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Abstract

In this dissertation, we study numerical algorithms for time dependent problems

in continuum mechanics using mixed finite element methods. We are particu-

larly interested in linear elastodynamics and the Kelvin–Voigt, Maxwell, and

generalized Zener models in linear viscoelasticity. We use mixed finite elements

for elasticity with weak symmetry of stress, and show the a priori error analysis.

A main contribution of our analysis is proving existence of a new elliptic projec-

tion map, called a weakly symmetric elliptic projection. In our analysis we prove

that a priori error estimates for elastodynamics and viscoelasticity problems are

as good as that of stationary elasticity problems. We present numerical results

supporting our error analysis. We also present some basic numerical simulations

which are more involved in physical situations.
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Chapter 1

Introduction

1.1 Motivations

In this dissertation, we study numerical algorithms for linear elastodynamics

and linear viscoelasticity using mixed finite elements for elasticity with weak

symmetry.

Elastic and viscoelastic materials are of great interest in science and engi-

neering because they are involved in many important problems in those areas

with many applications. An elastic material is one of the most fundamental

models of solids in engineering and physics. From the modeling point of view,

an elastic material is regarded as a continuum consisting of infinitesimal springs.

This is a straightforward way to extend a mechanical model to its continuum

version, but it gives a good approximation for the behaviors of many solids when

the deformation of the solids is within a certain small range. Therefore this elas-

tic solid model is very useful for many important problems in solid mechanics

and they have been used for a variety of practical applications. For example, to

design a bridge, we need a good mathematical model for the bridge reflecting

its kinematic features accurately. There are many other important areas that

elastic materials are related, such as seismology in geophysics, so the study of

elastic materials has been and is of great interest. A material is called viscoelas-

tic when it shows kinematic features of both solids and fluids, often called elastic

and viscous behaviors. Purely elastic or purely viscous behaviors of materials

happen only for ideal solids or ideal fluids, respectively. In real life, all solids and

fluids are not ideal, so they have viscoelastic features to some extent. Depend-
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ing on the manner that the features of solids and fluids are combined, there are

numerous different viscoelastic materials. In many important areas of engineer-

ing, the study of viscoelastic features of materials plays an important role. For

example, most biological tissues show strong viscoelastic features mechanically,

so if we want to develop an artificial organ to replace a tissue, we first have to

understand the viscoelastic features of the tissue very well. Polymeric materials

in rheology are also good examples of viscoelastic materials which have many

important applications.

To study kinematic behaviors of a material theoretically, we express the be-

haviors of the material in mathematical forms. The kinematic behaviors of

elastic and viscoelastic materials are formulated mathematically as partial dif-

ferential equations (PDEs). However, a partial differential equation in material

science is complicated in general even in simple physical models. Not surpris-

ingly, solving the PDE analytically is very difficult, impossible in most cases.

To find solutions of the PDE for practical purposes, we often need a numeri-

cal algorithm to find approximations of the solution with acceptable ranges of

errors.

The numerical study of PDEs is one of the essential tools of modern science

and for practical applications in engineering. For example, through a massive

amount of numerical experiments people observe new phenomena which lead to

improved models of weather prediction. Numerical analysis is also widely used

in designing aircrafts, buildings, and electronic products. As scientists and engi-

neers want to handle more complicated problems which require a large amount

of computations, there is always a great need for faster and more accurate nu-

merical algorithms.

During the last several decades, there have been many important advances in

numerical analysis of PDEs. From the mathematical point of view, various new

and improved numerical algorithms have been developed. The finite element

method is among the most important approaches in the numerical study of

solutions of PDEs. In this dissertation, we study numerical algorithms for time

dependent problems of linear elastic and linear viscoelastic solids using mixed

finite element methods. In our studies, we propose numerical algorithms and

prove that the errors of our numerical solutions have the proposed error bounds.

2



1.2 Mixed finite element methods for elasticity

In this thesis we study mixed methods for time dependent problems of elasticity

and viscoelasticity. Of course, these are based on existing mixed finite elements

for stationary elasticity. Thus, we survey the development of mixed finite ele-

ment methods for elasticity in this section. We will discuss them in more detail

in chapter 2.

In the classical energy minimization form of linear elasticity problems, dis-

placement is the only unknown of the equation and the numerical solution for

stress is obtained using the numerical solution for displacement. In mixed

methods for linear elasticity based on stress and displacement, there are two

unknowns, stress and displacement. At first glance, this approach increases the

number of unknowns and leads to a larger system of equations, but there are

other benefits that make mixed methods attractive. A key advantage of mixed

methods for linear elasticity is that they directly deliver the numerical solution

for stress. Since stress is directly linked to destruction of materials, it is of great

interest in engineering applications. Another advantage of mixed methods for

elasticity is the robustness for nearly incompressible materials. In the displace-

ment based approach, although the error for stress converges to zero as mesh

size converges to zero, the error bound often contains a constant which is very

large when a material is nearly incompressible, so we need a very small mesh

size to get a sufficiently small error. However, the mixed methods we consider

give uniform error bounds for nearly incompressible materials.

Since there are two unknowns, we need a pair of finite element spaces for

mixed methods. One subtlety in mixed methods is to find a pair of finite ele-

ments which guarantee existence of numerical solutions with good approxima-

tion properties. A choice of mixed finite element spaces is called stable if it

guarantees existence of numerical solutions. Necessary and sufficient conditions

for stable mixed finite elements are known based on the foundational work of

Babus̆ka and Brezzi. However, finding stable mixed finite elements for elasticity

has long been a difficult problem. A major obstacle to finding stable mixed fi-

nite elements for elasticity is the symmetry of stress. Since stress is symmetric,

it is natural that the finite elements for stress are symmetric as well, but it is

very difficult to find such stable mixed finite elements for elasticity.

The first mixed finite elements for elasticity were developed by Johnson and

Mercier using composite triangles [36]. For a triangle, three subtriangles are

obtained by connecting an interior point to the three vertices. In the Johnson–
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Mercier elements, shape functions for stress are the piecewise linear polyno-

mials adapted to the subtriangles satisfying normal continuity on the interior

edges of subtriangles. Because of the construction using composite triangles, it

is complicated to implement these elements. Moreover, generalizations of the

Johnson–Mercier elements to higher order elements or to three dimensions are

not obvious. In two dimensions, there is a family of higher order mixed finite

elements for elasticity developed by Arnold, Douglas, and Gupta using compos-

ite triangles in [8]. They followed an analysis similar to that of Johnson and

Mercier, but in a much more systematic manner using the exact sequence in

linear elasticity involving the Airy operator and the divergence operator. Fol-

lowing the exact sequence in continuous level, they constructed finite element

spaces which inherit the exact sequence structure from the continuous level, and

used the exact sequence of finite elements for analysis. However, their imple-

mentations are still complicated due to the composite triangle construction.

Because the elements using composite triangles are very complicated, finding

mixed finite elements for elasticity without using composite triangles was a ques-

tion of great interest. This question remained unsolved for four decades, until

the first example of such elements in two dimensions was developed by Arnold

and Winther in 2002. In [11], Arnold and Winther used the exact sequence in

linear elasticity which was used in [8]. For the construction of exact sequences

of finite element spaces, they used the Argyris element and its generalizations

for higher orders. They also showed that a piecewise polynomial finite element

space for stress in this approach ought to have vertex degrees of freedom in

a triangle. The vertex degrees of freedom give a main technical difficulty in

analysis because the canonical interpolation operator is not well-defined for H1

functions. They overcome this difficulty by constructing a new interpolation

operator using the Clément interpolant in [23]. There are also three dimen-

sional elements developed by Arnold, Awanou, and Winther following a similar

approach [5]. Although these elements do not use composite triangles, they

have a relatively large number of degrees of freedom, especially in three dimen-

sions. For example, the lowest order Arnold–Awanou–Winther elements have

162 stress degrees of freedom for each tetrahedron. The lowest order Arnold–

Winther elements have 24 stress degrees of freedom and 6 displacement degrees

of freedom for each triangle (see Figure 1.1), which is a reasonable number of

degrees of freedom, so they are indeed recommended for practical solid mechan-

ics problems on the support of numerical experiments by Carstensen, Günther,

Reininghaus, and Thiele [20]. However, there are some minor defects. One of
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them is that the full approximability of the Arnold–Winther elements, which is

of order three for the lowest elements, is redundant when regularity of solutions

is low. Another defect is that the hybridization in [6] is not available because

of the vertex degrees of freedom.

Figure 1.1: Element diagrams for the lowest order stress, displacement of the
Arnold–Winther elements.

Figure 1.2: Element diagrams for the lowest order stress, displacement, and
rotation elements of the Arnold–Falk–Winther elements.

An alternative approach to mixed methods for elasticity is to impose symme-

try of stress weakly, by imposing orthogonality to spaces of skew-symmetric ten-

sors. From another point of view, we introduce a skew-symmetric tensor, which

is the Lagrange multiplier for the symmetry of stress, and rewrite the original

elasticity problems with the Lagrange multiplier. The Lagrange multiplier is

often called the rotation because it is the skew-symmetric part of the gradient

of displacement. Therefore, in this approach, we have three unknowns, i.e., the

stress tensor, the displacement vector, and the rotation. Historically, this weak

symmetry idea was firstly suggested by Fraeijs de Veubeke in [26] and extended

for higher orders by Amara and Thomas. The work of Amara and Thomas was

not exactly written in a modern context of finite element methods1, however,

they observed and explained crucial concepts and ideas with a careful analysis.

1They did not use standard terminologies in finite element methods such as finite element
spaces, stability, degrees of freedom, shape functions, and the inf-sup condition.
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In [3], Amara and Thomas used a matrix-valued H(div) piecewise polynomial

space for stress and a piecewise discontinuous polynomial space for rotation.

Instead of a piecewise polynomial space for displacement, they used a piecewise

polynomial space on edges which may correspond to the trace of displacement.

For existence of numerical solutions, they used some additional terms for stress

using bubble functions and proved error estimates using an interpolation map.

The first finite elements of weak symmetry idea, described in mixed methods

context, is the PEERS elements developed by Arnold, Brezzi, and Douglas in

[7]. In the construction of PEERS elements, the vector-valued lowest order

Raviart–Thomas elements augmented with additional terms using the bubble

function, piecewise constants, and skew-symmetric piecewise linear functions are

used for the shape functions for stress, displacement, and rotation, respectively.

Following the weak symmetry idea and the approach of the PEERS elements,

Stenberg constructed new finite elements in two and three dimensions and also

for higher orders [47]. For displacement, he used the vector-valued discontinuous

polynomials as in the PEERS elements. However, he used different spaces for

stress and rotation. Instead of the Raviart–Thomas elements with additional

terms using the bubble function and continuous skew-symmetric spaces, which

were used in the PEERS elements, he used the Brezzi–Douglas–Marini–Nédélec

elements with additional terms using bubble functions for the stress and dis-

continuous polynomials for the rotation such that both of them have one higher

order approximation properties than the space for the displacement. He also

observed that a postprocessing is eligible for the numerical solution for displace-

ment, so a new numerical solution for displacement can be obtained, which has

as same accuracy as the ones for stress and rotation. He also claimed that new

finite elements using the Raviart–Thomas elements can be constructed with

similar arguments straightforwardly. There are other extensions of the PEERS

elements, done by Morley, to two dimensions for one higher order and to three

dimensions. She used the Raviart–Thomas–Nédélec elements with additional

terms using bubble functions as shape functions for stress, but she used non-

conforming finite elements for rotation to avoid vertex degrees of freedom. She

also observed the eligibility of postprocessing for the numerical displacement

as Stenberg did. In [10], Arnold, Falk, and Winther introduced an exterior

calculus framework for the study of mixed finite elements for elasticity. The

framework is based on the elasticity complex which is constructed from the

de Rham complex using the Bernstein–Gelfand–Gelfand resolution in represen-

tation theory by Eastwood [29]. As an application of the elasticity complex,

6



Table 1.1: Mixed finite elements for elasticity with triangular meshes. The σ,
u, r denote the stress, the displacement, and the rotation, respectively. For all
the finite elements that k is involved, we assume k ≥ 1.

elements symmetry
order of error

mesh & dimension
σ u r

JM [36] strong 2 2 – composite, 2D

ADG [8] strong k + 2 k + 1 – composite, 2D

AW [11] strong k + 2 k + 1 – 2D

AAW [5] strong k + 2 k + 1 – 3D

AT [3] weak k – – 2D

PEERS [7] weak 1 1 1 2D

Stenberg I [47] weak k + 1 k k + 1 2D, 3D

Morley [40] weak 2 2 2 2D, 3D

AFW [10] weak k k k 2D, 3D

CGG [24] weak k + 1 k k + 1 2D, 3D

GG [32] weak k + 1 k k + 1 2D, 3D

JM = Johnson–Mercier, ADG = Arnold–Douglas–Gupta, AW = Arnold–Winther,

AAW = Arnold–Awanou–Winther, AT = Amara–Thomas,

AFW = Arnold–Falk–Winther, CGG = Cockburn–Gopalakrishanan–Guzmán,

GG = Gopalakrishnan–Guzmán

they developed the Arnold–Falk–Winther elements. In the analysis, they used

the elasticity complex to construct exact sequences of finite element spaces and

constructed an interpolation operator with a commuting property. The Arnold–

Falk–Winther elements are defined in two and three dimensions and for higher

orders with simple descriptions (see Figure 1.2), and have small numbers of

degrees of freedom. After this pioneering work, other elements were developed

following the analysis of same exterior calculus framework. For example, Cock-

burn, Gopalakrishnan, and Guzmán constructed a family of elements such that

the finite element spaces for stress are based on the Raviart–Thomas–Nédélec

elements with additional terms using bubble functions [24]. These elements are

similar to Stenberg’s ones but have smaller degrees of freedom for same accuracy

of errors. They also showed that the hybridization is available for their elements.

More recently, another family of elements was developed by Gopalakrishnan and

Guzmán [32], which have fewer degrees of freedom than their previous elements

with same accuracy of errors. We refer Table 1.1 for some features of these

elements.

There are also rectangular and quadrilateral mixed finite elements for elas-

ticity with both strong and weak symmetry. For strong symmetry elements,

7



Table 1.2: Mixed finite elements for elasticity with rectangular or quadrilateral
meshes. The σ, u, r denote the stress, the displacement, and the rotation,
respectively. For all the finite elements that k is involved, we assume k ≥ 1.

elements symmetry
order of error

mesh & dimension
σ u r

JM [36] strong 2 2 – composite, quad., 2D

ADG [8] strong k + 2 k + 1 – composite, quad., 2D

PS [41] strong
3/2 3/2 – rect., 2D

2 2 – composite, rect. 2D

Stenberg II [46] strong
2 3 –

rect., 2D
3 4 –

BJT [15] strong k k – rect., 2D, 3D

AA [4] weak k k k rect., 2D

Morley [40] weak 2 2 2 rect., 2D

Awanou [13] weak k k k rect., 2D, 3D

JM = Johnson–Mercier, ADG = Arnold–Douglas–Gupta, PS = Pitkäranta–Stenberg

AA = Arnold–Awanou, quad. = quadrilateral, rect. = rectangular

Johnson and Mercier constructed quadrilateral finite elements with linear poly-

nomials using composite quadrilaterals [36]. In [8], Arnold, Douglas, and Gupta

also constructed quadrilateral elements for higher orders using composite quadri-

laterals. Pitkäranta and Stenberg showed the error analysis of two mixed finite

elements in two dimensions [41]. Stenberg constructed some low order rectan-

gular mixed finite elements in two dimensions and showed error analysis in [46].

There is a family of rectangular elements in two and three dimensions and also

for higher orders developed by Bécache, Joly, and Tsogka in [15]. For shape

functions for the stress and the displacement, they use the symmetric tensors

that each entry belongs to Qk+1, and the vectors that each entry belongs to Qk,

respectively, where Qk is the standard tensor product space of the polynomials

of degree less than or equal to k. To make the divergence operator is well-

defined on the finite element space for stress, they used a nonstandard choice

of degrees of freedom that each entry of the stress tensor is continuous along

specific one or two directions. Since the definition of degrees of freedom strongly

relies on the rectangular structure of meshes, it seems to be difficult to extend

their approach to triangular meshes. More recently, in [4], Arnold and Awanou

developed rectangular finite elements with strong symmetry in two dimensions

based on the idea of [11]. For weak symmetry elements, Morley constructed

rectangular elements in her generalization of the PEERS elements in [40]. In

[13], Awanou developed a family of rectangular elements with weak symmetry

8



in two and three dimensions and for higher orders. His elements have fewer

degrees of freedom than Morley’s ones. Some features of these elements are

summarized in Table 1.2. Rectangular elements are very useful for problems

with domains of special geometry, however, it is difficult to use them to the

problems which have general shape domains.

To summarize, after intensive studies of four decades, there are many mixed

finite elements for elasticity. Among them, the weak symmetry elements are

advantageous because they are defined in two and three dimensions and for

higher orders. Moreover, they have relatively simple descriptions with small

number of degrees of freedom.

1.3 Mixed methods for time dependent elastic-

ity and viscoelasticity

In continuum mechanics, there are many problems for which stress is of primary

interest. For example, to design and construct an earthquake resistant building,

the stress exerted on the building is one of most important quantities to consider.

Based on this philosophy, we use mixed finite element methods to study time

dependent problems of elasticity and viscoelasticity.

As we have seen in the previous section, mixed finite elements for elasticity

with weak symmetry have relatively few degrees of freedom and are relatively

easy to implement in both two and three dimensions. Thus we shall use the weak

symmetry elements for our studies of continuum mechanics problems. In this

section we briefly survey previous studies of elastodynamics and viscoelasticity

problems using mixed methods.

Mixed methods for linear elastodynamics have been studied by various re-

searchers. In [27], Douglas and Gupta used a displacement-stress formulation of

elastodynamics equations and the mixed finite elements using composite trian-

gles developed in [8]. For the error analysis of semidiscrete solutions, they use an

asymptotic expansion of solutions using the quasi-projection. As a consequence

of the error analysis, they showed that the errors for stress and displacement

are of same orders as for stationary elasticity problems. The superconvergence

result in their work is based on the superconvergence in the error analysis of

stationary problems but the error analysis for fully discrete solutions was not

shown. In [39], Makridakis proposed two approaches for linear elastodynamics,

the displacement-stress formulation used in [27] and a velocity-stress formula-
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tion. The velocity-stress formulation is based on the work of Geveci for scalar

wave equations. In [31], Geveci suggested a velocity-flux formulation for scalar

wave equations and showed a unified error analysis for the Raviart–Thomas

and the Brezzi–Douglas–Marini elements. He also pointed out that a simi-

lar analysis can be adapted to the corresponding velocity-stress formulation of

elastodynamics. In the work of Makridakis, he only assumed that the finite

elements are stable, strongly symmetric, have a good approximability, and have

interpolation maps satisfying a certain commutativity property, so his analysis

is valid for many finite elements including the composite elements in [8, 36] and

the rectangular elements developed in [41, 46]. For the error analysis, Makri-

dakis used the elliptic projection approach, which was introduced in [49] for

heat equations. Using the elliptic projection, and an energy estimate, he sim-

plified the error analysis significantly than the one of Douglas and Gupta. He

also considered fully discrete solutions with general time discretization based

on the Padé approximation. In [15], Bécache, Joly, and Tsogka constructed

new rectangular finite elements, which can be extended to three dimensions and

for higher orders, and applied them for linear elastodynamics. They used the

velocity-stress formulation and the elliptic projection for error analysis as in the

work of Makridakis.

