iy (y — hig, 1) D ai i (y)dydt

(=1 k=1

/—oo /Y ZTFt(wq)(yv )ft(v)(y - hlk? T)Dl_hlk (J(y)) dydT'
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Using (A.7), we obtain

A(Djgwg,v) = (v, 0" (D20)) + By, 0) + Ea(ug, 7(v),  (A9)

where

By (ug, ¢ / / gz, )V (2) Vo (o), Ddedt
— /_Oo /RS v(p(x), )V {(2)Vuy(x,t)dxdt.

We now bound the terms Fy, and E£;. We have

| By (wy,v)] < CquHHLW(Y,R) HUHHLl/?(Y,R)a (A.10)
and
| Bx(ug, )| < C A ugllp2eo xmy + 11Vl 1122 oy 10 00vimy
< Cllugllwrar lollzarz ey (A.11)

(To get the last estimate, note that A € D(R?) and apply Lemma 3.2.)
Collecting together equations (A.8-A.11), it follows that

A(Dfjog,v) = (g, 760" (D2 o)) + E(v), ve HY(Y,,,R),  (A.12)
where £ satisfies

E@) < C{llugllyyrare + lwgllmare e} lollm e

<
< Cliglm-re-awllvllmreye- (A.13)

To proceed further, we now rewrite the term
1= (0.0 (D) A
in a form where DéH acts not on v but instead on ¢*((q). Set

V—ﬁH(ylvy37t) = DéH (U) (ylvy?)vt)v (ylvy?)vt) € Y xR

Then, from (A.14), we have

1_/ /m (2, ) () VP (62), 1) ddt.
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Changing the variable of integration to y € Yy (by the mapping ), we get
= | & € OVE(' 0.0y )dy'dt (A.15)

where we have written V_ﬁH(y’, 0,t) for v o V_ﬁH.
Now, since 33 = 0, the trace operator v commutes with the finite differ-
ence operator, 1.e.,

VO, 0,t) = ’VODﬁ (v)
)

= v (v
= DfH (vv) (v, 1)- (A.16)

Therefore,
L= [ [, ¢ € 0D 67 (' (). (A17)

Using (A.1) in this equation, we obtain

/_O; /y D (&7 (C)) (s )ywly', ) (y ) dy'dt
2 B L. -
+ 1:[ 1:[ /_Oo /Yo (" (Cq) (v + h]‘k,t)’yv(y’,t)pf_hjk J(y)dy'dr.

Taking absolute values, we get
1] < CHqHH’"—1/2vm/2—1/4(F,R) H’YUHH(YoxR)

S CHqHHm—l/2,m/2—1/4(F7R) HUHH171/2(Y,R)' (A18)

Thus, (A.18) and (A.12) show the existence of some positive constant C'
such that

AD} 0y 0)] < Clallgmassmsmsine syl
for any v € Hy I/Q(YUQ,R) (A.19)
But, by selecting v = (I — H)Dgwq in (A.19), we get
A(D 00, (T = H) D] < Clallgmossemmsigesy | Dy

(Note by our choices of H and o3 that v € Hy I/Q(YUQ,R) ) Hence, by (A.6),

we deduce
IDFw,llgrrare < Cm)gllpgm-1/2m/2-1/3r gy
which by Lemma A.1 proves the theorem. [J
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B Proof of Theorem 5.7

In this appendix, we give the proof of Theorem 5.7. To recall, we must show
that the solution u to the Dirichlet problem

0
a—?—AuzO on R\I' xR,

u=g¢g on [I'xR,
satisfies the interior and exterior estimates
HUHHMHM/HU?(Q,R) < CHgHHm+1/2,m/2+1/4(F,R) for each meN, (B.1)
and
HUHWMHM/HU?(W,R) < CHgHH’"+1/2v’"/2+1/4(F,R) for each m € N.  (B.2)

Observe that the regularity estimates (B.1-B.2) do not say anything
about the solution u over R® x R. Therefore, we can separately study the
Dirichlet problem over the interior 2 x R and the exterior ¢ x R. We will
concentrate on the exterior problem

a—u—Au:O on Q° xR, (B.3)

ot
u=g¢g on ['xR. (B.4)

The proof will use localization. Henceforth, we fix m € N and ¢g €
H7H2m /214D R). For convenience, we will write

1gllm,r = gl mrmsrrzmrzsoss v py- (B.5)

Continuing with previous notation, let (O;, ¢;, ;)M denote a chart of T'.
We append to this chart an interior set Oy such that Og, Oq,..., Oy covers
Q and a function {; € D(Oy) such that {¢;(x)} forms a partition of unity
with respect to this cover. We then set

M
OM-I-I = RS\ U O]v
J=0
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and define
M

Qrer(e) =1 =3 (x), v €R

(Again, note that the functions {¢;(x)})’*" form a partition of unity over
R>.)