Table 1.3: Comparison of the previous studies and the work in this thesis
for elastodynamics. (disp.-stress = displacement-stress, vel.-stress = velocity-
stress) Finite elements are denoted by using the abbreviations in Table 1.1 and
Table 1.2.

Douglas
Makridakis

Bécache this thesis

Gupta Joly Tsogka (chapter 3)

formulation disp.-stress
disp.-stress

vel.-stress vel.-stress
vel.-stress

finite elements ADG
JM, ADG, PS

BJT AFW, GG
Stenberg II

time scheme – Pade – Crank–Nicolson

In contrast to elastodynamics, there are not many previous works on mixed

methods for viscoelasticity. In [16], Bécache, Ezziani, and Joly used their rect-

angular elements developed in [15] for the generalized Zener model of linear

viscoelasticity. To have a mixed form of equations, they took three unknowns,

the displacement, the total stress, and the difference of the total stress and the

elastic stress. Rewriting equations, a system of equations consisting of an al-
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Table 1.4: Comparison of the previous studies and the works in the thesis for
linear viscoelasticity. (disp.-stress = displacement-stress, vel.-stress = velocity-
stress) Finite elements are denoted by using the abbreviations in Table 1.1 and
Table 1.2.

Bécache Rognes this thesis

Ezziani Joly Winther (chapters 4, 5)

formulation disp.-stress vel.-stress vel.-stress

finite elements BJT AFW AFW, GG

viscoelastic model gZ qM& qKV M, KV, gZ

time scheme leap-frog type BDF2 Crank–Nicolson

symmetry of finite elements strong weak weak

M=Maxwell, KV=Kelvin–Voigt, gZ=generalized Zener, q=quasistatic

gebraic equation, and equations with one and two time derivatives. For time

discretization, they chose a leap-frog type scheme and proved that the scheme

is stable when a certain CFL condition holds. Some discussions on mass lump-

ing, PML adaptation, and upper bounds of CFL condition were presented. In

[44], Rognes and Winther studied mixed methods for the Kelvin–Voigt and the

Maxwell models of linear viscoelasticity but for quasistatic problems, i.e., the

problems that mass densities are vanishing. They suggested a unified framework

for general viscoelasticity models and applied it to the specific two problems.

A key idea of the unified framework is using two stresses, the viscous and the

elastic ones, and generalize the velocity-stress formulation for elastodynamics

in the context of viscoelasticity equations. For mixed finite elements, they used

the Arnold–Falk–Winther elements and a variant of them for the lowest order

by Falk. Due to the weak symmetry of finite elements, the equations of the

Maxwell and the Kelvin–Voigt models had to be rewritten in weak symmetry

form. They used the skew-symmetric part of the gradient of velocity as the

Lagrange multiplier for symmetry of stress, and obtained differential algebraic

equations for the semidiscrete solutions. For full discretization, they used the

second backward differentiation formula and applied a known result in general

theory of the numerical analysis of differential algebraic equations for conver-

gence. They also presented numerical results for the Zener model.

1.4 Overview of chapters

The organization of this thesis is as follows.
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In chapter 2, we develop background materials which will be needed in the

rest of this thesis. We present notations, definitions, a brief survey of mixed

methods, and expository descriptions of the Arnold–Falk–Winther (AFW) and

the Gopalakrishnan–Guzmán (GG) elements, which we will use in our studies.

We revisit improved error estimates and postprocessing results, proposed in

[47, 35, 10] for these two families of elements with complete proofs. We also

introduce some results on evolutionary equations and regularity of functions,

that we need in later chapters, with their complete proofs.

In chapter 3, we study mixed methods for linear elastodynamics, which rep-

resents wave propagation in elastic media, using a velocity-stress mixed formu-

lation. This is the first work of mixed methods for elastodynamics using weak

symmetry elements. We use the Crank–Nicolson scheme for time discretization

and propose error bounds by a priori error analysis. A key idea for the error

analysis is our weakly symmetric elliptic projection which will be explained in

chapter 2. By a careful analysis, we can obtain error bounds in elastodynamics,

similar to the ones in stationary elasticity problems, using the AFW and GG

elements. We also prove that robustness for nearly incompressible materials still

holds in elastodynamics. Some numerical results which support our analysis are

presented at the end of this chapter.

In chapter 4, we consider mixed methods for the Kelvin–Voigt model of linear

viscoelasticity, which is a fundamental unit to construct models of viscoelastic

solids. We study the full dynamic Kelvin–Voigt model with a nonvanishing

mass density using a velocity-stress mixed formulation, the AFW and GG ele-

ments, and the Crank–Nicolson scheme for time discretization. The semidiscrete

problem of the Kelvin–Voigt model leads to a system of differential algebraic

equations, so initial data for numerical computation should be carefully chosen

to achieve stability of time discretization. We show an error analysis for fully

discrete solutions and propose error bounds. There are also numerical results

which support our error analysis.

In chapter 5, we consider mixed methods for the Maxwell and the general-

ized Zener models of linear viscoelasticity. Since the Maxwell and the Zener

models can be written in a unified form and the Maxwell model is a special case

of the Zener model, we show careful error analysis only for the Zener model.

Extending the analysis to the generalized Zener model is straightforward. As in

elastodynamics and the Kelvin–Voigt model problems, we use a velocity-stress

formulation, the AFW and GG elements, and the Crank–Nicolson scheme for

time discretization. We show that the error bounds of our numerical scheme are
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stable as the parameters, which determine viscoelastic features of the material,

decays to zero. As a consequence, our numerical algorithm can be used for a

material which is a composition of elastic and viscoelastic solids. Another ben-

efit of our method is that no time integration is needed in the computation of

each time step. Based on the displacement, the solution of Zener model includes

a convolution term with a kernel depending on material parameters and time

(see e.g., [37]), so a numerical solution also needs a numerical time integration

for all the past time intervals at each time step. In mixed methods using our

velocity-stress formulation, the equations of the Zener model is written as dif-

ferential equations (see e.g., [16, 33]), henceforth no numerical time integration

is required and an implementation of the algorithm is easier. The payment for

these advantages is a larger system of equations. However, the number of de-

grees of freedom increases almost linearly to the number of mesh components,

i.e, the triangles, the edges, and the vertices. Since the computational cost in-

creases linearly on the number of degrees of freedom in advanced linear algebraic

solvers, the increment of computational cost is not a big obstacle. In contrast

to this, the number of time intervals for numerical integration is not limited

and therefore the computation cost for numerical integration can be very large

unless there is a good argument to justify that a truncation of the time interval

for numerical integration is reasonable. As in previous chapters, we present

numerical results supporting our error analysis.

Finally, in chapter 6, we show numerical results which are more interesting

from the physical point of views. In elastodynamics, there are examples showing

that the different material parameters influence differently on the propagation

of P and S waves in homogeneous and heterogeneous isotropic media. We also

present numerical results which show wave propagation in anisotropic media. In

viscoelasticity, we use our numerical schemes for creep compliances of viscoelas-

tic materials. We present a simple schematic model which compares reflected

waves in a purely elastic medium and a medium including viscoelastic regions.

13



Chapter 2

Preliminaries

In this chapter, we will survey preliminary backgrounds for our discussions in the

rest of this dissertation. The contents of this chapter are organized as follows.

In section 2.1, we introduce notations and definitions. In section 2.2, we

survey continuum mechanics backgrounds which are necessary to derive our

governing equations later. In section 2.3, we introduce a general theory of

mixed finite element methods. In section 2.4, we survey mixed methods for

linear elasticity and introduce two families of mixed finite elements for elasticity.

For those families, we present some technical details including a priori error

estimates, robustness for nearly incompressible materials, postprocessing, and

the existence of an elliptic projection which preserves weak symmetry. Finally, in

section 2.5, we prove miscellaneous lemmas which are needed for error estimates

and regularity of weak solutions.

2.1 Notations and definitions

Let Ω be a bounded smooth domain in Rn with n = 2 or 3. If a range is

not specified, then indices i, j span 1, · · · , n. We use ∂i to denote the partial

derivative for the i-th variable in Rn.

We use V and M to denote Rn and Rn×n. We also use S and K to denote

the spaces of symmetric and skew-symmetric n × n matrices, respectively. For

σ : Ω → M and u : Ω → V, their components are denoted by σij and ui,
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respectively. Let us define

(σ, τ) =

∫
Ω

σ : τ dx :=

∫
Ω

∑
i,j

σijτij dx,

(v, w) =

∫
Ω

v · w dx :=

∫
Ω

∑
i

viwi dx,

for σ, τ : Ω → M and v, w : Ω → V. It is easy to check that these are inner

products. We can define norms by ‖σ‖2 = (σ, σ), ‖u‖2 = (u, u) and define two

Hilbert spaces

L2(Ω;M) = {σ : Ω→M | ‖σ‖ <∞}, L2(Ω;V) = {u : Ω→ V | ‖u‖ <∞}.

For σ : Ω → M and u : Ω → V, div σ and gradu are defined by the row-wise

divergence and the row-wise gradient

div σ =
∑
j

∂jσij , (gradu)ij = ∂jui,

respectively, where ∂jσij , ∂jui are understood in the sense of distributions [45].

For σ : Ω→M, the symmetric and skew-symmetric parts of σ are

symσ =
σ + σT

2
, skw σ =

σ − σT

2
,

where σT is the transpose of σ. If σ : Ω → M and div σ ∈ L2(Ω;V), we define

‖σ‖2div = ‖σ‖2 + ‖ div σ‖2 and for a subspace X of M,

H(div,Ω;X) = {σ ∈ L2(Ω;X) | ‖σ‖div <∞}.

We also define function spaces M , S, V , and K by

M = H(div,Ω;M), S = H(div,Ω;S),

V = L2(Ω;V), K = L2(Ω;K).
(2.1)

For a nonnegative integer 0 ≤ m < ∞, we use Cm(Ω) to denote the set of

functions defined on Ω such that the functions and all their partial derivatives

of order less than or equal to m are continuous and can be continuously extended

to Ω. We use C∞(Ω) to denote the intersection of all Cm(Ω) for m ≥ 0. We

also use Cm0 (Ω) to denote the functions in Cm(Ω) whose supports are compact
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sets in Ω.

A multi-index α is a sequence of nonnegative integers (α1, · · · , αn) and the

degree of α, denoted by |α|, is defined by |α| := α1 + · · ·+ αn. For u ∈ Cm(Ω),

we define

‖u‖2m =
∑
|α|≤m

‖∂αu‖2, where ∂αu := ∂α1
1 · · · ∂αn

n u.

The Sobolev space Hm(Ω) is the Banach space which is the completion of Cm(Ω)

with the norm ‖ · ‖m. We define H̊1(Ω) as the closure of C∞0 (Ω) in H1(Ω) and

it becomes a subspace of H1(Ω). For X = V,M,K, or S, Hm(Ω;X) is the space

of X-valued functions such that each component of the function is in Hm(Ω). If

X is clear in context, Hm(Ω) is used as an abbreviation of Hm(Ω;X).

For a Banach space X and 0 < T0 < ∞, C0([0, T0];X ) denotes the set of

functions f : [0, T0] → X which are continuous in t ∈ [0, T0]. For an integer

m ≥ 1 we define

Cm([0, T0];X ) = {f | ∂lf/∂tl ∈ C0([0, T0];X ), 0 ≤ l ≤ m},

where ∂lf/∂tl is the l-th time derivative in the sense of the Fréchet derivative in

X (see e.g., [50]). For a function f : [a, b]→ X , we define the space-time norm

‖f‖Lp([a,b];X ) =


(∫ b

a
‖f‖pX dt

)1/p

, 1 ≤ p <∞,

ess supt∈[a,b] ‖f‖X , p =∞.

If the time interval is fixed as [0, T0], then we use LpX to denote Lp([0, T0];X )

for simplicity. We define the space-time Sobolev spaces Wm,p([0, T0];X ) for

nonnegative integer m and 1 ≤ p ≤ ∞ as the closure of Cm([0, T0];X ) with

the norm ‖u‖Wm,pX =
∑m
l=0 ‖∂lu/∂tl‖LpX . We adopt a convention ‖f, g‖X

to denote ‖f‖X + ‖g‖X for the norm of a Banach space X . For simplicity of

notations, ḟ is used to denote the time derivative of f and similarly, f̈ ,
...
f are

used to denote ∂2f/∂t2, ∂3f/∂t3, respectively.

For a triangle or a tetrahedron T , a vector space X, and a nonnegative integer

k, Pk(T ;X) is the space of X-valued polynomials defined on T of degree less than

or equal to k. If T is a triangle, the space Nk(T ), k ≥ 1 is

Nk(T ) = Pk−1(T ;R2) + {(−wx2, wx1) |w ∈ Pk−1(T )}, (2.2)
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which is the usual space of shape functions for the (rotated) Raviart–Thomas

elements [9, 42]. We define Ñk(T ) as the space consisting of all τ in Pk(T ;R2×2)

such that each row of τ is in Nk(T ). We will use this space when we define the

degrees of freedom for our mixed finite elements for elasticity in section 2.4.2.

For the domain Ω, Th denotes a shape-regular quasi-uniform triangulation

of Ω for which the maximum diameter of triangles (or tetrahedra) is h. For an

integer k ≥ 0 and a vector space X, Pk(Th;X) is the space of piecewise X-valued

polynomials adapted to Th of degree less than or equal to k. If X is a subspace

of M, then Pk(Th,div;X) = Pk(Th;X) ∩H(div,Ω;X).

Let ∆t > 0 such that T0 = N∆t for an integer N , and tj = j∆t for j =

0, 1, · · · , N . For a continuous function f defined on [0, T0], we define f j = f(tj)

and f j+1/2 = f(tj + ∆t/2). For example, σj , σP,jh , eP,jσ denote σ(tj), σ
P
h (tj),

ePσ (tj) for the functions σ, σPh , ePσ defined on [0, T0], respectively. For a sequence

{f j}j≥0, we define

∂̄tf
j+ 1

2 =
f j+1 − f j

∆t
, f̂ j+

1
2 =

f j + f j+1

2
,

∂̄2
t f

j =
f j+1 − 2f j + f j−1

∆t2
.

(2.3)

Note that for f defined on [0, T0], f̂ j+1/2 6= f j+1/2 in general.

2.2 Continuum mechanics

We survey basic continuum mechanics which is necessary to derive the governing

equations of our problems.

Continuum mechanics is a way to formulate kinematic behavior of materials

mathematically. In continuum mechanics, a material body is regarded as a

continuum and the microscopic structures of the material are neglected. In

many macroscopic scale problems, it is a good approximation of real physical

phenomena.

2.2.1 Deformation, strain, momenta, and stress

If a continuum body occupies a bounded domain in Rn where n = 2, 3, then

the occupied domain is called a configuration. For simplicity, we assume all

configurations have sufficiently smooth boundaries. Let Ω be the domain that

a continuum body occupies at initial state, which is called the reference config-
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uration. The deformation map Φ : Ω × [0, T0] → Ω′ ⊂ Rn is a map which is

continuously differentiable, homeomorphic, and orientation preserving. The im-

age of Ω under Φ(·, t) for t ∈ [0, T0] is called the deformed configuration at time t

and denoted by Ωt. The gradient of deformation map is called the deformation

gradient and denoted by F .

The rigid deformations are the deformation maps of the form x 7→ A(t)x+b(t)

for x ∈ Rn where t 7→ A(t), t 7→ b(t) are continuous maps to the space of

orthogonal matrices of positive determinant and the space Rn, respectively. In

continuum mechanics, rigid deformations are not interesting because when a

deformation map is a rigid deformation, all kinematic quantities of deformed

configuration are obtained by composing the inverse of the rigid deformation

and the corresponding kinematic quantities of reference configuration. A C1

deformation map Φ is a rigid deformation if and only if FTF = I (see [22],

p. 44), so we call (FTF − I)/2 the (Green–St.Venant) strain or strain tensor

where I is the identity matrix in Rn×n.

In many problems, it is convenient to work with the difference of the de-

formed and reference configurations rather than the deformed configuration it-

self. The displacement u : Ω→ Rn is defined by u(x, t) = Φ(x, t)− x for x ∈ Ω,

t ∈ [0, T0]. Then the gradient of displacement is gradu = F − I and the strain

tensor can be written

1

2
(FTF − I) =

1

2
((gradu+ I)T (gradu+ I)− I)

=
1

2
((gradu)T (gradu) + (gradu)T + gradu). (2.4)

We use v to denote ∂u/∂t, the velocity field and ρ(x) to denote the mass density

at x ∈ Ω. Then the linear momentum and angular momentum (about the origin)

on a subregion ω are defined by∫
ω

ρv dx,

∫
ω

ρ~x× v dx,

where ~x is the position vector defined by the coordinate x. If n = 2, we can

still define the angular momentum by extending all two dimensional vectors to

three dimensional ones which have zero third coordinate.

We now consider an internal surface force on a surface in a continuum body.

For a surface in a continuum body, there is a force acting between two continuum

subbodies along the surface. In a continuum sense, this force is proportional to
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surface area, and at a point on the surface it is defined as the limit of force on

shrinking surface regions divided by the surface area of the regions. We call this

internal surface force as the stress vector or traction.

Let ω0, ω1 be two subregions in a continuum body Ω with contacting surface

S. If we let ν be the unit normal vector of S at point x which is outward from

ω0, then the surface force that ω0 exerts on ω1 at x is denoted by T (x, ν) ∈ Rn.

Thus, the surface force that ω1 exerts on ω0 at x is T (x,−ν), and T (x,−ν) =

−T (x, ν) by Newton’s third law of motion.

We assume that the balance laws of linear and angular momenta, which are

d

dt

∫
ω

ρv dx =

∫
∂ω

T (x, ν) dS +

∫
ω

f dx,

d

dt

∫
ω

ρ~x× v dx =

∫
∂ω

~x× T (x, ν) dS +

∫
ω

~x× f dx,

hold for any subregion ω ⊂ Ωt, where ν is the outward unit normal vector field

on ∂ω and f is a body force. Here we state an important result on stress vectors

which was proved by Cauchy. For its proof, see [34], chapter 5.

Theorem 2.1 (Cauchy’s theorem). If the balance laws of linear and angular

momenta hold, then there exists a matrix valued function σ from Ωt to S such

that T (x, ν) = σ(x)ν for all x ∈ Ωt where the right-hand side is the matrix-vector

multiplication.

The σ in the Cauchy’s theorem is called the (Cauchy) stress tensor or simply

stress. In the proof of the above theorem, the symmetry of the stress tensor is

due to the balance law of angular momentum.

Let ω be a subregion of Ω and f be an external body force acting on ω. By

the divergence theorem, ∫
∂ω

σν dS =

∫
ω

div σ dx.

Thus the integration of surface traction exerted to ω on ∂ω is same as the

force obtained by integrating −div σ on ω. By using the balance law of linear

momentum, conservation of mass, the fact that ω is arbitrary, we have

d

dt
(ρv)− div σ = f in Ω.

We refer to [34] for derivation of the above equation.
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2.2.2 Linear elasticity

A material is called elastic if its stress tensor at a certain time is solely deter-

mined by the deformed configuration at that time. From a physical point of

view, a key feature of elastic materials is that the shape of material deformed

by a stress vector returns to the original shape when the stress vector which

caused deformation is removed. In an elastic material, the stress and strain ten-

sors satisfy a relation determined by the kinematic properties of the material.

This relation governing kinematic behavior of a material is called a constitutive

law.

We confine our discussion to elastic materials for which the constitutive

laws are linear equations relating the stress and strain tensors, and we also use

the linearized strain tensor, which is the linear approximation of strain tensor,

instead of the original one. These linearization assumptions are acceptable in

many applications when deformations of material are relatively small compared

to the scale of whole kinematic system.

From the definition of strain tensor in (2.4), the linearized strain tensor

ε = ε(u) : Ω→ S is defined by

ε(u) =
1

2
(gradu+ (gradu)T ), i.e., εij =

1

2
(∂iuj + ∂jui), 1 ≤ i, j ≤ n,

for given displacement u : Ω→ V.

From our assumption that the constitutive equations are linear, the stress

tensor σ and the linearized strain tensor ε(u) are related by

σ(x) = C(x)(ε(u)(x)), (2.5)

where C(x) : S→ S is symmetric positive definite and uniformly bounded above

and below. The stiffness tensor or elasticity tensor C is a rank 4 tensor with

components Cijkl : Ω→ R, 1 ≤ i, j, k, l ≤ n such that

Cijkl = Cjikl = Cklij , (2.6)

which may be determined by measuring the kinematic properties of elastic

medium with experiments. For simplicity, the stress-strain relation (2.5) will

be denoted by σ = Cε(u). From the uniform boundedness of C(x), the map

C : L2(Ω;S)→ L2(Ω;S) is a symmetric positive definite bounded linear opera-

tor.
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The compliance tensor A(x) is defined by A(x) = C(x)−1. Thus A(x) : S→ S
is symmetric positive definite and uniformly bounded above and below. An

elastic medium is called isotropic if kinematic properties of the material at each

point is same in any direction. If an elastic medium is isotropic, then Cτ and

Aτ have the forms

Cτ = 2µτ + λ tr(τ)I, Aτ =
1

2µ

(
τ − λ

2µ+ nλ
tr(τ)I

)
, (2.7)

where µ, λ are positive scalar functions defined on Ω, called the Lamé coeffi-

cients, and tr(τ) is the trace of τ .

2.2.3 Linear viscoelasticity

Viscoelastic materials

In constitutive laws of elastic materials, the time dependence of strain is not

involved. However, in many fluids the stress tensor is related to the strain rate

tensor, which is the time derivative of strain tensor. Such a dependence is called

viscosity of materials.

A material is called viscoelastic if the material has both elastic and viscous

kinematic features. Many polymers, biomedical tissues, and geophysical materi-

als are viscoelastic, so it is important to understand the behavior of viscoelastic

materials in science and engineering.

In order to model viscoelastic materials, we need a constitutive law which

describes the relation of stress, strain, and strain rate tensors. If we confine

our attention to linear viscoelastic materials, then there is a unified framework

to describe all possible constitutive laws by using convolution integrals in time

with some kernels. This integral form to describe constitutive laws, called the

hereditary approach, is useful for analysis from the viewpoint of PDE but it

creates difficulties for numerical computation because the numerical time inte-

gration of convolution is not easy to implement in an efficient way. Therefore

we shall use differential forms of constitutive laws, say differential constitutive

laws, for our study of numerical methods for viscoelasticity problems. The dif-

ferential constitutive laws are not available for all linear viscoelastic materials.

Some materials need constitutive laws with fractional time derivatives, which

are not local operators and cannot be written as differential operators [14].

However, differential constitutive laws are obtained for the mechanical models

of viscoelastic materials, which will be introduced later, and mechanical models
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include many important models of viscoelastic materials. The equivalence of

integral and differential forms of constitutive laws under some assumptions is

discussed in [33].

Hereditary approach

We briefly introduce the hereditary approach because it is related to the two

fundamental characteristics of viscoelastic materials, the creep compliance and

the relaxation modulus.

Before we define the creep compliance and relaxation modulus mathemati-

cally, let us describe those properties in a physical sense. If a material is purely

elastic, then the dependence of strain on stress is instantaneous and strain is not

changed as long as stress is constant in time. However, in viscoelastic materials,

the dependence is not instantaneous and strain changes in time even if stress is

held constant. We can see it clearly when we push a foam pillow with a force

which is constant in time. This kinematic behavior is called creep. Conversely,

suppose we push an elastic material, deform it up to a certain distance, and then

keep the state. The stress response remains constant. In viscoelastic materials,

when we do the same action, the stress is the strongest at the beginning moment

and decays in time. This is explained by the fact that the molecules of viscoelas-

tic material are rearranged by stress and the rearrangement of molecules requires

some time. This kinematic behavior is called relaxation.

Now, in a one dimensional model, we introduce rigorous definitions of the

creep compliance and relaxation modulus and describe the hireditary approach

of linear viscoelasticity. Let σ(t) be the stress and ε(t) be the linear strain,

which are scalars in the one dimensional case. For constitutive laws, we assume

invariance of time translation and causality of material properties. Invariance

of time translation means if the input at certain time t0 induces output at time

t0 + δ, δ > 0, then the same input at time t0 + d induces the output at time

t0 + d + δ which is same as the output at time t = t0 + δ. Causality is the

property that the output at time t1 is completely determined by the inputs in

the time range t ≤ t1.

Let Θ(t) be the Heaviside function, i.e., the function defined on R which is

1 for t > 0 and 0 for t < 0. The creep test is to set σ(t) = Θ(t) and observe

the corresponding ε(t) which is called the creep compliance and is denoted by

J(t). The relaxation test is to set ε(t) = Θ(t) and observe the corresponding

σ(t) which is called the relaxation modulus and is denoted by G(t). These two
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functions are called materials functions. From causality, J(t) = G(t) = 0 for

t < 0. In experiments, G, J ≥ 0 (or symmetric positive definite in higher than

one dimension) and on 0 < t < +∞, J is non-decreasing andG is non-increasing.

Suppose J(t) is differentiable and increasing in time. Then for t > 0, J̇ > 0 and

0 ≤ J(0+) < J(t) < J(+∞) ≤ +∞. Similarly, under the assumption Ġ < 0,

+∞ ≥ G(0+) > G(t) > G(+∞) ≥ 0.

By using the material functions, the stress and strain are described by the

Riemann–Stiltjes integrals

ε(t) =

∫ t

−∞
J(t− τ)dσ(τ), σ(t) =

∫ t

−∞
G(t− τ)dε(τ).

They are called creep and relaxation representations, respectively. The above

formulas are justified by the Boltzmann superposition principle which will be

explained below.

Suppose a constant amount of stress σ1 is exerted from time τ1, i.e., σ(t) =

σ1Θ(t − τ1). Then the corresponding strain ε(t) is σ1J(t − τ1). Suppose the

stresses ∆σi = σi+1−σi are added at time τi for i = 2, · · · , n. τ1 < τ2 < · · · < τn.

Then the strain is ε(t) =
∑n
i=1 ∆σiJ(t−τi). In this manner, for continuous σ(t),

the corresponding strain is obtained as the limit of the summation by increasing

n and letting the maximum of time intervals converge to zero. In a similar way,

the formula of σ(t) is obtained.

Mechanical models

In mechanical models, a viscoelastic material is understood as a continuum of

infinitesimal elements consisting of a combination of infinitesimal springs and

dashpots. For example, the special case of a linear elastic material is modeled

by a continuum of elements consisting of infinitesimal springs. In a mechanical

model of viscoelastic materials, for each spring and dashpot unit, the elastic

stress σe and viscous stress σv are related to the strain tensor and strain rate

tensor by

σe = Cε(u), σv = C ′ε(u̇), (2.8)

where C and C ′ are rank 4 tensors satisfying (2.6) and are uniformly bounded

from above and below. By combining spring and dashpot units in series or par-

allel, we can make infinitely many mechanical models of viscoelastic materials.
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In Figure 2.1, we illustrate the spring-dashpot combination of some elemen-

tary models. The Kelvin–Voigt and Maxwell models are obtained by combining

one spring and one dashpot in parallel and in series, respectively. The Zener

model is the parallel combination of Maxwell component and one spring, and

the generalized Zener model is a generalization of Zener model with multiple

Zener components.

Figure 2.1: Examples of mechanical models of viscoelastic materials. The
Kelvin–Voigt, Maxwell, Zener (or standard linear solid), and generalized
Maxwell (or Weichert) models.

In the Kelvin–Voigt model, the elastic and viscous stresses σe, σv, are related

to ε(u) and ε(u̇) by the spring and dashpot units as σe = Cε(u), σv = C ′ε(u̇).

The total stress is the sum of elastic and viscous stresses, so a constitutive

equation is

σ = Cε(u) + C ′ε(u̇).

In the Maxwell model, we consider the decomposition of displacement u =

ue + uv where ue and uv are the parts of displacement involved with the spring

and dashpot units. By (2.8), the stresses related to the spring and dashpot

components are Cε(ue) and C ′ε(u̇v). However, by Newton’s third law, Cε(ue) =

C ′ε(u̇v), which is the total stress tensor σ. If we let A = C−1, A′ = C ′−1, then

Aσ = ε(ue), A
′σ = ε(u̇v). Thus a constitutive equation for the Maxwell model

is

Aσ̇ +A′σ = ε(u̇e) + ε(u̇v) = ε(u̇).

The constitutive equations of the Zener and the generalized Zener models are

obtained with similar arguments. The derivation of equations of the Zener model

will be discussed in detail in Chapter 5. A similar approach can be applied to

the generalized Maxwell and generalized Zener models.

Before moving to the next section, we remark that the viscoelastic features

of one material can be described by more than one mechanical models, i.e., two
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different mechanical models may show kinematics of exactly same creep compli-

ance and relaxation modulus. For instance, there is another description of the

Zener model (see [48]), which is the serial combination of one Kelvin–Voigt com-

ponent and a spring. In the hereditary approach, we have a unique constitutive

law for given creep compliance and the relaxation modulus. However, as we

have seen in the examples of the Maxwell and Kelvin–Voigt models, differential

constitutive laws include quantities which are strongly motivated by the struc-

ture of mechanical models which may not be intrinsic in the sense of physics.

The differential constitutive laws from different mechanical models may have

very different forms of equations nonetheless they describe same kinematic fea-

tures. In our study of the Zener model, we use the generalized Maxwell form of

mechanical model because it is easier to analyze than the model of generalized

Kelvin–Voigt form even if they have same kinematic features.

2.3 Mixed finite element methods

In this section, we introduce basics of saddle point problems and mixed finite

element methods. For more information about mixed finite element methods,

see [19].

2.3.1 Saddle point problems

Let Σ, V be Hilbert spaces and suppose that a : Σ × Σ → R, b : Σ × V → R
are bounded bilinear forms. We denote the dual spaces of Σ, V by Σ∗, V ∗. We

now consider a variational problem with constraints.

Constrained minimization problem. For F ∈ Σ∗, G ∈ V ∗, find σ ∈ Σ

which minimizes

J(σ) =
1

2
a(σ, σ)− F (σ),

subject to the constraint b(σ, v) = G(v) for all v ∈ V .

Instead of this minimization problem, we find a critical point (σ, u) ∈ Σ×V
of

L(τ, v) =
1

2
a(τ, τ) + b(τ, v)− F (τ)−G(v), (τ, v) ∈ Σ× V, (2.9)

by using the Lagrange multiplier u. By the Fréchet derivative computation, we
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see that a critical point (σ, u) of (2.9) should satisfy

a(σ, τ) + b(τ, u) = F (τ), τ ∈ Σ,

b(σ, v) = G(v), v ∈ V.
(2.10)

Note that for any (τ, v) ∈ Σ× V , the inequalities

L(σ, v) ≤ L(σ, u) ≤ L(τ, u),

hold, so the variational problem of (2.9) is called a saddle point problem.

We will discuss necessary and sufficient conditions for the well-posedness of

problem (2.10). Define A : Σ→ Σ∗, B : Σ→ V ∗ by

(Aσ)(τ) = a(σ, τ), (Bσ)(v) = b(σ, v), τ ∈ Σ, v ∈ V.

Then we can rewrite (2.10) as(
A B∗

B 0

)(
σ

u

)
=

(
F

G

)
. (2.11)

In order to show well-posedness of (2.10), let

Z = {τ ∈ Σ | b(τ, v) = (Bτ)(v) = 0, ∀v ∈ V }, (2.12)

which is the null space of B. Since Z is a closed subspace of Σ, we have the

orthogonal decomposition Σ = Z + Z⊥, and Σ∗ = Z∗ + (Z⊥)∗. Let πZ∗ ,

πZ⊥∗ be the projections from Σ∗ onto Z∗, (Z⊥)∗, and define AZZ : Z → Z∗,

AZ⊥ : Z → (Z⊥)∗, A⊥Z : Z⊥ → Z∗, A⊥⊥ : Z⊥ → (Z⊥)∗ by

AZZ := πZ∗ ◦A|Z , A⊥Z := (πZ∗A)|Z⊥ , (2.13)

AZ⊥ := (πZ⊥∗A)|Z⊥ , A⊥⊥ := (πZ⊥∗A)|Z⊥ .

The following theorem for the well-posedness of (2.10) was proved by Brezzi.

See [19] for its proof.

Theorem 2.2. Suppose that AZZ in (2.13) is an isomorphism and B is onto.

Then (2.10) has a unique solution (σ, u) ∈ Σ × V and there exists c > 0 such
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that

‖σ‖Σ + ‖u‖V ≤ c(‖F‖Σ∗ + ‖G‖V ∗).

Remark 2.3. In the above theorem, the two conditions that AZZ is isomorphic

and B is onto, are called the first and second Brezzi conditions. Since b is a

bounded bilinear form, the second Brezzi condition is equivalent to the inf-sup

condition

inf
06=v∈V

sup
06=τ∈Σ

b(τ, v)

‖τ‖Σ‖v‖V
≥ γ > 0, (2.14)

by the closed range theorem in functional analysis [50].

If the bilinear form a is symmetric, then the first Brezzi condition is obtained

from another inf-sup condition

inf
0 6=σ∈Z

sup
0 6=τ∈Z

a(σ, τ)

‖σ‖Σ‖τ‖Σ
≥ γ′ > 0. (2.15)

Its proof is obtained by identifying Σ and Σ∗ by the Riesz representation theorem

and using the closed range theorem.

2.3.2 Mixed finite elements and Brezzi conditions

We will discuss the numerical solution of saddle point problems. Since the

bilinear form a is symmetric in most important problems, we assume that a is

symmetric for simplicity.

In order to solve the saddle point problems numerically with finite elements,

we use finite element spaces Σh ⊂ Σ, Vh ⊂ V and consider the following discrete

form of problem (2.10): Find (σh, uh) ∈ Σh × Vh such that

a(σh, τ) + b(τ, uh) = F (τ), τ ∈ Σh,

b(σh, v) = G(v), v ∈ Vh.
(2.16)

The pair of finite element spaces (Σh, Vh) is called mixed finite elements and

the numerical methods of solving the discrete saddle point problem (2.16) with

mixed finite elements are called mixed finite element methods or mixed methods.

We consider the conditions that the problem (2.16) is well-posed. If we apply

Theorem 2.2 to (2.16), then we only need to check the first and second Brezzi
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conditions for (Σh, Vh). Let

Zh = {τ ∈ Σh | b(τ, v) = 0, v ∈ Vh}. (2.17)

By the symmetry assumption of bilinear form a, as we pointed out in Remark

2.3,the Brezzi conditions are obtained from the two inf-sup conditions

inf
0 6=σ∈Zh

sup
0 6=τ∈Zh

a(σ, τ)

‖σ‖Σh
‖τ‖Σh

≥ αh > 0, (2.18)

inf
06=v∈Vh

sup
06=τ∈Σh

b(τ, v)

‖τ‖Σh
‖v‖Vh

≥ βh > 0. (2.19)

Let us consider a family of mixed finite elements {(Σh, Vh)}h>0 with parameter

h and suppose that there are αh, βh for each h. Then {(Σh, Vh)}h>0 is called

stable if αh, βh are bounded below by some positive constants independent

of h. For simplicity, we usually use (Σh, Vh) to denote the family of finite

elements {(Σh, Vh)}h>0. If (Σh, Vh) is stable, then the following quasi-optimal

error estimate is straightforwardly obtained from Theorem 2.2.

‖σ − σh‖Σ + ‖u − uh‖V ≤ c

(
inf
τ∈Σh

‖σ − τ‖Σ + inf
v∈Vh

‖u− v‖V
)
. (2.20)

2.4 Mixed finite elements for linear elasticity

with weak symmetry

From the balance law of angular momentum, the stress tensor is symmetric and

the symmetry of stress must be enforced when we find a numerical approxima-

tion of the stress. The symmetry of stress can be imposed on the numerical

solution strongly by using symmetric finite elements for stress. However, it is

not easy to find stable families of such mixed finite elements and they have a

fairly large number of degrees of freedom in general. This is a nontrivial draw-

back in practical computations. An alternative is to enforce symmetry of stress

weakly by requiring that σh, the numerical approximation of stress, to be or-

thogonal to a skew-symmetric finite element space. To our knowledge, this weak

symmetry idea firstly appeared in [26] and extended to higher orders in [3]. The

first finite elements in the context of mixed finite elements were the PEERS

elements developed in [7]. Thereafter, numerous mixed finite elements for linear

elasticity were developed with the weak symmetry idea [10, 17, 24, 32, 46, 47].
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In general, this weak symmetry elements are easier to implement and have have

fewer degrees of freedom for low order elements than strong symmetry elements

[5, 8, 11, 36].

2.4.1 Mixed formulations of linear elasticity

In our discussions, we only consider problems with the homogeneous displace-

ment boundary conditions u = 0 on ∂Ω for simplicity but all discussions can be

extended easily to problems with inhomogeneous displacement boundary con-

ditions.

From the balance of linear momentum, − divCε(u) = f at equilibrium for

an external body force f ∈ V . In order for mixed formulations, we introduce

a new variable σ : Ω → S for the stress Cε(u) and have Aσ = ε(u). From the

homogeneous displacement boundary conditions u = 0 on ∂Ω, by integration by

parts, we obtain the following Hellinger–Reissner formulation of linear elasticity

which seeks (σ, u) in S × V so that

(Aσ, τ) + (div τ, u) = 0, τ ∈ S, (2.21)

−(div σ,w) = (f, w), w ∈ V. (2.22)

We can also use a modified Hellinger–Reissner formulation with weak symmetry

of stress. We first extend the A operator, originally defined only on symmetric

tensors, to be the identity map on skew-symmetric tensors. If we set r =

skw gradu, then Aσ = ε(u) = gradu − r. By integration by parts, using the

homogeneous displacement boundary conditions, we have

(Aσ, τ) = (gradu− r, τ) = −(u,div τ)− (r, τ), τ ∈M.