Now, let u denote the solution to (B.3-B.4). To study u, we will consider
each of the functions (;u, for integers 5 between 1 and M + 1. They are
connected by

u(x,t) = il Ci(x)u(x,t), r e teR. (B.6)

i=1

To estimate the functions (;u, we shall use a standard inductive argument.
Specifically, assume that the solution u to (B.4) satisfies

u € WH2(Qe R), (B.7)
for some k£ € N with £ < m. We will then show that each (;u satisfies
HQUHWHLWHU?(QC,R) <C {HgHmF + HuHkakﬁ(QC,R)} : (B.8)
Clearly, because of (B.6), equation (B.8) implies that

letll sz e gy < C gl + laallyrrz ey § (B.9)

for any k& € N with & < m. Noting that (B.7) is true for £ = 0, induction on
kin (B.9) shows that

Hunm+1,m/2+l/2(Qc7R) S CHgHmI for any m - N. (BlO)
The estimates (B.8) will be proven based the differential equation

A(Qu)(:z:,t) = QVU(Z’,ZL)VQ(J?) —|—u(:1;,t)A§j(:1;), (l’,t) € 0° x Rv (Bll)
, _ ) Gla)gle,t) j=1,2,...M
gju(x,t)—{o M1 ) rel,teR.
solved by (;u. In the next theorem, we show (B.8) for j = M + 1.
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Theorem B.1 For any integer k € N, let u € Wk’k/z(QC,R) satisfy
Au(z,t) =0, xr €N teR, (B.12)

and let 0(z) € D(R?) satisfy O(x) = 1 on Q. Then, there exists a positive
constant C' which depends only on k and 8 such that

H(l — Q)UHWk+1,k/2+1/2(Qc7R) < CHuHWk,k/z(QCR). (Blg)
Proof: We apply the heat operator A to (1 — #)u. We get

Al=0u = (1—-0)Au+ F
= F, (by (B.12)), (B.14)

where
F(ax,t) =2Vu(x,t)VO(x) + u(x, t)AO(z), reQ° telR.

Since § = 1 on Q, it follows that I/ = 0 on Q x R. Because (1 — #)u also
vanishes over this set, we can extend both sides of equation (B.14) by zero

to Q. We get
Al = 0)(x,t) = F(x,1). r€R teR.
To conclude the proof, we will verify the inclusion
F(a,t) € HFVE22U2RS Ry n w12, (B.15)
and apply Theorem 5.6. (This theorem showed that
A WHHLE241/2 Hk_l’k/z_l/z(RB, R)N w12,

is an isomorphism.) The main observation to showing (B.15) is to note that
the support of F'(x,t)is contained in some cylinder Br X R of finite radius R.
It is easily checked that any H*~'*/2=1/2(R® R) function which is supported
in this fashion also belongs to W™H=4/2,

Hence, we must verify that

IVuVO + uAf € HF1F2-12(RE R). (B.16)
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But, by definition of Wk’k/z(ﬂc, R), we have the existence of positive constant
(' such that

H |Vu| HHk—l,k/z—l/z(QcR) S ClHunk,k/z(QcR), U € Wk’k/Q(QC,R).

Similarly, since Wk’k/z(ﬂc, R) and H**/2(Q°,R) differ only in their behavior

near infinity, it follows that there exists a positive constant Cy(#) such that
HUAGHHkvkﬁ(RS,R) < C(G)HUHWMM(QC,R)-
Hence, (B.16) holds. [J

It remains to consider (B.11) for the indices j which lie between 1 and
M. Since the supports of the functions (;u are bounded in this case, we add

(ju to each side of (B.11). We get

A(Gu) + Gu = Fj(a,t), (x,1) € Q° xR,

Gu = Golet), (.)€l xR, (B-17)

where

Fi(z,t) = =2Vu(z,)V((e) —u(z,)AG(2) + ¢(x)u(z,1),
(v, ) € xR, j=1,..., M.