Now we seek (σ, u, r) in M × V ×K satisfying

(Aσ, τ) + (div τ, u) + (r, τ) = 0, τ ∈M, (2.23)

−(div σ,w) = (f, w), w ∈ V, (2.24)

(σ, q) = 0, q ∈ K. (2.25)

One can check that the two formulations, (2.21–2.22) and (2.23–2.25), are equiv-

alent but there are significant differences between the discrete problems deduced

from them.
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To discretize (2.21–2.22) with mixed finite elements, we select finite element

spaces Sh ⊂ S, Vh ⊂ V . The discrete problem is then to seek (σh, uh) in Sh×Vh
so that

(Aσh, τ) + (div τ, uh) = 0, τ ∈ Sh,

−(div σh, w) = (f, w), w ∈ Vh.

By Theorem 2.2, this problem is well-posed when the Brezzi conditions of mixed

finite element methods are satisfied. However, it is not easy to find simple mixed

finite elements satisfying the symmetry condition Sh ⊂ S and Brezzi conditions.

There are some known finite elements using composite triangles [8, 36]. Finding

finite elements without using composite triangles had been an open question

for four decades until the first family of elements were discovered by Arnold

and Winther [11]. Although there are now some known finite elements with

symmetric stresses [5, 11], they have a large number of degrees of freedom and

their application to practical problems is limited, especially in three dimensions.

As an alternative approach, we consider the discrete problem of (2.23–2.25).

Let Mh ⊂M , Vh ⊂ V , Kh ⊂ K be finite element spaces and we find (σh, uh, rh)

in Mh × Vh ×Kh so that

(Aσh, τ) + (div τ, uh) + (rh, τ) = 0, τ ∈Mh, (2.26)

−(div σh, w) = (f, w), w ∈ Vh, (2.27)

(σh, q) = 0, q ∈ Kh. (2.28)

This is a saddle point problem in the sense of (2.10) if we take M for Σ, and

V ×K for V . The bilinear forms a and b in (2.10) are

a(σ, τ) = (Aσ, τ), b(σ, (u, r)) = (div σ, u) + (σ, r). (2.29)

Now we need the Brezzi conditions (2.18) and (2.19) for the mixed finite elements

Mh, Vh, and Kh, where the spaces Σh, Vh in (2.18), (2.19) are Mh and Vh×Kh

in our elasticity formulation. We will introduce two families of stable mixed

finite elements in the next section.
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2.4.2 Two families of stable mixed finite elements for elas-

ticity

In this section, among the finite elements for elasticity with weak symmetry of

stress, we introduce two families developed by Arnold, Falk, and Winther [10],

and by Gopalakrishnan and Guzmán [32]. The Arnold–Falk–Winther (AFW)

elements have simple shape functions and so are easy to implement, but the

accuracy of stress is suboptimal. The Gopalakrishnan–Guzmán (GG) elements,

which are more recently developed, give optimal order accuracy of errors but

shape functions are more complicated. The GG elements allow for increased

accuracy of the displacement approximation by postprocessing.

For simplicity, we will describe these two families of elements in detail only

in the two dimensional case. For the descriptions of three dimensional elements,

see [10] and [32].

The Arnold–Falk–Winther elements

Let T be a triangle in the triangulation Th. In the Arnold–Falk–Winther ele-

ments of degree k ≥ 1, the shape functions of Mh, Vh, and Kh are

Pk(T ;M), Pk−1(T ;V), Pk−1(T ;K), (AFW)

respectively. The local degrees of freedom (DOFs) of Mh are

σ 7→
∫
e

w · (σν) dS, w ∈ Pk(e;V), σ 7→
∫
T

τ : σ dx, τ ∈ Ñk−1(T ),

where e is an edge of T and Ñk(T ) is the set consisting of pairs of the shape

functions of the rotated Raviart–Thomas elements, defined right after (2.2) in

section 2.1. The local DOFs of Vh and Kh are

v 7→
∫
T

v · w dx, w ∈ Pk−1(T ;V), r 7→
∫
T

r : q dx, q ∈ Pk−1(T ;K).

It is easy to check unisolvency of shape functions of Vh and Kh for these local

DOFs. Unisolvency of shape functions of Mh for the above local DOFs is a con-

sequence of unisolvency of the Brezzi–Douglas–Marini (BDM) elements because

Mh is the space which is a pair of BDM elements. For more details on BDM

elements, see [9, 19] for instance.

For the triangulation Th, we define Mh, Vh, Kh by the assembled finite

31



element spaces from these local DOFs, respectively. Let Πh,T , Ph,T , P ′h,T be

the interpolation maps determined by the local DOFs of each space Mh, Vh,

and Kh, respectively. The interpolation maps Πh, Ph, and P ′h are defined by

Πh|T := Πh,T , Ph|T := Ph,T , P ′h|T := P ′h,T .

Since Vh and Kh do not have any DOFs on edges or vertices, they are piecewise

polynomial spaces adapted to Th without any interelement continuity and one

can check that Ph and P ′h are the orthogonal L2 projections onto Vh and Kh,

respectively. Therefore,

‖v − Phv‖ ≤ chm‖v‖m, 0 ≤ m ≤ k, ‖r − P ′hr‖ ≤ chm‖r‖m, 0 ≤ m ≤ k,

for v ∈ Hm(Ω;V) and r ∈ Hm(Ω;K). In contrast to Vh and Kh, the DOFs

for Mh impose some interelement continuity. For any τ ∈ Mh, the normal

component of each row of τ on each edge is continuous from the DOFs assigned

on edges. Therefore Mh ⊂ H(div;M), and divMh is well-defined.

Now we state properties of Πh and the spaces Mh × Vh ×Kh proved in [10].

(A1) We have divMh = Vh, and for any σ ∈ H1(Ω;M), div Πhσ = Ph div σ,

‖Πhσ‖ ≤ c‖σ‖1, ‖σ −Πhσ‖ ≤ chm‖σ‖m, 1 ≤ m ≤ k + 1.

(A2) (inf-sup condition) There exists c > 0 which is uniform in the maximum

diameter of mesh triangulation h, so that for any (u, r) ∈ Vh × Kh, there is

τ ∈Mh satisfying

div τ = u, (τ, q) = (r, q), ∀q ∈ Kh, ‖τ‖div ≤ c(‖u‖+ ‖r‖).

We claim that (A1), (A2) imply (2.18), (2.19), and so the Arnold–Falk–

Winther elements are stable mixed finite elements. Recall that the bilinear

forms a and b for our elasticity problem are as in (2.29).

In order to show (2.18), we first note that the space Zh defined by (2.17) is

Zh = {σ ∈Mh | (div σ,w) + (σ, q) = 0, ∀(w, q) ∈ Vh ×Kh}.

If σ ∈ Zh, then div σ ∈ Vh because divMh = Vh from (A1) and Zh ⊂ Mh

from the definition of Zh. Furthermore, σ ∈ Zh implies that div σ = 0 because

(div σ,w) = 0 for all w ∈ Vh from the definition of Zh. Therefore for any σ ∈ Zh,
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using the coercivity of A and the fact that div σ = 0, we obtain

a(σ, σ) = (Aσ, σ) ≥ c0‖σ‖2 = c0‖σ‖2div, c0 > 0.

This implies (2.18) with αh = c0. Thus (2.18) holds with αh ≥ c0.

To prove (2.19) from (A2), we rewrite (2.19) with Mh × Vh ×Kh, which is

inf
06=(u,r)∈Vh×Kh

sup
06=τ∈Mh

(div τ, u) + (τ, r)

‖τ‖div(‖u‖+ ‖r‖)
≥ β > 0.

For given (u, r) ∈ Vh×Kh, if we take a τ which satisfies the conditions in (A2),

then

(div τ, u) + (τ, r)

‖τ‖div(‖u‖+ ‖r‖)
≥ ‖u‖2 + ‖r‖2

c(‖u‖+ ‖r‖)2
≥ 1

2c
,

where the last inequality is due to the arithmetic-geometric mean inequality, so

the second Brezzi condition (2.19) holds.

For future reference, here we state a simple corollary.

Corollary 2.4. For any r ∈ Kh, there exists a τ ∈ Mh such that div τ = 0,

(τ, r) = ‖r‖2, and ‖τ‖ ≤ c‖r‖.

Its proof is obvious if we take u = 0 and q = r in the conditions of (A2).

The Gopalakrishnan–Guzmán elements

For a triangle T , let vi, ei, i = 0, 1, 2 be the vertices and edges of T , numbered so

that vi is not an endpoint of ei. For each i, there is a unique linear polynomial

λi which has value 1 at vi and vanishes on ei, and we call such λi, i = 0, 1, 2,

the barycentric coordinates on T . The bubble function bT on T is defined by

bT = λ0λ1λ2, the product of all barycentric coordinates on T . We also define

rot and curl as

rot

(
τ11 τ12

τ21 τ22

)
:=

(
∂1τ12 − ∂2τ11

∂1τ22 − ∂2τ21

)
, curl

(
u1

u2

)
:=

(
∂2u1 −∂1u1

∂2u2 −∂1u2

)
.

Let k ≥ 1 be fixed. In the Gopalakrishnan–Guzmán (GG) elements of degree

k, the shape functions of Mh are

Pk(T ;M) +B(Pk(T ;K)), B(η) := curl((rot η)bT ), η ∈ Pk(T ;M),
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and the shape functions of Vh and Kh are

Pk−1(T ;V), Pk(T ;K).

Let P̃k(T ;K) = {r ∈ Pk(T ;K) | (r, q) = 0,∀q ∈ Pk−1(T ;K)}. The local DOFs

of Mh are

σ 7→
∫
e

w · (σν) dS, w ∈ Pk(e;V),

σ 7→
∫
T

τ : σ dx, τ ∈ Ñk−1(T ) + P̃k(T ;K).

The local DOFs of Vh and Kh are

v 7→
∫
T

v · w dx, w ∈ Pk−1(T ;V), r 7→
∫
T

r : q dx, q ∈ Pk(T ;K).

In [32], Gopalakrishnan and Guzmán proved unisolvency of these DOFs. If we

use Πh, Ph, P ′h again to denote the interpolation maps determined by the DOFs

of Mh, Vh, Kh, then the maps Ph, P ′h are the orthogonal L2 projections onto

Vh, Kh, respectively, and the estimates

‖v − Phv‖ ≤ chm‖v‖m, 0 ≤ m ≤ k,

‖r − P ′hr‖ ≤ chm‖r‖m, 0 ≤ m ≤ k + 1,
(2.30)

hold for v ∈ Hm(Ω;V) and r ∈ Hm(Ω;K). Note that the best L2 approximation

in Kh is one degree higher than the one in Vh because of the one degree higher

shape functions. It is also proved in [32] that the conditions (A1), (A2) in the

previous section hold, and the GG elements are stable.

2.4.3 Error analysis for linear elasticity

As a consequence of Theorem 2.2, stability of mixed finite elements implies

the quasi-optimal error estimate (2.20). However, when we use the AFW or

GG elements, the error analysis can be improved by utilizing the features of

finite elements in (A1) and (A2). In this section, we will prove improved

error analysis following [30], [35], and show a postprocessing technique following

[32, 47].

Throughout this section, (Mh, Vh,Kh) will denote either the AFW or GG el-

ements and (Πh, Ph, P
′
h) will denote the interpolation maps given by the degrees
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of freedom without distinguishing the two families.

An improved error analysis

We claim the following.

Theorem 2.5. Suppose that

c0‖τ‖2 ≤ ‖τ‖2A ≤ c1‖τ‖2, τ ∈ L2(Ω;M), (2.31)

with positive constants c0, c1 and let (σ, u, r) be the exact solution of (2.23–2.25).

Then for the solution (σh, uh, rh) of (2.26–2.28), the following improved error

estimates hold:

‖div σ − div σh‖ = ‖ div σ − Ph div σ‖, (2.32)

‖σ − σh‖+ ‖uh − Phu‖+ ‖r − rh‖ ≤ c(‖σ −Πhσ‖+ ‖r − P ′hr‖), (2.33)

with c depending on c0, c1.

Proof. The error equations are

(A(σ − σh), τ) + (div τ, u− uh) + (r − rh, τ) = 0, τ ∈Mh, (2.34)

(div(σ − σh), v) = 0, v ∈ Vh, (2.35)

(σ − σh, q) = 0, q ∈ Kh. (2.36)

Since div σh ∈ Vh, (2.35) implies that div σh = Ph div σ, so (2.32) holds.

For the proof of (2.33), we first prove that

‖rh − P ′hr‖ ≤ c(‖σ −Πhσ‖+ ‖σh −Πhσ‖+ ‖r − P ′hr‖). (2.37)

By Corollary 2.4, there exists a τ ∈Mh such that div τ = 0 and

(rh − P ′hr, τ) = ‖rh − P ′hr‖2, ‖τ‖ ≤ c‖rh − P ′hr‖.

If we choose such τ in (2.34), we have (A(σ − σh), τ) + (r − rh, τ) = 0. By

splitting r − rh = r − P ′hr + P ′hr − rh and invoking (2.31), we get

‖rh − P ′hr‖2 = (A(σ − σh), τ) + (r − P ′hr, τ) (2.38)

≤ c(‖σ − σh‖A + ‖r − P ′hr‖)‖rh − P ′hr‖.

35



By the triangle inequality with ‖ · ‖A norm, we have

‖rh − P ′hr‖ ≤ c(‖σ −Πhσ‖A + ‖Πhσ − σh‖A + ‖r − P ′hr‖), (2.39)

and (2.37) follows from (2.31).

Next, choose τ = σh −Πhσ in (2.34), q = rh − P ′hr in (2.36). Since we have

shown that div σh = Ph div σ and by the fact div Πhσ = Ph div σ in (A1), we

have div(σh −Πhσ) = 0, and

(A(σ − σh), σh −Πhσ) + (r − rh, σh −Πhσ) = 0,

(σ − σh, rh − P ′hr) = 0.

By writing σ − σh as (σ − Πhσ) + (Πhσ − σh) in the second equation, we have

an equality (σ−Πhσ, rh −P ′hr) = (σh −Πhσ, rh −P ′hr). If we substitute r− rh
by (r−P ′hr) + (P ′hr− rh) in the first equation, and use the previously obtained

equality to replace (P ′hr− rh, σh−Πhσ) by (P ′hr− rh, σ−Πhσ), then we obtain

(A(σ − σh), σh−Πhσ) + (r − P ′hr, σh −Πhσ) + (P ′hr − rh, σ −Πhσ) = 0,

or, equivalently,

(A(σh −Πhσ), σh−Πhσ) = (A(σ −Πhσ), σh −Πhσ) (2.40)

+ (r − P ′hr, σh −Πhσ) + (P ′hr − rh, σ −Πhσ).

From (2.31), the Cauchy–Schwarz inequality, and Young’s inequality, we get,

for any ε > 0,

c0‖σh −Πhσ‖2

≤ (A(σ −Πhσ), σh −Πhσ) + (r − P ′hr, σh −Πhσ) + (P ′hr − rh, σ −Πhσ)

≤ Cε(‖σ −Πhσ‖2 + ‖r − P ′hr‖2) + ε(‖σh −Πhσ‖2 + ‖rh − P ′hr‖2).

By moving ε‖σh −Πhσ‖2 term to the left-hand side, one gets

(c0 − ε)‖σh −Πhσ‖2 ≤ Cε(‖σ −Πhσ‖2 + ‖r − P ′hr‖2) + ε‖rh − P ′hr‖2.

If we use (2.37) to bound the last term on the right-hand side of this inequality,
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and take ε sufficiently small, then we obtain

‖σh −Πhσ‖2 ≤ c(‖σ −Πhσ‖2 + ‖r − P ′hr‖2), (2.41)

for some c > 0. By applying this bound to (2.37), we then get

‖rh − P ′hr‖ ≤ c(‖σ −Πhσ‖+ ‖r − P ′hr‖). (2.42)

By the triangle inequality and inequalities (2.41) and (2.42), a partial result of

(2.33) is obtained by

‖σ − σh‖+ ‖r − rh‖

≤ ‖σ −Πhσ‖+ ‖Πhσ − σh‖+ ‖r − P ′hr‖+ ‖P ′hr − rh‖

≤ C(‖σ −Πhσ‖+ ‖r − P ′hr‖).

For ‖uh−Phu‖ in (2.33), choose τ in (2.34) such that div τ = uh−Phu, (τ, q) = 0

for all q ∈ Kh, and ‖τ‖ ≤ c‖uh − Phu‖ using (A2). Note that

(div τ, u− uh) = (div τ, Phu− uh) = −‖Phu− uh‖2,

and (2.34) gives

‖Phu− uh‖2 = (A(σ − σh), τ) + (r − rh, τ)

≤ c(‖σ − σh‖+ ‖r − rh‖)‖Phu− uh‖,

which completes proof of (2.33) by the previous estimates of ‖σ − σh‖ and

‖r − rh‖.

Robustness for nearly incompressible materials

Now we consider the error analysis for homogeneous isotropic nearly incom-

pressible materials. If a material is homogeneous isotropic, then the compliance

tensor A is of the form (2.7) with constants µ and λ. From a physical point

of view, λ is very large when the material is nearly incompressible, which is

an important class of materials. In nearly incompressible materials, A is still

coercive on L2(Ω;M) but the coercivity constant c0 in (2.31) decays to zero as

λ→ +∞, so the constant c in (2.33), obtained from the argument we have used,

may grow to infinity as λ→ +∞.
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We claim that even though c0 decays to zero as λ → +∞, the constant c

in (2.33) is uniformly bounded. This will be demonstrated by a more careful

analysis using the following lemmas proved in [8]. We use τD to denote the

deviatoric part of τ in L2(Ω;M) which is defined by τD := τ − (1/n) tr(τ)I.

Lemma 2.6. Let τ ∈ H(div,Ω;M) satisfy
∫

Ω
tr(τ) dx = 0. Then the estimate

‖τ‖ ≤ c(‖τD‖+ ‖ div τ‖−1), (2.43)

holds with c > 0 independent of τ .

Lemma 2.7. For τ ∈ L2(Ω;M) and A of the form in (2.7), the inequality

‖τD‖2 ≤ c(Aτ, τ) =: c‖τ‖2A, (2.44)

holds with c depending only on µ and n.

Theorem 2.8. Suppose that A is of the form (2.7) with positive constants λ, µ

and the triples (σ, u, r), (σh, uh, rh) are solutions of (2.23–2.25) and (2.26–2.28),

respectively. Then the constant c in (2.33) is uniformly bounded as λ→ +∞.

Proof. We begin with the same error equations (2.34–2.36) and prove (2.33)

without using the coercivity of A. Since we will see many formulas in the proof

of Theorem 2.5 again, we will not repeat them but simply refer to them in the

proof.