The way to study the parabolic problems represented in (B.17) is to map
them into equivalent problems which are posed over the half space Y, x R,
where

Vi ={(y,y2,y3): vl <1, 0=1,2,0 < ys < 1}.
Before we do this, it is convenient to reduce (B.17) to an equivalent Dirichlet
problem with homogeneous boundary condition. Let u,(x,t) € Wrmtlm/241/2
denote any extension of ¢ such that

uy(e,t) = g, t),  (e,0) €T xR
We then define U; = (ju — (ju,. This function satisfies

A(U]) + U]‘ = f]‘(l',t), (l’,t) - R? x R,

U, = 0, (¢,1) €I xR, (B.18)

where

fj(xvt):Fj(xvt)_A(Cjug)(xvt)v (xvt)EQCXR-
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To map (B.18) to the half space Y, x R, let
w;(y,t) = qb;(Uj)(yvt)v (y,t) € Y3 xR
This leads to

20y, 8) — Luwj(y,t) +wi(y,t) = &(f)y,t),  (y,t) € Yy xR,

wi(y,t) = 0, (y,t) € Yo x R,
(B.19)
where L denotes the uniformly strongly elliptic differential operator
e 0w
Lw(y,t) = a; i (y)=———y,1), y,1) €Y xR.
0= 3 algugte . 0

(In particular, the matrix of coefficients {a; ;(y)} is positive definite, uni-
formly for y € Y.) Let

& 0*w
Low(yvt) = Z aiJ(O) ay'aylv (yvt) S Y—I— x R, (BZO)
i0Y;

7,75=1

The mapping properties of the parabolic operator [+ Ag := 9/0t — Lo+ 1
are well understood [25, Chapter 4]. We state them in a lemma.

Lemma B.2 For each k € N, let Hé‘l”“/Q‘l/?(Y+,R) denote the closure of
D(Yy xR) in the HF=VF2=12(Y, R) norm. For any f € Hé‘l”“/Q‘l/?(Y+,R),
there exists a unique solution w € Hg+1’k/2+1/2(Y+,R) to

d
—w—Low—I—w:f on Y, xR, (B.21)

ot
w=0 on Yy xR, (B.22)

which satisfies

HwHHk+1,k/2+1/2(Y+7R) S C(k)HfHHk—l,k/2—1/2(Y+7R).
Set Ag = 0/dt — Lo and let Ly = L — Lg, so that

0
a—[fﬁ-[:(/\oﬁ-[)ﬁ-[fl-
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To deduce the mapping properties of the operator I+ Ag+ Ly, we shall show
that the operator L; amounts in some sense to a small perturbation of the
operator I 4+ Ag. The next theorem is the crucial step. For brevity, we shall
henceforth use the abbreviations

[wllk,yy r = HUHHM/2(Y+,R)7 and Hqu,Ri,R = HUHHM/2(R1,R)7 k€.

Theorem B.3 Let k € Nand [ € Hg’k/z(Y+,R). Gliven any € > 0, there ex-
ists some & > 0 which depends on ¢ and k but not on f, such that supp [ C Bs x R
implies that

LT+ A0) ™ fllkye e < el flliyy . (B.23)

We of course mean (I + Ag)™! in the sense of Lemma B.2. We postpone
the proof for the moment to show how we will use it. Set

zi = (I + Ao)Gju.
and by (B.19), we have

[+ LI+ A0) 7 2= &7 ()

and thus
T+ T+ 80) 7 ille-rryzy < 1650 vy ey
< CHfjHWWﬁ(QC,R)
S CHuHWk+1,k/2+1/2(QCR). (B24)
Now, by Lemma B.2,
[Gullypensinr g g < ColB)slicrzse. kEN,  (B25)

Since the support of the cutoffs functions (; may be chosen sufficiently small
and because

supp z; C supp( u),
we may apply Theorem B.3 and the triangle inequality in (B.24) to deduce

the existence of some positive constant C'; which depends on £ and (; such
that

27 llkye 2 < Coll [+ La( + Ao) ™ 2 |lnys -
Combining this with (B.25) yields the desired inequality

[Gullwrez iz ey < ClRN[ullwrer s o gy
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It remains to prove Theorem B.3. We need two lemmas. In these lemmas,
we use the notation

Bf ={y=(yi,y0,9y3) ER} 1 y3 >0, [y| <6},  §>0.

Lemma B.4 Let k € N and § € H*'(R3). Given any € > 0, there exists
some § > 0 which depends on ¢ and k but not on 0, such that supp 0 C B
implies that

1017rxrs) < el s,

We refer the reader to [44, p. 256] for the proof and state an important
corollary to this result.

Corollary B.5 Let k € N and 0 € H¥VF/2HY2(RE R). Given any € > 0,
there exists some & > 0 which depends on ¢ and k but not on 0, such that
supp  C BF x R implies that

H(QHHk,kp(RiR) S GHGHH’“+1vk/2+1/2(Ri,R)‘ (B26)
Proof: Let € > 0, k € N, and 6 € H**/*(R2 | R) be given. The key to the
corollary is to note by interpolation theory that there exists some positive
constant 'y such that

HeHHk/2(R,H1(Ri)) S COHGHHk+17k/2+1/2(Ri,R)? k - N
Now, by Lemma B.4, there exists some §; > 0 such that

¢
H0HL2(R,HI€(R§_)) < EHGHB(R,HHl(Ri))v

if the support of # is contained in B;; x R. Analogously, there exists some
62 > 0 such that

@
H‘QHHW(R,B(Ri)) < EHGHHW%R,Hl(Ri))v k €N,

if the support of 4 is contained in B;; x R. The corollary follows by setting
§ = min(d;, 3) and restricting the support of # to lie in Bff x R. [J
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Lemma B.6 Let k € N and 6 € HF2F2HYRY R). Given any € > 0,
there exists some & > 0 which depends on k and ¢ but not on 0, such that
supp 0 C BF x R implies that

HLler,Ri,R < 6H0Hk+2,Ri,R (B.27)

Proof: Fix k € N and let § € H*HVE/2HU/2(R3 R) be given. Without loss
of generality, we can assume that the support of # is contained in the half
cylinder Bf x R for some 0 < § < 1. From the definition of the operator Ly,
we shall derive two inequalities.

First, by direct differentiation and the product rule, there exists a positive
constant (k) such that

HLIQHB(R,Hk(Ri)) < {H}E}X laii(y) — ai,j(O)HLoo(B;r)} HGHB(R,HH?(Ri))
+ Cl(k)H‘gHL2(R,Hk+1(Ri)- (B.28)

Analogously, we have

a0l < (mas s (v) = ass O mapy ) 10lssee e

Since
10N 2 2 ) < C2(R)0]] k42 22 s

by interpolation theory, we have

| Eabllsrae, ey < Cak) (max as(9) = aig(Oll o) ) 100ass, »
(B.29)
Hence, by combining (B.28-B.29), we have

[abllsye < Cok)] (maxlass(y) = (Ol omqap) ) 10)sazs 2

27]
+ H0Hk+1,Ri,R}v (B.30)

for some positive constant Cs(k).
Now, the continuity of the coefficients ¢; ; implies that for any given ¢ > 0,
there exists some &; > 0 such that

¢
Cal) {max las,{y) = @i (0) (g} < 5 (B31)

27]
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Analogously, by Corollary B.5, there exists some d, > 0 such that

€
CB(k)H‘ngJrl,Ri,R < §H0Hk+2,Ri,Rv (B.32)

for all # supported in B;; x R. The lemma follows by combining (B.31) with
(B.32) and choosing § < min(dy, d2). [0

Proof of Theorem B.3 : Fix k € N and let f € HY*?(Y,,R) have
support contained in Bf x R for some 0 < § < 1. Choose any p € D(Y,)
with p = 1 on the support of f. We shall now show the existence of some
positive constant (g which depends on & and p but not on f, such that

(L= p)(L 4+ Ao) ™ fllegsyy ® < Colp, k)| fllkve - (B.33)

Note that it is the difference of 3 between the subscripts of the norms as
opposed to 2 which makes this a non-trivial statement.
To prove it, observe that

I+ M) =p) I+ M) f = f—=(I+No)p(I+ M) f
= (f-rf)+G,
where
G =pf—(I+No)p(I + M) f.
But, since p equals one on the support of f, it follows that
(I +Ao)(1 —p)(I+Ao) ' f =0 (B.34)

Now, set wo = (I + Ag)~'f. Because

Jwg dp
(I + Ao)pwo — p(I + Ao)wy = ZG@]‘(O) ayja—yj

27]

9%p
+ a; ;(0)w ,
Z]: i(0) * Dyidy;

it follows that

ol
G(y7t) - Za%](o) ayZ ay]

2

*p
+ %:a%](o)wo(yvt)M7
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for each (y,t) € Yy x R. Hence,

1G [k v, < Crlp, F)l[wol [k, v - (B.35)

We now applying the operator (I + Ag)™" to both sides of (B.34). Doing
this and then taking norms, we get

11 = 0)(I + Ao) ™" fllkssyy e 107+ A0) ™ Gllissyy

NG Nkt1vs =
vk)H([ + AO)_lfHk+2,Y+ R
)1 kvs s (B.36)