We first prove (2.33) for ‖σ − σh‖ without using the coercivity of A. Note

that (2.39) still holds with c independent of the coercivity of A. For the estimate

of ‖σ − σh‖, we first claim

‖σ − σh‖ ≤ c(‖σ −Πσh‖+ ‖σh −Πhσ‖A). (2.45)

To show this inequality, choose τ = I in (2.34). Since div τ = 0 and both r and

rh are skew symmetric, we get

0 = (A(σ − σh), I) =
1

2µ+ nλ

∫
Ω

tr(σ − σh) dx,

where the last equality comes from the definition of A in (2.7). By applying

Lemma 2.6 to σ − σh,

‖σ − σh‖ ≤ c(‖(σ − σh)D‖+ ‖ div(σ − σh)‖−1).
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Since div σh = div Πhσ in Vh, one can see that

‖div(σ − σh)‖−1 = ‖ div(σ −Πhσ)‖−1 ≤ ‖σ −Πhσ‖, (2.46)

and by the triangle inequality and Lemma 2.7,

‖(σ − σh)D‖ ≤ ‖(σ −Πhσ)D‖+ ‖(Πhσ − σh)D‖ (2.47)

≤ c(‖σ −Πhσ‖+ ‖Πhσ − σh‖A),

so (2.45) is obtained.

Now we prove an estimate for ‖σh − Πhσ‖A. Since P ′hr and r are skew-

symmetric, we have an equality

(r − P ′hr, σh −Πhσ) = (r − P ′hr, (σh −Πhσ)D).

If we use this to replace (r − P ′hr, σh − Πhσ) in (2.40), then by the Cauchy–

Schwarz inequality, Young’s inequality, Lemma 2.7, and the fact that c1 in (2.31)

is uniformly bounded when λ→ +∞, we get

‖σh −Πhσ‖2A = (A(σ −Πhσ), σh −Πhσ) + (r − P ′hr, (σh −Πhσ)D)

+ (P ′hr − rh, σ −Πhσ)

≤ ‖σ −Πhσ‖A‖σh −Πhσ‖A + ‖r − P ′hr‖‖(σh −Πhσ)D‖

+ ‖P ′hr − rh‖‖σ −Πhσ‖

≤ Cε(‖σ −Πhσ‖2 + ‖r − P ′hr‖2)

+ ε(‖P ′hr − rh‖2 + ‖σh −Πhσ‖2A).

By using (2.39) and absorbing the terms with the coefficient ε into the left-hand

side, we have

‖σh −Πhσ‖2A ≤ C(‖σ −Πhσ‖2 + ‖r − P ′hr‖2).

Thus, combining the above with (2.45), the estimate (2.33) for ‖σ − σh‖ is

obtained.

The estimate (2.33) for ‖r−rh‖ is obtained by applying Lemma 2.7 to (2.39),

using the above result on ‖σh −Πhσ‖A, and the triangle inequality.

The estimate (2.33) for ‖uh−Phu‖ is easily obtained from (2.33) for ‖σ−σh‖
and ‖r − rh‖, by the same argument in the proof of Theorem 2.5.
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Postprocessing

By postprocessing we mean a technique with relatively small computational

costs to find an improved numerical solution from the previously obtained nu-

merical solution. In this section, we show a postprocessing technique to improve

the error estimate of ‖u − uh‖ for the exact solution u and the numerical so-

lution uh obtained in (2.26–2.28). More precisely, we will find u∗h, a piecewise

polynomial function of higher degree than uh with a relatively simple procedure

and show that the order of accuracy of ‖u−u∗h‖ is higher than that of ‖u−uh‖.
For completeness, we present a proof of postprocessing developed in [47] but

in a slightly modified form which is suggested in [32]. This postprocessing is

available only for the GG elements. The reason for this restriction will be clear

when we describe the assumptions of postprocessing later.

Recall that Vh = Pk−1(Th;V) for the GG elements. We define

V ∗h = Pk(Th;V), Ṽh = {w ∈ V ∗h | w ⊥ Vh},

and denote the orthogonal L2 projections of V = L2(Ω;V) onto V ∗h and Ṽh by

P ∗h and P̃h, respectively. It is obvious that P ∗h = P̃h + Ph. Let (σ, u, r) and

(σh, uh, rh) be solutions of (2.23–2.25) and (2.26–2.28), respectively, and define

u∗h ∈ V ∗h by

(gradh u
∗
h, gradh w) = (Aσh + rh, gradh w), w ∈ Ṽh,

(u∗h, v) = (uh, v), v ∈ Vh,
(2.48)

where gradh is the piecewise gradient operator adapted to Th.

We show that u∗h in (2.48) is well-defined. From V ∗h = Vh⊕ Ṽh and counting

number of equations and unknowns, it is easy to see that (2.48) is a system

of linear equations with same number of equations and unknowns. In order to

show that u∗h is well-defined by (2.48), it is enough to show that u∗h = 0 if the

right-hand sides vanish. From the second equation in (2.48), with vanishing

right-hand side, u∗h should be in Ṽh and by taking w = u∗h in the first equation

in (2.48), one can conclude u∗h = 0 because Ṽh does not include constants and

therefore gradh is an injective operator on Ṽh.

Theorem 2.9. Let (σ, u, r), (σh, uh, rh) be the solutions of (2.23–2.25) and

(2.26–2.28), respectively. Let (Mh, Vh,Kh) be the GG elements of degree k and
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assume that σ ∈ Hk+1(Ω;M), r ∈ Hk+1(Ω;K). Then

‖σ − σh‖+ ‖r − rh‖+ ‖Phu− uh‖ ≤ chk+1(‖σ‖k+1 + ‖r‖k+1), (2.49)

and, for u∗h defined by (2.48), ‖u− u∗h‖ ≤ chk+1‖σ, u, r‖k+1.

Remark 2.10. Since σ = Cε(u), σ ∈ Hk+1 implies u ∈ Hk+2.

Proof. The estimate (2.49) follows directly from (2.33) for the GG elements of

degree k. Since ‖u − P ∗hu‖ ≤ chk+1‖u‖k+1, for the error estimate ‖u − u∗h‖ ≤
chk+1, we need only estimate ‖P ∗hu−u∗h‖. Let ũh = P̃hu

∗
h. Since ‖P ∗hu−u∗h‖2 =

‖Phu − uh‖2 + ‖P̃hu − ũh‖2, by orthogonality of Vh and Ṽh, and ‖Phu − uh‖
is already bounded by chk+1, it suffices to estimate ‖P̃hu − ũh‖. Recall that

gradu = Aσ + r, so

(gradu, gradh w) = (Aσ + r, gradh w), w ∈ Ṽh.

Considering the difference of this equation and the first equation in (2.48), we

get

(gradh(u− u∗h), gradh w) = (A(σ − σh) + r − rh, gradh w), w ∈ Ṽh. (2.50)

Since P ∗hu = Phu+ P̃hu and u∗h = uh + ũh, one sees that

u− u∗h = (u− P ∗hu) + (P ∗hu− u∗h) = (u− P ∗hu) + (Phu− uh) + (P̃hu− ũh),

and if we use this to rewrite (2.50), then we have

(gradh(P̃hu− ũh), gradh w)

= −(gradh(u− P ∗hu), gradh w)− (gradh(Phu− uh), gradh w)

+ (A(σ − σh) + r − rh, gradh w).

By taking w = P̃hu− ũh, we have

‖ gradh(P̃hu− ũh)‖

≤ c(‖ gradh(u− P ∗hu)‖+ ‖ gradh(Phu− uh)‖+ ‖σ − σh‖+ ‖r − rh‖). (2.51)
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Now we note that there is a uniform constant c such that

h‖ gradh w‖ ≤ c‖w‖, w ∈ V ∗h , (2.52)

‖w‖ ≤ ch‖ gradh w‖, w ∈ Ṽh, (2.53)

where (2.52) is an inverse estimate (see [18], p. 110) and (2.53) is a result of

the fact that Ṽh is orthogonal to piecewise constants and a discrete version of

Poincaré inequality with scaling. By using these inequalities and (2.51), we get

‖P̃hu− ũh‖ ≤ ch‖ gradh(P̃hu− ũh)‖

≤ ch(‖ gradh(Phu− uh)‖+ ‖ gradh(P ∗hu− u)‖

+ ‖σ − σh‖+ ‖r − rh‖)

≤ c(‖Phu− uh‖+ hk+1‖u‖k+1 + ‖σ − σh‖+ ‖r − rh‖),

where the last inequality is due to (2.52) and the Bramble–Hilbert lemma. By

(2.49), we can conclude ‖P̃hu− ũh‖ ≤ chk+1 and the proof is completed.

Remark 2.11. The assumption (2.49) does not hold for the AFW elements of

degree k because Kh is the space of piecewise polynomials of degree less than

or equal to k − 1.

2.4.4 A weakly symmetric elliptic projection

For the error analysis of time dependent problems which will be discussed later,

we define a bounded projection Π̃h : H1(Ω;M) → Mh and describe its proper-

ties.

Lemma 2.12. Let Mh be the finite element stress space in the AFW or GG ele-

ments of degree k ≥ 1. For σ ∈ H1(Ω;M), we consider a solution (σh, uh, rh) ∈
Mh × Vh ×Kh of the system

(σh, τ) + (div τ, uh) + (τ, rh) = (σ, τ), τ ∈Mh, (2.54)

(div σh, w) = (div σ,w), w ∈ Vh, (2.55)

(σh, q) = (σ, q), q ∈ Kh, (2.56)

and define Π̃hσ as σh. Then Π̃h : H1(Ω;M) → Mh is a projection such that

‖Π̃hσ‖ ≤ c‖σ‖1 with c > 0 which is uniformly bounded in h. Furthermore, for
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σ ∈ H1(Ω;M),

‖σ − Π̃hσ‖ ≤ c‖σ −Πhσ‖, (2.57)

div Π̃hσ = Ph div σ, (Π̃hσ, q) = (σ, q), q ∈ Kh, (2.58)

with c > 0 which is independent of h.

Proof. From the stability of the mixed finite elements, the linear system (2.54 –

2.56) has a unique solution, so Π̃hσ is well-defined and Π̃h is a linear operator.

Note that (σ, 0, 0) is the exact solution of the problem, in which Mh, Vh, Kh

are replaced by M , V , K. From (2.33) with the fact r = 0, we have

‖σ − Π̃hσ‖ ≤ c(‖σ −Πhσ‖+ ‖r − P ′hr‖) = c‖σ −Πhσ‖,

with c > 0 independent of h, so (2.57) is proved. Since ‖Πhσ‖ ≤ c′‖σ‖1 by

(A1), we have ‖Π̃hσ‖ ≤ c′′‖σ‖1 for some c′′ > 0 which is independent of h.

The properties in (2.58) follow from (2.55) with (A1), and (2.56) .

Remark 2.13. The first equality in (2.58) is a commutativity property of Π̃h.

The second equation in (2.58) implies that Π̃hσ is weakly symmetric if σ is

symmetric. One can see that ‖Π̃hσ‖ ≤ c‖σ‖1 by the triangle inequality, (2.57),

and (A1).

2.5 Miscellaneous preliminaries

In this section we prove lemmas that will be used for evolutionary equations

and regularity of solutions.

2.5.1 Gronwall-type estimates

For error estimates of time dependent problems, we need a Gronwall-type in-

equality.

Lemma 2.14. Let F,G,Q : [0, T0] → R be continuous, nonnegative functions.

Suppose that Q(t) is continuously differentiable and satisfies

1

2

d

dt
Q2 ≤ FQ+G, (2.59)
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for all t ∈ [0, T0]. Then for t ∈ [0, T0],

Q(t) ≤ Q(0) + max

{
4

∫ t

0

F ds, 2

(∫ t

0

Gds

) 1
2

}
. (2.60)

Proof. Since T0 is arbitrary, it suffices to show the inequality for t = T0. Suppose

that Q(t) attains its maximum at tM ∈ [0, T0]. If tM = 0, then there is nothing

to prove, so we assume tM > 0. If the inequality (2.60) holds for tM , then

Q(T0) ≤ Q(tM ) ≤ Q(0) + max

{
4

∫ tM

0

F ds, 2

(∫ tM

0

Gds

) 1
2

}
,

≤ Q(0) + max

4

∫ T0

0

F ds, 2

(∫ T0

0

Gds

) 1
2

 .

Hence, without loss of generality, we may assume tM = T0. If we integrate

(2.59) from 0 to T0, then we get

Q(T0)2 −Q(0)2 ≤ 2

∫ T0

0

(FQ+G) ds. (2.61)

It is obvious that one of the following inequalities holds:∫ T0

0

Gds ≤
∫ T0

0

FQds,

∫ T0

0

FQds <

∫ T0

0

Gds.

Suppose that
∫ T0

0
Gds ≤

∫ T0

0
FQds is the case. Then (2.61) gives

Q(T0)2 −Q(0)2 ≤ 4

∫ T0

0

FQds.

If we divide both sides by Q(T0), the maximum of Q(t) on [0, T0], then we get

Q(T0) ≤ Q(0) + 4

∫ T0

0

F ds,

which implies (2.60). To complete the proof, suppose that
∫ T0

0
FQds <

∫ T0

0
Gds.

Then (2.61) gives

Q(T0)2 ≤ Q(0)2 + 4

∫ T0

0

Gds,
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which implies that

Q(T0) ≤ Q(0) + 2

(∫ T0

0

Gds

) 1
2

.

This completes the proof.

If we assume G ≡ 0 in Lemma 2.14, then the same argument gives a sharper

result.

Corollary 2.15. Let F,Q : [0, T0] → R be continuous, nonnegative functions

and suppose that Q is continuously differentiable. Suppose also that

1

2

d

dt
Q2 ≤ FQ,

holds for all t ∈ [0, T0]. Then for t ∈ [0, T0],

Q(t) ≤ Q(0) + 2

∫ t

0

F (s) ds.

A discrete version of Lemma 2.14 also holds.

Lemma 2.16. Let {Qi}, {Fi}, {Gi} be sequences of nonnegative numbers with

0 ≤ i ≤ N and let ∆t > 0 be given. If

Q2
i+1 −Q2

i ≤ ∆t((Qi +Qi+1)Fi + 2Gi),

for all 0 ≤ i ≤ N , then

Qi ≤ Q0 + max

4∆t

i−1∑
j=0

Fj , 2

∆t

i−1∑
j=0

Gj

 1
2

 .

The proof is similar to that of the continuous case, so details are omitted.

2.5.2 Well-posedness of differential algebraic equations

Now we prove a lemma for well-posedness of linear differential algebraic equa-

tions. This will be used in chapter 4.
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Lemma 2.17. Let E,F be matrices in Rm×m of the form

E =

(
E0 0

0 0

)
, F =

(
F11 F12

F21 F22

)
,

with E0, F11 ∈ Rl×l for some 1 ≤ l < m, with E0, F22 nonsingular. Let

f : [0, T0] → Rm be continuous. Let X ∈ C1([0, T0];Rm) and consider the

differential algebraic equation

EẊ = FX + f. (2.62)

If we let X1 be the first l tuple of X and X2 be the complementary m− l tuple

of X, then for any given initial data X1(0) ∈ Rl, (2.62) has a unique solution

which satisfies the initial condition.

Proof. Let f1, f2 be the first l tuple and final m − l tuple of f . If we rewrite

(2.62) using the block matrix forms of E and F , we have

E0Ẋ1 = F11X1 + F12X2 + f1, F21X1 + F22X2 + f2 = 0. (2.63)

Thus X2 = −F−1
22 F21X1 − F−1

22 f2 from the second equation in (2.63). Substi-

tuting X2 in the first equation of (2.63) yields

E0Ẋ1 = (F11 − F12F
−1
22 F21)X1 − F12F

−1
22 f2 + f1 =: BX1 + f̃1. (2.64)

The equation (2.64) is a system of linear ordinary differential equations, so has

a unique solution for given X1(0) ∈ Rl (see [25]). When X1 is obtained, X2

is uniquely determined from X1 and f2 by the second equation in (2.63). This

proves existence and uniqueness of solutions.

2.5.3 Regularity lemmas

We prove lemmas which are needed later when we discuss regularity of weak

solutions. Let ν denote the outward unit normal vector field on ∂Ω.

Lemma 2.18. The set {τν | τ ∈ C1(Ω;S)} is dense in L2(∂Ω;V).

Proof. Suppose that the lemma is not true. Then there exists 0 6= v ∈ L2(∂Ω;V)
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such that ∫
∂Ω

v · τν dS = 0, (2.65)

for all τ ∈ C1(Ω;S). If we rewrite (2.65) using the components of v, τ , and ν,

then we have ∫
∂Ω

∑
1≤i,j≤n

viτijνj dS = 0,

for all τ ∈ C1(Ω;S). Let us suppose that, for 1 ≤ i, j ≤ n, only the (i, j) and

(j, i) entries of τ are possibly nonvanishing. Since the set of traces of all C1(Ω)

functions is dense in L2(∂Ω), we obtain that viνj + vjνi = 0 almost everywhere

(a.e.) on ∂Ω for all 1 ≤ i, j ≤ n. In particular, viνi = 0 a.e. when i = j. If

we multiply vi by the equality viνj + vjνi = 0, then v2
i νj + vivjνi = 0 almost

everywhere. Since viνi = 0 a.e., we can see that v2
i νj = 0 a.e. and therefore

viνj = 0 a.e. for any 1 ≤ i, j ≤ n. From this equality, we can see that v ≡ 0

a.e. because ν is a unit vector field and therefore ν 6= 0 almost everywhere. The

proof is completed.

Using the above lemma, we now obtain a regularity result for weak solutions.

Lemma 2.19. Let σ ∈ L2(Ω;S), v ∈ V and suppose that

(σ, τ) + (div τ, v) = 0, τ ∈ S, (2.66)

holds. Then v ∈ H̊1(Ω;V) and ε(v) = σ in L2(Ω;M). Conversely, if σ = ε(v)

for v ∈ H̊1(Ω;V), then (2.66) holds.

Proof. Suppose that (2.66) holds with the given assumptions on σ, v. By inte-

gration by parts,

(σ, τ) = (grad v, τ) = (ε(v), τ), τ ∈ C∞0 (Ω; S),

so σ = ε(v) in the sense of distributions. By Korn’s inequality (see [18], chapter

11), v ∈ H1(Ω;V) and thus σ = ε(v) almost everywhere. Then for any τ ∈
C1(Ω;S), we also have

(σ, τ) = −(div τ, u) =

∫
∂Ω

v · τν dS + (grad v, τ) =

∫
∂Ω

v · τν dS + (ε(v), τ),
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and we have
∫
∂Ω
v · τν dS = 0 for any τ ∈ C1(Ω;S). Since {τν | τ ∈ C1(Ω;S)}

is dense in L2(∂Ω;V), we obtain v|∂Ω = 0 almost everywhere and therefore

v ∈ H̊1(Ω;V). For the other direction, suppose v ∈ H̊1(Ω;V). Then (2.66) is

obvious from integration by parts.

Corollary 2.20. Let σ ∈ L2(Ω; S), r ∈ K, v ∈ V and suppose that

(σ, τ) + (div τ, v) + (r, τ) = 0, τ ∈M, (2.67)

holds. Then v ∈ H̊1(Ω;V) and ε(v) = σ, skw grad v = r in L2(Ω;M). Con-

versely, if σ = ε(v) and r = skw grad v for v ∈ H̊1(Ω;V), then (2.67) holds.

Proof. Suppose that (2.67) holds with the given assumptions of σ, v, r. Since

S ⊂ M , and (r, τ) = 0 for τ ∈ S, we have σ = ε(v), v ∈ H̊1(Ω;V) by Lemma

2.19. Furthermore, by integration by parts, one can see

(σ + r, τ) = (grad v, τ), τ ∈ C1(Ω;M),

from (2.67), so r = grad v − σ = skw grad v.