IA A A

Colk
Ca(p
Colp

which verifies (B.33).
To complete the proof, let ¢; and ¢; denote two positive numbers to be
determined. To estimate Ly(1 + Ag)™'f, write

Li(T+Ao)™' f = Li(L=p)(I + Ao)™' [ + Lap(I + Ao)7' f,
and take norms. This yields
WL+ Ao)  fllkve e < IEa(L=p) + Ao) ™ flleyy v

+ | Lip(I + Ao) ™" flleys »
Ca(B)[|(1 = p)(I + Ao) ™ fllrs2ry 2

+ | L1O(1 + Ao) ™" flle=1,v4 -
We first apply Lemma B.6 to this inequality to get

1L (L4 Ao) " flley e < CLB)([(1 = p)(1 + Ao) ™" fllrsayy v

+ &llp(f + Ao) " fllks2yy me (B.37)

IA

By then using

Ip(I+ Ao) " fllkszye e < T+ Ao) ™ fllkszyy v
+ 11 = p) + Do) ™ fllra vy e
in (B.37), we have
1L+ A0) " fllive e < (Cilk) +e)|(1—p)(I 4 Ao) ™" Fllesays 2
+ el (1 + AO)_lfHk-I—2,Y+,R-
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To conclude, apply (B.33) to this equation to get

WL+ Ao)  fllive e < Colk)(Ci(k) + €)|| fllk-1v4 &
+ e |[(1 + AO)_lfHk-I—2,Y+,R
< Co(k)(Ci(k) + )| fllr-1vy

+ 02 (B)||flkyy -

and then apply (B.26) to the first term to deduce
HLI([ —I_ AO)_lfHkvy-l-v]R S C(k7 6762)”fHk,Y+,R7

where

C = 6100(k)(01(k) + 62) + EQCQ(k).
Clearly, this implies the theorem. ]
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C Solutions to the Heat Equation Over the
Unit Circle

In this appendix, we describe how to solve the heat equation

g—?(x,t) — Au(x,t) = 0, x € B, t>0,
u(z,0) = 0, x € By, (C.39)
u(z,t) = gla,t), xr € 0B, t>0,

in the unit disk B;. Again, we will describe the points of B; by polar coor-
dinates (r,6) with 6 scaled to lie between 0 and 1. For simplicity, we shall
assume that ¢(-,0) = 0.

The first step is transform to a Dirichlet problem where the inhomoge-
neous condition appears as a forcing function. This is done by letting g(r, 6, 1)
denote any extension of the Dirichlet data ¢ to the interior of the circle and
then letting U’ = u — g. Though ¢ is obviously non-unique, the best choice
appears to be an harmonic extension. In other words, we choose ¢ so that

Ag(r,0,t) = 0, r>0,0€l0,1],¢t >0,
9(1,0,t) = g(0,t), 0 e0,1],¢>0.

With this choice of g, we find that U satisfies the inhomogeneous equation

ou dg
S (0.0 = AU(r.0.1) = —a—”j(r,ﬁ,t), r>0,0c(0,1],¢>0, (C.40)
with homogeneous initial and boundary conditions.

Problem (C.40) is now in the form where Duhamel’s principle (cf., [33, p.

205]) applies. For each s > 0, let v(r,0,t; s) denote the solution to

%(r,@,t;s)Av(r,@,t;s) = 0, t>s,
v(l1,0,t;8) = 0, t>s, (C.41)
v(r,0,s;8) = —%(r,@,t).

Note that the variable s in (C.41) represents the initial time and is viewed as
a parameter. Duhamel’s principle states that the solution to (C.40) is given
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1
Ur,0,1) = / o(r, 0,1 )ds.
0

Of course, the transformations used to get to (C.41) apply for any prob-
lem, not simply ones over the unit circle. The reason why the circle is special
is that (C.41) can be solved using separation of variables. The general form
of the solution v is

v(r,0,t;s) Z Z Ak () (o, kr)e_afnvkteme, (C.42)

m=—0o0 k=1

where o, ; are the roots of
I (m ) =0, méE€Z, k €Zy,
and Ay n(s) the so called Fourier-Bessel coefficients which are determined by

%ct](r 0,s) Z ZAkm (k1) € O g gim

m=—0c0 k=1
Thus,
A 2 Ey(r, 0, 8) T () drdf
km — )
Jo r (Jun(amer))” dr
where we have set I, = —dg/0t.

Remark: To compute the series in (C.42), the various identities found in [45,
p. 502], such as

S
X T T
and . . .
= , € Zy.,
L T Wiy M

were found to be quite useful.
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