For the other direction, suppose v ∈ H̊1(Ω;V) and σ = ε(v), r = skw grad v.

Then (2.67) is obvious from integration by parts.
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Chapter 3

Mixed methods for linear

elastodynamics

3.1 Introduction

We consider the numerical solution of linear elastodynamics with mixed finite

element methods. The linear elastodynamics equation is an evolutionary partial

differential equation describing wave propagation in an elastic medium. It has

the form

ρü− divCε(u) = f in Ω, (3.1)

where u : Ω → Rn is the displacement vector field, C is the stiffness tensor of

the elastic medium, ε(u) is the linearized strain tensor of displacement, ρ is the

mass density, and f is an external body force. In the equation we omit the time

variable t for simplicity but both u and f depend on time and the equation is

interpreted as holding for all t ∈ [0, T0]. It is known that the equation (3.1),

with appropriate boundary conditions and initial data (u(0), u̇(0)), has one and

only one weak solution (see e.g., [28], Theorem 4.1).

Numerical solutions of linear elastodynamics with mixed finite element meth-

ods have been studied by various researchers [15, 27, 39]. In [27], Douglas and

Gupta studied linear elastodynamics in a planar domain using the mixed finite

elements for stationary linear elasticity developed in [8] and a displacement-

stress weak formulation. In [39], Makridakis studied linear elastodynamics in
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two and three dimensional domains using displacement-stress and velocity-stress

weak formulations and the finite elements developed in [8, 36, 47]. Makridakis

also studied higher order time discretization in his work and proved a priori

error estimates. In [15], Bécache, Joly, and Tsogka developed a new family of

rectangular mixed finite elements and carried out the a priori error analysis for

the velocity-stress formulation of linear elastodynamics.

In general, mixed methods for linear elastodynamics are based on the devel-

opment of mixed finite elements for stationary linear elasticity. To our knowl-

edge, mixed finite elements for linear elasticity with weak symmetry of stress,

for instance the AFW and GG elements that we introduced in section 2.4.2,

have not been used for linear elastodynamics. Since these elements are advan-

tageous in computational costs and implementations, it is worth to study how

to use them for linear elastodynamics.

The rest of this chapter is organized as follows. In section 3.2, we derive a

velocity-stress weak formulation of linear elastodynamics with weak symmetry

of stress. A priori error estimates of the semidiscrete and fully discrete solu-

tions for the AFW elements are discussed in sections 3.3 and 3.4, respectively.

In section 3.5, we prove that error bounds, better than the ones in section 3.4,

can be obtained for the GG elements with a more careful error analysis. In sec-

tion 3.6, we consider numerical solutions in nearly incompressible homogeneous

isotropic materials and prove that our numerical solutions are locking-free, i.e.,

the constants of error bounds do not grow to infinity as the Lamé coefficient λ

goes to infinity. Finally, numerical results verifying our analysis are presented

in section 3.7.

3.2 Weak formulations with weak symmetry

The goal of this section is to derive a velocity-stress formulation of linear elas-

todynamics with weakly imposed symmetry of stress. For simplicity of er-

ror analysis, we only consider the homogeneous displacement boundary con-

ditions u ≡ 0 on ∂Ω for all time. We assume that the mass density ρ satisfies

0 < ρ0 ≤ ρ ≤ ρ1 <∞ for constants ρ0, ρ1.

In order to have a mixed form with velocity and stress, we set v = u̇, σ =

Cε(u) in (3.1), and get a system of equations

ρv̇ − div σ = f, Aσ̇ = ε(v), (3.2)
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where A = C−1. Note that the boundary conditions u ≡ 0 on ∂Ω and the initial

data (u(0), u̇(0)) in (3.1) give boundary conditions v ≡ 0 on ∂Ω and the initial

data σ(0) = Cε(u(0)), v(0) = u̇(0).

Let us consider well-posedness of (3.2). We first rewrite (3.2) as(
σ̇

v̇

)
=

(
0 Cε

ρ−1 div 0

)(
σ

v

)
+

(
0

ρ−1f

)
.

For well-posedness of this system, let us recall the Hille–Yosida theorem. For

a Hilbert space X and a closed, densely defined operator L on X with domain

D(L), we consider an evolution equation U̇ = LU+F with initial data U(0). The

operator L is called an m-dissipative operator if, for some λ > 0, ‖(I−λL)u‖X ≥
‖u‖X for u ∈ D(L) and I−λL : D(L)→ X is surjective. If L is an m-dissipative

operator, and F ∈ W 1,1([0, T0];X ), U(0) ∈ D(L), then the evolution equation

has a unique solution U ∈ C0([0, T0];D(L)∩C1([0, T0];X ) (see [21], Proposition

4.1.6).

In our elastodynamics problem, let X = L2(Ω;S) × V be the Hilbert space

with the inner product

((σ, v), (τ, w))X := (σ, τ)A + (v, w)ρ = (Aσ, τ) + (ρv, w).

We define a linear operator L as L(σ, v) = (Cε(v), ρ−1 div σ). Note that L is an

unbounded operator on X and its domain D(L) = S × H̊1(Ω;V) is dense in X .

To apply the Hille–Yosida theorem, we need to check that L is an m-

dissipative operator, which means that for some λ > 0,

‖(I − λL)(τ, w)‖X ≥ ‖(τ, w)‖X , (τ, w) ∈ D(L), (3.3)

and also I−λL : D(L)→ X is surjective ([21], Definition 2.2.2). To check these

conditions, let λ > 0, (τ, w) ∈ D(L). Then one sees that

‖(I − λL)(τ, w)‖X ‖(τ, w)‖X ≥ ((I − λL)(τ, w), (τ, w))X

= ‖(τ, w)‖2X − λ((Cε(w), ρ−1 div τ), (τ, w))X

= ‖(τ, w)‖2X ,

where the last equality is due to (ε(w), τ) + (div τ, w) = 0 by integration by

parts. Hence, by dividing both sides by ‖(τ, w)‖X , (3.3) holds. To check the

surjectivity of I − λL, for any given (η, p) ∈ X , we prove that a solution of the
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equation,

((I − λL)(σ, v), (τ, w))X = ((η, p), (τ, w))X , (τ, w) ∈ D(L),

exists. Since D(L) is dense in X , a solution (σ, v) of this equation satisfies

(I − λL)(σ, v) = (η, p), so I − λL is surjective. To show existence of solutions

of the above equation, we rewrite it as

(σ − λCε(v), τ)A = (η, τ)A, τ ∈ S, (3.4)

(v − λρ−1 div σ,w)ρ = (p, w)ρ, w ∈ H̊1(Ω;V). (3.5)

Rewriting (3.5) in a weak form,

(ρv, w) + λ(σ, ε(w)) = (ρp, w), w ∈ H̊1(Ω;V). (3.6)

The equation (3.4) gives a constraint σ − λCε(v) = η, and substituting σ in

(3.6) by λCε(v) + η, we obtain

(ρv, w) + λ2(Cε(v), ε(w)) = (ρp, w)− (η, ε(w)), w ∈ H̊1(Ω;V).

By Korn’s inequality and the Lax–Milgram lemma, this equation has a unique

solution v ∈ H̊1(Ω;V). One can easily see that σ = λCε(v) + η is in L2(Ω; S),

and also in S because the equation (3.6) implies that div σ is well-defined in the

sense of distributions. Consequently, we have checked that L is m-dissipative,

and we can use the Hille–Yosida theorem.

As a consequence of the Hille–Yosida theorem, if σ(0) ∈ S, v(0) ∈ H̊1(Ω;V),

and f ∈W 1,1([0, T0];V), then there exist

σ ∈ C0([0, T0];S) ∩ C1([0, T0];L2(Ω;S)),

v ∈ C0([0, T0]; H̊1(Ω;V)) ∩ C1([0, T0];V ),

satisfying (3.2) with the given initial data.

Now we describe a weak formulation of (3.2) with weak symmetry of stress.

We assume that σ(0) = Cε(u(0)) for some u ∈ H̊1(Ω;V). If we define u(t) =

u(0)+
∫ t

0
v(s) ds, then, usingAσ̇ = ε(v) and the fundamental theorem of calculus,

we get Aσ = ε(u). If we set r = skw gradu, then ṙ = skw grad v. Integrating

the second equation of (3.2) by parts with the boundary conditions v ≡ 0 on

∂Ω, we get (Aσ̇, τ) = (ε(v), τ) = (grad v − ṙ, τ) = −(v,div τ) − (ṙ, τ) for all
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τ ∈M , which is equivalent to

(Aσ̇, τ) + (div τ, v) + (ṙ, τ) = 0, τ ∈M. (3.7)

From the first equation of (3.2), we get (ρv̇, w)− (div σ,w) = (f, w) for w ∈ V .

Finally, the symmetry of σ gives (σ̇, q) = 0 for q ∈ K. Consequently, a weak

formulation with weak symmetry of stress is to seek

σ ∈ C0([0, T0];M) ∩ C1([0, T0];L2(Ω;M)),

v ∈ C1([0, T0];V )), r ∈ C1([0, T0];K),
(3.8)

such that

(Aσ̇, τ) + (div τ, v) + (ṙ, τ) = 0, τ ∈M, (3.9)

(ρv̇, w)− (div σ,w) = (f, w), w ∈ V, (3.10)

(σ̇, q) = 0, q ∈ K, (3.11)

with given initial data (σ(0), v(0), r(0)) = (Cε(u(0)), u̇(0), skw gradu(0)).

If (σ, v) is a solution of (3.2) obtained by the Hille–Yosida theorem, then we

can show that there exist u ∈ C0([0, T0]; H̊1(Ω)), r ∈ C1([0, T0];K) such that

(σ, v, r) is a solution of (3.9–3.11), r(t) = skw gradu(t), and ṙ = skw grad v.

The proof is similar to the derivation of (3.9–3.11), so we omit details.

Theorem 3.1. For given initial data (σ(0), v(0), r(0)) ∈ S × H̊1(Ω;V) × K

such that σ(0) = Cε(u(0)), r(0) = skw gradu(0) for some u(0) ∈ H̊1(Ω;V), the

system (3.9–3.11) has a unique solution (σ, v, r) satisfying (3.8).

Proof. For existence, let (σ(0), v(0), r(0)) be a given initial data satisfying the

assumptions in the theorem. By the Hille–Yosida theorem, the equation (3.2)

has a unique solution (σ, v) with the initial data (σ(0), v(0)). We have seen

that there exists r such that the triple (σ, v, r) satisfies (3.9–3.11), and r(t) =

skw gradu(t) for some u ∈ C0([0, T0]; H̊1(Ω;V)).

For uniqueness, suppose that there are two solutions of (3.9–3.11) with same

initial data, and denote their difference by (σd, vd, rd). Then this triple satisfies

(Aσ̇d, τ) + (div τ, vd) + (ṙd, τ) = 0, τ ∈M, (3.12)

(ρv̇d, w)− (div σd, w) = 0, w ∈ V,

(σ̇d, q) = 0, q ∈ K,
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with σd(0) = vd(0) = rd(0) = 0. Now we set τ = σd, w = vd in the first two

equations and add them. Since σd ⊥ K and ṙ ∈ K, we have (ṙ, σ) = 0, so the

sum of two equations gives

1

2

d

dt
‖σd‖2A +

1

2

d

dt
‖vd‖2ρ = 0.

By the fundamental theorem of calculus, we get

‖σd(t)‖2A + ‖vd(t)‖2ρ = ‖σd(0)‖2A + ‖vd(0)‖2ρ = 0,

so σd = vd ≡ 0. From these facts and (3.12), one sees that ṙd ≡ 0. Since

rd(0) = 0, rd ≡ 0 by the fundamental theorem of calculus, so uniqueness is

proved.

We can generalize our velocity-stress formulation for mixed boundary condi-

tions in a straightforward way. Let ∂Ω = ΓD ∪ ΓN , ΓD 6= ∅, and ΓD ∩ ΓN = ∅.
Suppose the boundary conditions of (3.2) are given as v = g on ΓD, σν = G on

ΓN for all time t ∈ [0, T0], and we call them mixed boundary conditions. We

define MΓN
= {τ ∈M | τν = 0 on ΓN}. Then a velocity-stress formulation with

weak symmetry is to seek (σ, v, r) satisfying (3.8) such that σν = G on ΓN and

(Aσ̇, τ) + (div τ, v) + (ṙ, τ) =

∫
ΓD

g · τν ds, τ ∈MΓN
,

(ρv̇, w)− (div σ,w) = (f, w), w ∈ V, (3.13)

(σ̇, q) = 0, q ∈ K,

with initial data (σ(0), v(0), r(0)) ∈M ×H1(Ω;V)×K satisfying σ(0)ν = G(0)

on ΓN and v(0) = g(0) on ΓD.

3.3 Semidiscrete problems

In this section we consider spatial discretization of problem (3.8–3.11) with given

initial data. We show existence and uniqueness of semidiscrete solutions and

discuss the semidiscrete error analysis.

For the error analysis, we follow a standard approach: representatives of

(σ, v, r) are used to split the semidiscrete errors into the projection errors and

the approximation errors, and their bounds are achieved by the a priori error

analysis.
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3.3.1 Existence and uniqueness of semidiscrete solutions

Let Mh × Vh ×Kh be the AFW elements of degree k ≥ 1. For τ ∈Mh, we use

τ ⊥ Kh to denote (τ, q) = 0 for any q ∈ Kh.

Definition 3.2. For initial data (σh(0), vh(0), rh(0)) in Mh×Vh×Kh, a semidis-

crete solution of (3.9–3.11) is

σh ∈ C1([0, T0];Mh), vh ∈ C1([0, T0];Vh), rh ∈ C1([0, T0];Kh),

satisfying the system of equations

(Aσ̇h, τ) + (div τ, vh) + (ṙh, τ) = 0, τ ∈Mh, (3.14)

(ρv̇h, w)− (div σh, w) = (f, w), w ∈ Vh, (3.15)

(σ̇h, q) = 0, q ∈ Kh, (3.16)

for all time t ∈ [0, T0] with the given initial data.

Theorem 3.3. For given σh(0) ∈Mh, vh(0) ∈ Vh, and rh(0) ∈ Kh, the system

(3.14–3.16) has a unique solution.

Proof. Let {φi}, {ψi}, {χi} be bases of Mh, Vh, and Kh, respectively. We use

A , B, C , M , D to denote the matrices whose (i, j)-entries are

(Aφj , φi), (div φj , ψi), (φj , χi), (ρψj , ψi), (ψj , ψi),

respectively. We write σh =
∑
i αiφi, vh =

∑
i βiψi, rh =

∑
i γiχi, Phf = ζiψi,

and use α, β, γ, ζ to denote the coefficient vectors. Then we may rewrite

(3.14–3.16) in a matrix equation form,A 0 C T

0 M 0

C 0 0


α̇β̇
γ̇

 =

 0 −BT 0

B 0 0

0 0 0


αβ
γ

+

 0

Dζ

0

 .

The above matrix equation is a linear system of ordinary differential equations.

Note that the coefficient matrix on the left-hand side is invertible because A

and M are positive definite and C T is injective from the inf-sup condition (A2).

By the standard ODE theory (see [25], p.75), the matrix equation is well-posed

as an initial value problem, so the existence and uniqueness of solutions of

(3.14–3.16) follow.
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3.3.2 Decomposition of semidiscrete errors

In this section, we state the main result of semidiscrete error analysis and explain

a decomposition of the semidiscrete errors into the projection and the approx-

imation errors. The proof of the main result will be given in the remainder of

this section.

Theorem 3.4. Let (Mh, Vh,Kh) be the AFW elements of degree k ≥ 1 and

let m be an integer such that 1 ≤ m ≤ k. Suppose σ, v, r ∈ W 1,1([0, T0];Hm)

and let (σh, vh, rh) be the semidiscrete solution of (3.14–3.16) with initial data

(σh(0), vh(0), rh(0)) such that

div σh(0) = Ph div σ(0), vh(0) = Phv(0), (3.17)

(Aσh(0), τ) + (rh(0), τ) = 0, for τ ∈Mh, div τ = 0, σh(0) ⊥ Kh, (3.18)

‖σ(0)− σh(0), r(0)− rh(0)‖ ≤ chm‖σ(0), r(0)‖m, (3.19)

for 1 ≤ m ≤ k. Then we have

‖σ − σh, v − vh, r − rh‖L∞L2 ≤ chm‖σ, v, r‖W 1,1Hm ,

where c depends on the compliance tensor A, and the lower and upper bounds

of the mass density ρ0, ρ1, but is independent of h.

We are able to find initial data satisfying (3.17–3.19) when σ(0), v(0) are

given. Since there is u(0) ∈ H̊1(Ω;V) such that σ(0) = Cε(u(0)) and r(0) =

skw gradu(0), we have (Aσ(0), τ) + (div τ, u(0)) + (r(0), τ) = 0 for τ ∈M . Now

we consider a solution (σh(0), uh(0), rh(0)) of the system,

(Aσh(0), τ) + (div τ, uh(0)) + (rh(0), τ) = 0, τ ∈Mh,

(div σh(0), w) = (div σ(0), w), w ∈ Vh,

(σh(0), q) = 0, q ∈ Kh.

Then (3.18) is obvious from the first and third equations, and (3.19) follows from

the estimate (2.33). The first condition in (3.17) is a consequence of (2.32), so

all conditions in (3.17–3.19) are satisfied.

For our error analysis, we denote the semidiscrete errors, i.e., the difference

of the exact solution (σ, v, r) and the semidiscrete solution (σh, vh, rh), by

eσ = σ − σh, ev = v − vh, er = r − rh.

56



Then, by taking differences of equations (3.9–3.11) and (3.14–3.16), we get

(Aėσ, τ) + (div τ, ev) + (ėr, τ) = 0, τ ∈Mh, (3.20)

(ρėv, w)− (div eσ, w) = 0, w ∈ Vh, (3.21)

(ėσ, q) = 0, q ∈ Kh. (3.22)

Recall that Π̃h is the weakly symmetric elliptic projection in Lemma 2.12 and

Ph, P ′h are the orthogonal L2 projections onto Vh and Kh, respectively. We

decompose the semidiscrete errors (eσ, ev, er) into

eσ = ePσ + ehσ := (σ − σPh ) + (σPh − σh),

ev = ePv + ehv := (v − vPh ) + (vPh − vh), (3.23)

er = ePr + ehr := (r − rPh ) + (rPh − rh),

where σPh := Π̃hσ, vPh := Phv, and rPh := P ′hr. We call the eP terms the

projection errors and the eh terms the approximation errors, respectively. We

remark that, by (A1) in section 2.4.2 and (2.58),

(div τ, ePv ) := (div τ, v − Phv) = 0, τ ∈Mh,

(div ePσ , w) := (div σ − div Π̃hσ,w) = 0, w ∈ Vh.
(3.24)

By the triangle inequality, Theorem 3.4 will follow from a priori estimates of

the projection errors and the approximation errors, respectively. We state and

prove these estimates in sections 3.3.3 and 3.3.4.

3.3.3 Projection error estimates for the AFW elements

A priori estimates of the L∞L2 norms of the projection errors follow from the

approximation property of Mh × Vh ×Kh.

Theorem 3.5. There exists a constant c > 0 independent of h and t ∈ [0, T0]

such that

‖ePσ ‖L∞L2 ≤ chm‖σ‖L∞Hm , 1 ≤ m ≤ k + 1, (3.25)

‖ePv ‖L∞L2 ≤ chm‖v‖L∞Hm , 0 ≤ m ≤ k, (3.26)

‖ePr ‖L∞L2 ≤ chm‖r‖L∞Hm , 0 ≤ m ≤ k. (3.27)

Furthermore, similar inequalities hold for higher order time derivatives of σ, v,
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and r, respectively.

Proof. For any t ∈ [0, T0] and 1 ≤ m ≤ k + 1, by (2.57) and (A1), we have

‖ePσ (t)‖ = ‖σ(t)− Π̃hσ(t)‖ ≤ chm‖σ(t)‖m,

and (3.25) is proved. Similarly, from definitions of ePv and ePr , we have

‖ePv (t)‖ ≤ chm‖v(t)‖m, ‖ePr (t)‖ ≤ chm‖r(t)‖m,

for any t ∈ [0, T0], 0 ≤ m ≤ k. The results for higher order time derivatives

are obtained by applying same argument to higher order time derivatives of

the projection errors because the time derivative and the maps Π̃h, Ph, P̃h are

commutative.

3.3.4 Approximation error estimates for the AFW ele-

ments

We now turn to a priori estimates of the L∞L2 norms of the approximation

errors.

Theorem 3.6. For the approximation error (ehσ, e
h
v , e

h
r ) and 1 ≤ m ≤ k,

‖ehσ, ehv , ehr‖L∞L2 ≤ chm‖σ, v, r‖W 1,1Hm , (3.28)

where c depends on ρ0, ρ1, and A but is independent of h.

Proof. The proof depends on two estimates which we shall prove below: There

exist constants c depending on ρ0, ρ1, and A but is independent of h so that,

‖ehσ, ehv‖L∞L2 ≤ chm(‖σ(0), r(0)‖m + ‖σ̇, v̇, ṙ‖L1Hm), (3.29)

‖ehr‖L∞L2 ≤ c‖ehσ, ePσ , ePr ‖L∞L2 , (3.30)

for 1 ≤ m ≤ k. Assuming these estimates are true one can prove Theorem 3.6

easily from Theorem 3.5 because ‖σ(0), r(0)‖m ≤ c‖σ, r‖W 1,1Hm by the Sobolev

embedding.

Now we prove the estimates (3.29–3.30). We first remark that ehσ(0) ⊥ Kh

because σh(0) ⊥ Kh from (3.18) and σPh (0) ⊥ Kh by the definition of σPh (0).

From this fact, and the fact that (ėhσ, q) = (ėPσ , q) = 0 for all q ∈ Kh, one can

see that ehσ ⊥ Kh by the fundamental theorem of calculus. To show (3.29), we
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rewrite (3.20–3.21), using the notations in (3.23) and the reductions in (3.24),

as

(Aėhσ, τ) + (div τ, ehv ) + (ėhr , τ) = −(AėPσ , τ)− (ėPr , τ), τ ∈Mh,

(ρėhv , w)− (div ehσ, w) = −(ρėPv , w), w ∈ Vh.

If we take τ = ehσ, w = ehv in the above two equations, add them, and use the

fact ehσ ⊥ ėhr from ėhr ∈ Kh, then we have

1

2

d

dt
‖ehσ‖2A +

1

2

d

dt
‖ehv‖2ρ = −(AėPσ , e

h
σ)− (ėPr , e

h
σ)− (ρėPv , e

h
v ),

where ‖ehσ‖2A = (Aehσ, e
h
σ) and ‖ehv‖2ρ = (ρehv , e

h
v ). If we use a weighted Cauchy–

Schwarz inequality on the right-hand side of this equality and the fact that

‖ėPσ ‖A ≤ c‖ėPσ ‖, then we get

1

2

d

dt
(‖ehσ‖2A + ‖ehv‖2ρ) ≤ c‖ėPσ , ėPr , ėPv ‖ (‖ehσ‖2A + ‖ehv‖2ρ)

1
2 . (3.31)

If we apply Corollary 2.15 to (3.31), regarding (‖ehσ(t)‖2A+‖ehv (t)‖2ρ)1/2 as Q(t),

then we have

(
‖ehσ(t)‖2A + ‖ehv (t)‖2ρ

) 1
2 ≤

(
‖ehσ(0)‖2A + ‖ehv (0)‖2ρ

) 1
2 + c

∫ t

0

‖ėPσ , ėPr , ėPv ‖ ds.

By the coercivity of A and the lower bound ρ0 > 0 of ρ, it suffices to show

that the right-hand side is bounded by chm(‖σ(0), r(0)‖m + ‖σ̇, v̇, ṙ‖L1Hm) for

(3.29). For the integral term, we can simply use ‖ėPσ (t)‖ ≤ chm‖σ̇(t)‖m, ‖ėPv ‖ ≤
chm‖v̇‖m, and ‖ėPr ‖ ≤ chm‖ṙ‖m, which were proved in Theorem 3.5. Note that

ehv (0) = 0 from the choice of vh(0). For ‖ehσ(0)‖A, we use the boundedness of A

and ρ, the triangle inequality, (3.19), (2.57), (2.33), and get

‖ehσ(0)‖A ≤ c(‖σh(0)− σ(0)‖+ ‖σ(0)− Π̃hσ(0)‖) ≤ chm‖σ(0), r(0)‖m,

for 1 ≤ m ≤ k, so (3.29) is proved.

In order to prove (3.30), using u(t) = u(0) +
∫ t

0
v(s) ds, note that (Aσ, τ) +

(u,div τ) + (r, τ) = 0 for τ ∈M . From this observation and (3.18), for τ ∈Mh

satisfying div τ = 0,

(Aσ, τ) + (r, τ) = 0, (Aσh(0), τ) + (rh(0), τ) = 0,
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so (Aeσ(0), τ) + (er(0), τ) = 0. If we consider (3.20) for τ ∈ Mh satisfying

div τ = 0, and the fundamental theorem of calculus, then we have

(Aeσ(t), τ) + (er(t), τ) = 0, τ ∈Mh, div τ = 0,

for all t ∈ [0, T0]. This is equivalent to

(ehr (t), τ) = −(A(ehσ(t) + ePσ (t)), τ) + (ePr (t), τ), τ ∈Mh, div τ = 0.

By (A2) in section 2.4.2, we can choose τ ∈ Mh such that div τ = 0, (τ, q) =

‖ehr (t)‖2, and ‖τ‖ ≤ c‖ehr (t)‖ for each t ∈ [0, T0]. If we take such τ in the above

equation, then we get ‖ehr (t)‖ ≤ c‖ehσ(t), ePσ (t), ePr (t)‖ by the Cauchy–Schwarz

inequality, so (3.30) follows.

3.4 Full discretization

In this section, we use the Crank–Nicolson scheme for full discretization and

prove a priori error estimates of fully discrete solutions for the AFW elements.

We use ∆t > 0 to denote the time step interval. For given T0 > 0, we assume

that ∆t, N , and tj for 0 ≤ j ≤ N are defined as in section 2.1.

The fully discrete solution of (σ, v, r) at time tj will be denoted by (Σj , V j , Rj).

Let the initial data (Σ0, V 0, R0) be given. In the Crank–Nicolson scheme, using

notations in (2.3), the sequence (Σj+1, V j+1, Rj+1) for 1 ≤ j ≤ N is defined

inductively by(
A∂̄tΣ

j+ 1
2 , τ
)

+ (V̂ j+
1
2 ,div τ) + (∂̄tR

j+ 1
2 , τ) = 0, (3.32)(

ρ∂̄tV
j+ 1

2 , w
)
− (div Σ̂j+

1
2 , w) = (f̂ j+

1
2 , w), (3.33)

(∂̄tΣ
j+ 1

2 , q) = 0, (3.34)

for (τ, w, q) ∈Mh × Vh ×Kh.

Theorem 3.7. Let Mh × Vh ×Kh be the AFW elements of degree k ≥ 1. For

given initial data (Σ0, V 0, R0) ∈ Mh × Vh × Kh, the sequence of fully discrete

solutions (Σj , V j , Rj) for 1 ≤ j ≤ N is well-defined by (3.32–3.34). Suppose

σ, v, r ∈W 1,1([0, T0];Hm) ∩W 3,1([0, T0];L2), (3.35)

and the initial data (Σ0, V 0, R0) satisfies the conditions (3.17–3.19). Then the
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fully discrete solution (Σj , V j , Rj) satisfies

‖σj − Σj , vj − V j , rj −Rj‖ ≤ c(∆t2 + hm)‖σ, v, r‖W 1,1Hm∩W 3,1L2 , (3.36)

for c > 0 which depends on A, ρ0, ρ1, but is independent of h and ∆t.

The proof of this theorem will be given in the rest of this section.

3.4.1 Well-definedness

First of all, we show the fully discrete solution is well-defined. We need to

check that (Σj+1, V j+1, Rj+1) is uniquely determined as a solution of the linear

system (3.32–3.34) when Σj , V j , Rj , f j , f j+1 are given. Rewriting (3.32–3.34),

we have

(
AΣj+1, τ

)
+

∆t

2
(V j+1,div τ) + (Rj+1, τ)

= (AΣj , τ)− ∆t

2
(V j ,div τ) + (Rj , τ),

(ρV j+1, w)− ∆t

2
(div Σj+1, w) = (ρV j , w) +

∆t

2
(div Σj , w) + ∆t(f̂ j+

1
2 , w),

(Σj+1, q) = (Σj , q),

for (τ, w, q) ∈Mh×Vh×Kh. Note that the above is a system of linear equations

with same number of equations and unknowns. In order to show that its solution

(Σj+1, V j+1, Rj+1) exists uniquely, it suffices to show that Σj+1 = V j+1 =

Rj+1 = 0 if all right-hand sides vanish. Suppose the right-hand sides vanish. If

we take τ = Σj+1, w = V j+1, q = −Rj+1 in the above equations and add them,

then we have (AΣj+1,Σj+1)+(ρV j+1, V j+1) = 0 which yields Σj+1 = V j+1 = 0.

By Corollary 2.4, there is τ ∈ Mh so that (Rj+1, τ) = (Rj+1, Rj+1). If we

take such τ in the first equation of the system, we obtain Rj+1 = 0 since

Σj+1 = V j+1 = 0. Hence the full discretization is well-defined.
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3.4.2 Convergence

We now turn to the proof of the a priori estimate (3.36). Let us denote the

errors (σj − Σj , vj − V j , rj −Rj) by

Ejσ := σj − Σj = (σj − σP,jh ) + (σP,jh − Σj) =: eP,jσ + θjσ, (3.37)

Ejv := vj − V j = (vj − vP,jh ) + (vP,jh − V j) =: eP,jv + θjv, (3.38)

Ejr := rj −Rj = (rj − rP,jh ) + (rP,jh −Rj) =: eP,jr + θjr. (3.39)

In Theorem 3.5 of semidiscrete error analysis, we already obtained error bounds

of the projection errors (ePσ , e
P
v , e

P
r ). Thus we only need to consider a priori

estimates of (θjσ, θ
j
v, θ

j
r) for Theorem 3.7. Here is a precise statement of our

claim.

Theorem 3.8. Suppose the assumptions of Theorem 3.7 hold and θiσ, θiv, θir

are defined as in (3.37–3.39). Then there exists a constant c > 0 such that

‖θiσ, θiv, θir‖ ≤ c(∆t
2 + hm)‖σ, v, r‖W 1,1Hm∩W 3,1L2 , (3.40)

for 1 ≤ i ≤ N , 1 ≤ m ≤ k, where the constant c depends on A, ρ0, ρ1 but is

independent of h and ∆t.

Proof. In order to show (3.40), consider the arithmetic mean of equations (3.9–

3.10) at t = tj and t = tj+1, which are

(Aˆ̇σj+
1
2 , τ) + (div τ, v̂j+

1
2 ) + (ˆ̇rj+

1
2 , τ) = 0, τ ∈Mh,

(ρˆ̇vj+
1
2 , w)− (div σ̂j+

1
2 , w) = (f̂ j+

1
2 , w), w ∈ Vh.

We subtract (3.32–3.33) from the above two equations and consider the differ-

ence of equations. If we rewrite the difference of equations using (Eσ, Ev, Er)

defined in (3.37–3.39),

(A(ˆ̇σj+
1
2 − ∂̄tΣj+

1
2 ), τ) + (div τ, Ê

j+ 1
2

v ) + (ˆ̇rj+
1
2 − ∂̄tRj+

1
2 , τ) = 0,

(ρˆ̇vj+
1
2 − ρ∂̄tV j+

1
2 , w)− (div Ê

j+ 1
2

σ , w) = 0,

for (τ, w) ∈Mh×Vh. If we do some algebraic manipulations on those equations
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regarding equalities

ˆ̇σj+
1
2 − ∂̄tΣj+

1
2 = ˆ̇σj+

1
2 − ∂̄tσj+

1
2 + ∂̄tE

j+ 1
2

σ ,

ˆ̇rj+
1
2 − ∂̄tRj+

1
2 = ˆ̇rj+

1
2 − ∂̄trj+

1
2 + ∂̄tE

j+ 1
2

r ,

ˆ̇vj+
1
2 − ∂̄tV j+

1
2 = ˆ̇vj+

1
2 − ∂̄tvj+

1
2 + ∂̄tE

j+ 1
2

v ,

then one can have

(A∂̄tE
j+ 1

2
σ , τ) + (div τ, Ê

j+ 1
2

v ) + (∂̄tE
j+ 1

2
r , τ)

= (A(∂̄tσ
j+ 1

2 − ˆ̇σj+
1
2 ), τ) + (∂̄tr

j+ 1
2 − ˆ̇rj+

1
2 , τ),

(3.41)

(ρ∂̄tE
j+ 1

2
v , w)− (div Ê

j+ 1
2

σ , w) = (ρ∂̄tv
j+ 1

2 − ρˆ̇vj+
1
2 , w). (3.42)

Considering the decomposition of errors in (3.37–3.39) and using the reductions

from (3.24), we have

(A∂̄tθ
j+ 1

2
σ , τ) + (div τ, θ̂

j+ 1
2

v ) + (∂̄tθ
j+ 1

2
r , τ)

= (A(ω
j+ 1

2
1 + ω

j+ 1
2

2 ) + ω
j+ 1

2
3 + ω

j+ 1
2

4 , τ),
(3.43)

(ρ∂̄tθ
j+ 1

2
v , w)− (div θ̂

j+ 1
2

σ , w) = (ω
j+ 1

2
5 + ω

j+ 1
2

6 , w), (3.44)

where

ω
j+ 1

2
1 = ∂̄tσ

j+ 1
2 − ˆ̇σj+

1
2 , ω

j+ 1
2

2 = −∂̄te
P,j+ 1

2
σ , ω

j+ 1
2

3 = ∂̄tr
j+ 1

2 − ˆ̇rj+
1
2 ,

ω
j+ 1

2
4 = −∂̄te

P,j+ 1
2

r , ω
j+ 1

2
5 = ρ(∂̄tv

j+ 1
2 − ˆ̇vj+

1
2 ), ω

j+ 1
2

6 = −ρ∂̄te
P,j+ 1

2
v .

(3.45)

Letting τ = θ̂
j+1/2
σ , w = θ̂

j+1/2
v in (3.43) and (3.44), and adding those equations,

(‖θj+1
σ ‖2A + ‖θj+1

v ‖2ρ)− (‖θjσ‖2A + ‖θjv‖2ρ) (3.46)

= 2∆t(A(ω
j+ 1

2
1 + ω

j+ 1
2

2 ) + ω
j+ 1

2
3 + ω

j+ 1
2

4 , θ̂
j+ 1

2
σ ) + 2∆t(ω

j+ 1
2

5 + ω
j+ 1

2
6 , θ̂

j+ 1
2

v ).

If we divide both sides by (‖θj+1
σ ‖2A + ‖θj+1

v ‖2ρ)1/2 + (‖θjσ‖2A + ‖θjv‖2ρ)1/2 and

apply a weighted Cauchy–Schwarz inequality, then we get

(‖θj+1
σ ‖2A + ‖θj+1

v ‖2ρ)
1
2 ≤ (‖θjσ‖2A + ‖θjv‖2ρ)

1
2 + c∆t

6∑
l=1

‖ωj+
1
2

l ‖, (3.47)
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for each 0 ≤ j ≤ N − 1, with c independent of h, ∆t, and j. By using (3.47)

inductively, we have

(‖θiσ‖2A + ‖θiv‖2ρ)
1
2 ≤ (‖θ0

σ‖2A + ‖θ0
v‖2ρ)

1
2 + c∆t

i−1∑
j=0

6∑
l=1

‖ωj+
1
2

l ‖. (3.48)

Since A is coercive and 0 < ρ0 ≤ ρ for a constant ρ0, there exists c > 0 depending

only on A and ρ0 such that

‖θiσ‖+ ‖θiv‖ ≤ c(‖θiσ‖2A + ‖θiv‖2ρ)
1
2 . (3.49)

We can see that (‖θ0
σ‖2A + ‖θ0

v‖2ρ)
1
2 = ‖θ0

σ‖A ≤ chm‖σ(0), r(0)‖m holds by an

argument similar to that of semidiscrete error analysis from the fact θ0
v = 0,

the assumption (3.19) of (Σ0, V 0, R0), and the triangle inequality. Hence, if we

show

c∆t

i−1∑
j=0

6∑
l=1

‖ωj+
1
2

l ‖ ≤ c(∆t2 + hm), 1 ≤ m ≤ k, (3.50)

then the estimate (3.40) for ‖θiσ‖+ ‖θiv‖ is proved by (3.48) and (3.49).

In order to show the above inequality, we recall Taylor expansions for g ∈
C4([−a, a]),

|g(a)− g(−a)− 2ag′(0)| ≤ ca2‖g′′′‖L1(−a,a), (3.51)

|g(a) + g(−a)− 2g(0)| ≤ ca‖g′′‖L1(−a,a), (3.52)

|g(a)− g(−a)− a(g′(a) + g′(−a))| ≤ ca2‖g′′′‖L1(−a,a), (3.53)

|2g(a)− 4g(0) + 2g(−a)− a(g′(a)− g′(−a))| ≤ ca3‖g(4)‖L1(−a,a), (3.54)

where g(4) denotes the fourth derivative of g.

From the definitions of ω
j+1/2
l , l = 1, 3, 5 in (3.45), we can use (3.53) by
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substituting a by ∆t/2, 0 by tj , and g by σ, v, r. Then we have

∆t‖ωj+
1
2

1 ‖ =
1

2
‖2σj+1 − 2σj −∆tσ̇j+1 −∆tσ̇j‖ ≤ c∆t2

∫ tj+1

tj

‖...σ‖ ds, (3.55)

∆t‖ωj+
1
2

3 ‖ =
1

2
‖2rj+1 − 2rj −∆tṙj+1 −∆tṙj‖ ≤ c∆t2

∫ tj+1

tj

‖...r ‖ ds, (3.56)

∆t‖ωj+
1
2

5 ‖ =
1

2
‖ρ(2vj+1 − 2vj −∆tv̇j+1 −∆tv̇j)‖ ≤ c∆t2

∫ tj+1

tj

‖...v ‖ ds.

(3.57)

By the definitions of ω
j+1/2
l , l = 2, 4, 6 in (3.45), and Theorem 3.5, one can see

∆t‖ωj+
1
2

2 ‖ = ∆t‖∂̄te
P,j+ 1

2
σ ‖ =

∥∥∥∥∥
∫ tj+1

tj

ėPσ ds

∥∥∥∥∥ ≤ chm
∫ tj+1

tj

‖σ̇‖m ds, (3.58)

∆t‖ωj+
1
2

4 ‖ = ∆t‖∂̄te
P,j+ 1

2
r ‖ =

∥∥∥∥∥
∫ tj+1

tj

ėPr ds

∥∥∥∥∥ ≤ chm
∫ tj+1

tj

‖ṙ‖m ds, (3.59)

∆t‖ωj+
1
2

6 ‖ = ∆t‖ρ∂̄te
P,j+ 1

2
v ‖ =

∥∥∥∥∥
∫ tj+1

tj

ρėPv ds

∥∥∥∥∥ ≤ chm
∫ tj+1

tj

‖v̇‖m ds, (3.60)

for 1 ≤ m ≤ k. The estimate (3.50) is obtained by combining (3.55–3.60) and

as we remarked before, the estimate (3.40) is proved for ‖θiσ, θiv‖.
To complete the proof of (3.40), we estimate ‖θir‖ following the outline of

semidiscrete analysis. We first note that (Aσj , τ) + (rj , τ) = 0 for 0 ≤ j ≤ N ,

for all τ ∈Mh such that div τ = 0. From the condition (3.18) of initial data, we

have (AΣ0, τ) + (R0, τ) = 0 and combining this equality with (3.32), we get

(AΣj , τ) + (Rj , τ) = 0, τ ∈Mh, div τ = 0, 0 ≤ j ≤ N.

Therefore we have an error equation (AEjσ, τ) + (Ejr , τ) = 0 for τ ∈ Mh such

that div τ = 0, which is equivalent to

(θjr, τ) = −(A(θjσ + eP,jσ ), τ)− (eP,jr , τ), τ ∈Mh, div τ = 0, 0 ≤ j ≤ N.

If we take τ ∈ Mh such that div τ = 0, (τ, q) = ‖θjr‖2, and ‖τ‖ ≤ c‖θjr‖ by

(A2), then we obtain

‖θjr‖ ≤ c‖θjσ, eP,jσ , eP,jr ‖ ≤ c(‖θjσ‖+ hm‖σ, r‖L∞Hm).
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Combining this with the estimate of ‖θjσ‖, then the estimate (3.40) for ‖θjr‖ is

proved.

In some applications, we need to compute numerical solutions of the displace-

ment. Let U0 ∈ Vh be an approximation of initial displacement u(0). Then we

can compute a numerical displacement U i from {V j}, using the trapezoidal rule,

as

U i = U0 + ∆t

i∑
j=1

V j + V j−1

2
= U0 + ∆t

i∑
j=1

V̂ j+
1
2 . (3.61)

Corollary 3.9 (Numerical solutions of displacement). Let U0 ∈ Vh be an

approximation of initial displacement u(0) with ‖u(0) − U0‖ ≤ chm‖u(0)‖m,

1 ≤ m ≤ k, and U i be defined by (3.61). Then, for 0 ≤ i ≤ N , 1 ≤ m ≤ k,

‖ui − U i‖ ≤ c(hm + ∆t2)(‖u(0)‖m + ‖σ, v, r‖W 1,1Hm∩W 3,1L2).

Proof. Noting that ui = u0 +
∫ ti

0
v ds and using the triangle inequality,

‖ui − U i‖ ≤ ‖u(0)− U0‖+

i∑
j=1

∥∥∥∥∥
∫ tj

tj−1

v ds−∆tV̂ j+
1
2

∥∥∥∥∥ . (3.62)

Recall an estimate in the trapezoidal rule, which is∣∣∣∣∫ a

−a
g(s) ds− a(g(a) + g(−a))

∣∣∣∣ ≤ ca3‖g′′‖L∞(−a,a).

Combining the triangle inequality, the above estimate, and ‖vj −V j‖ ≤ c(hm +

∆t2) from Theorem 3.7 yields∥∥∥∥∥
∫ tj

tj−1

v ds−∆tV̂ j+
1
2

∥∥∥∥∥ ≤
∥∥∥∥∥
∫ tj

tj−1

v ds−∆tv̂j+
1
2

∥∥∥∥∥+ ∆t‖v̂j+ 1
2 − V̂ j+ 1

2 ‖

≤ c∆t3‖v̈‖L∞L2 + c(hm + ∆t2)∆t. (3.63)

The conclusion follows from the assumption of U0, (3.62), and (3.63).
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3.5 Error analysis for the GG elements

In this section we discuss the error analysis for the GG elements. We shall show

that we can obtain better error bounds of σ and r for the GG elements than for

the AFW elements when the degree k of elements are same. We also show that

a postprocessing is eligible for the GG elements to obtain a better numerical

solution of u.

3.5.1 A priori error estimates

Since many steps of the error analysis for the GG elements are similar to the

one for the AFW elements, we do not repeat all details but focus on the steps

that should be modified. Before we state a main result, we define ‖ρ‖W 1,∞
h

as

‖ρ‖W 1,∞
h

= ‖ρ‖L∞ + ‖ gradh ρ‖L∞ , (3.64)

where gradh is the piecewise gradient operator adapted to the triangulation Th.

Theorem 3.10. Let (Mh, Vh,Kh) be the GG elements of degree k ≥ 1, m be

an integer for which 1 ≤ m ≤ k + 1, and m′ = m− δm,k+1 where δm,k+1 is the

Kronecker delta. Suppose ‖ρ‖W 1,∞
h

<∞ and

σ, r ∈W 1,1([0, T0];Hm) ∩W 3,1([0, T0];L2),

v ∈W 1,1([0, T0];Hm′) ∩W 3,1([0, T0];L2).
(3.65)

Assume the initial data satisfy (3.17–3.19) for 1 ≤ m ≤ k + 1. Then the fully

discrete solution (Σj , V j , Rj) in (3.32–3.34) is well-defined and for all 0 ≤ j ≤
N ,

‖σj − Σj‖+ ‖Phvj − V j‖+ ‖rj −Rj‖ ≤ c(∆t2 + hm),

‖vj − V j‖ ≤ c(∆t2 + hm
′
),

(3.66)

where c depends on the quantities ‖σ, r‖W 1,1Hm∩W 3,1L2 , ‖v‖W 1,1Hm′∩W 3,1L2 , A,

ρ0, and ‖ρ‖W 1,∞
h

but is independent of h and ∆t.

In comparison with Theorem 3.7, if k is same, the above theorem gives better

accuracy of the errors of σ and r. In particular, we will show later that we can

use the estimate of ‖Phvj − V j‖ for a postprocessing for the numerical solution

of u.
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In the previous section, the proof of Theorem 3.7 consists of the proof of

well-definedness of (Σj , V j , Rj) and the proof of error estimates. Since we can

prove that (Σj , V j , Rj) is well-defined with the same argument shown in section

3.4.1, we will only discuss the a priori error estimates in the proof of Theorem

3.10.

For the error estimates, we decompose the errors (Ejσ, E
j
v, E

j
r) into the pro-

jection errors (eP,jσ , eP,jv , eP,jr ) and the approximation errors (θjσ, θ
j
v, θ

j
r) as in

(3.37–3.39). The error estimates of the projection errors are obtained from the

approximation property of the GG elements.

Theorem 3.11. Let (Mh, Vh,Kh) be the GG elements of degree k ≥ 1. There

exists a constant c > 0 independent of h so that the following inequalities hold.

‖ePσ ‖L∞L2 ≤ chm‖σ‖L∞Hm , 1 ≤ m ≤ k + 1, (3.67)

‖ePv ‖L∞L2 ≤ chm‖v‖L∞Hm , 0 ≤ m ≤ k, (3.68)

‖ePr ‖L∞L2 ≤ chm‖r‖L∞Hm , 0 ≤ m ≤ k + 1. (3.69)

Furthermore, similar inequalities hold for time derivatives of σ, v, r, respec-

tively, as in Theorem 3.5.

The proof of Theorem 3.11 is similar to that of Theorem 3.5 with (A1).

Note that a better approximation (3.69) in Kh is obtained because the shape

functions of Kh for the GG elements of degree k are one degree higher than the

ones for the AFW elements of same degree k.

Now we state the a priori estimates of approximation errors (θjσ, θ
j
v, θ

j
r).

Theorem 3.12. Suppose the assumptions in Theorem 3.10 hold and θiσ, θiv, θir

are defined as in (3.37–3.39). Then there exists a constant c > 0 such that

‖θiσ, θiv, θir‖

≤ c(∆t2 + hm)(‖σ, r‖W 1,1Hm∩W 3,1L2 + ‖v‖W 1,1Hm′∩W 3,1L2), (3.70)

for 1 ≤ i ≤ N , 1 ≤ m ≤ k + 1, where c depends on A, ρ0, ‖ρ‖W 1,∞
h

but is

independent of h and ∆t.

Proof. For the a priori estimates, we can follow same argument in the proof

of Theorem 3.7 and obtain (3.46). Let ρc be the orthogonal L2 projection of ρ

into the space of piecewise constant functions associated to the triangulation Th.

Define ω̃
j+1/2
6 = (ρ− ρc)∂̄teP, j+1/2

v and note that ρc∂̄te
P,j+1/2
v ⊥ Vh because of
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eP,jv , eP,j+1
v ⊥ Vh and the facts that ρc is a piecewise constant function and Vh

is a space of piecewise polynomials without any interelement continuity. From

the orthogonality ρc∂̄te
P,j+1/2
v ⊥ Vh, one can see that

(ω
j+ 1

2
6 , θ̂

j+ 1
2

v ) = (ρ∂̄te
P,j+ 1

2
v , θ̂

j+ 1
2

v ) = ((ρ− ρc)∂̄te
P,j+ 1

2
v , θ̂

j+ 1
2

v ) = (ω̃
j+ 1

2
6 , θ̂

j+ 1
2

v ).

Therefore, by replacing ω
j+1/2
6 by ω̃

j+1/2
6 and repeating the steps in (3.46–3.48),

we have an inequality analogous to (3.48),

(‖θj+1
σ ‖2A + ‖θj+1

v ‖2ρ)
1
2 ≤ (‖θ0

σ‖2A + ‖θ0
v‖2ρ)

1
2 + c∆t

(
5∑
l=1

‖ωj+
1
2

l ‖+ ‖ω̃j+
1
2

6 ‖

)
.

The first term can be bounded by chm‖σ(0), r(0)‖m by (3.19) as we have seen

before. To prove (3.70) for ‖θiσ‖+ ‖θiv‖, we only need to show

c∆t

i−1∑
j=0

(
5∑
l=1

‖ωj+
1
2

l ‖+ ‖ω̃j+
1
2

6 ‖

)
≤ c(∆t2 + hm), 1 ≤ m ≤ k + 1.

For the estimates of ω
j+1/2
l , l = 1, 3, 5, we use (3.55–3.57). For the estimates

of ω
j+1/2
2 and ω

j+1/2
4 , we use (3.58) and (3.59), respectively and note that the

integer m ranges 1 ≤ m ≤ k + 1 for the GG elements. For ω̃
j+1/2
6 , we use

∆t‖ω̃j+
1
2

6 ‖ = ∆t‖(ρ− ρc)∂̄tvP,j‖ =

∥∥∥∥∥
∫ tj+1

tj

(ρ− ρc)(v̇Ph − v̇) ds

∥∥∥∥∥
≤ chm+1‖ρ‖W 1,∞

h

∫ tj+1

tj

‖v̇‖m ds, 1 ≤ m ≤ k,

and the proof of (3.70) for ‖θiσ‖+ ‖θiv‖ is completed.

For the proof of (3.70) we omit details because the proof is same as that of

‖θir‖ estimate in Theorem 3.7.

The proof of Theorem 3.10 follows from the above theorem and Theorem

3.11. Note that Phv
j − V j = θjv and the ‖Phvj − V j‖ estimate in (3.66) is a

consequence of (3.70). The other estimates in (3.66) are easily obtained from

the estimates (3.67–3.69), (3.70), and the triangle inequality.
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3.5.2 Postprocessing

We show that a postprocessing is eligible for the GG elements. For simplicity, we

only consider the numerical solution of displacement u defined in Corollary 3.9.

We shall show that a better numerical solution of u is obtained by a relatively

simple computation.

For Vh in the GG elements, let V ∗h be the space of (possibly discontinuous)

piecewise polynomials adapted to Th of one degree higher than Vh, and Ṽh be

the orthogonal complement of Vh in V ∗h . The orthogonal L2 projections onto

V ∗h and Ṽh are denoted by P ∗h and P̃h, respectively. We claim the following

postprocessing result.

Theorem 3.13. Suppose that the assumptions of Theorem 3.10 holds with

m = k + 1 and (Σi, V i, Ri) is the fully discrete solution. Suppose also that

‖v‖W 1,1Hk+1 is finite. Let U i be the numerical solution of displacement in Corol-

lary 3.9 with the assumption ‖Phu(0)− U0‖ ≤ chk+1. We define U∗,i ∈ V ∗h by

(gradh U
∗,i, gradh w) = (AΣi +Ri, gradh w), w ∈ Ṽh, (3.71)

(U∗,i, w) = (U i, w), w ∈ Vh, (3.72)

for each 0 ≤ i ≤ N where gradh is the piecewise gradient operator adapted to the

triangulation Th. Then U∗,i is well-defined and there exists c > 0 independent

of h and ∆t such that

‖ui − U∗,i‖ ≤ c(∆t2 + hk+1)‖σ, v, r‖W 1,1Hk+1∩W 3,1L2 , (3.73)

where c depends on A, ρ0, ‖ρ‖W 1,∞
h

.

Proof. We can show that U∗,i is well-defined with the same argument we used in

(2.48), so we omit details. Note that PhU
∗,i = U i and let Ũ i := U∗,i−U i ∈ Ṽh.

To prove (3.73), by the triangle inequality and the Bramble–Hilbert lemma,

it suffices to show ‖P ∗hui−U∗,i‖ ≤ c(∆t2+hk+1). To show this reduced estimate,

consider

P ∗hu
i − U∗,i = (Phu

i − U i) + (P̃hu
i − Ũ i) ∈ Vh ⊕ Ṽh.

We first show that

‖Phui − U i‖ ≤ c(∆t2 + hk+1)‖σ, v, r‖W 1,1Hk+1∩W 3,1L2 . (3.74)
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From the definition of U i,

‖Phui − U i‖ =

∥∥∥∥∥Phu(0)− U0 +

∫ ti

0

Phv ds−∆t

i−1∑
j=0

V̂ j+
1
2

∥∥∥∥∥
≤ ‖Phu(0)− U0‖+

i−1∑
j=0

∥∥∥∥∥
∫ tj+1

tj

Phv ds−∆tPhv̂
j+ 1

2

∥∥∥∥∥
+ ∆t

i−1∑
j=0

‖Phv̂j+
1
2 − V̂ j+ 1

2 ‖

≤ chk+1 + ∆t2‖Phv̈‖L∞L2 + c(∆t2 + hk+1),

where the last inequality is due to the assumption of U0, the error bound of

trapezoidal rule, and the ‖Phvj − V j‖ estimate in (3.66). Thus the desired

estimate (3.74) is proved.

Now we turn to the estimation of ‖P̃hui− Ũ i‖. Since gradui = Aσi + ri, we

have (gradh u
i, gradh w) = (Aσi + ri, gradh w) for w ∈ Ṽh. By subtracting the

equation (3.71) from this equation, we get, for w ∈ Ṽh,

(gradh(ui − U∗,i), gradh w) = (A(σi − Σi) + ri −Ri, gradh w). (3.75)

Regarding equalities,

ui − U∗,i = (ui − P ∗hui) + (P ∗hu
i − U∗,i)

= (ui − P ∗hui) + (P̃hu
i − Ũ i) + (Phu

i − U i),

and by replacing ui − U∗,i in (3.75), a direct computation gives

(gradh(P̃hu
i − Ũ i), gradh w)

= −(gradh(ui − P ∗hui), gradh w)− (gradh(Phu
i − U i), gradh w)

+ (A(σi − Σi) + ri −Ri, gradh w).

Taking w = P̃hu
i − Ũ i in this equation, we have

‖ gradh(P̃hu
i − Ũ i)‖

≤ c(‖ gradh(ui − P ∗hui)‖+ ‖ gradh(Phu
i − U i)‖

+ ‖A(σi − Σi) + ri −Ri‖). (3.76)
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By applying (2.53) to P̃hu
i− Ũ i, we have ‖P̃hui− Ũ i‖ ≤ ch‖ gradh(P̃hu

i− Ũ i)‖.
From this inequality, by using the inequality that we multiply h to (3.76), we

get

‖P̃hui − Ũ i‖ ≤ ch(‖ gradh(ui − P ∗hui)‖+ ‖ gradh(Phu
i − U i)‖

+ ‖A(σi − Σi) + ri −Ri‖)

≤ ch‖ gradh(ui − P ∗hui)‖+ c‖Phui − U i‖

+ ch‖A(σi − Σi) + ri −Ri‖,

where the second term on the right-hand side of last inequality is due to (2.52).

Now we only need to prove that the three quantities on the right-hand side of

the above inequality are bounded by c(∆t2 + hk+1).

For the first term, one can see h‖ gradh(ui−P ∗hui)‖ ≤ chk+1‖ui‖k+1, by the

Bramble–Hilbert lemma. For the second, we use (3.74). For the third, we use

the triangle inequality and (3.66). The proof is completed.

Remark 3.14. This postprocessing does not need postprocessing of all the pre-

vious time steps.

3.6 Robustness for nearly incompressible mate-

rials

In this section, we assume that an elastic medium is homogeneous isotropic,

i.e., the compliance tensor A has the form (2.7) with the Lamé coefficients µ

and λ which are constants. We also assume that the boundary conditions are

the homogeneous displacement boundary conditions. In nearly incompressible

elastic materials, λ is very large, and, in the incompressible limit, λ = +∞.

Many standard discretization of elasticity suffer from locking, which means that

the errors, while they decay with the mesh size, grow as λ increases. A robust

or locking-free method is one in which the error estimates hold uniformly as

λ→ +∞. As we have seen in Theorem 2.5, stable mixed methods for stationary

elasticity problems are typically locking-free (see [8, 19]). In this section, we

will show that the locking-free advantage of mixed methods still holds in our

numerical schemes for linear elastodynamics.

Theorem 3.15. Let Mh × Vh ×Kh be the AFW elements of degree k ≥ 1 and

assume that A have the form of (2.7) with constants µ and λ. We assume that
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the exact solution (σ, v, r) is sufficiently regular for simplicity. Then there exists

a c > 0 which is uniformly bounded as λ→ +∞ such that for 0 ≤ i ≤ N − 1,

‖σ̂i− 1
2 − Σ̂i−

1
2 ‖+ ‖vi − V i‖ ≤ c(∆t2 + hk)‖σ, v, r‖W 2,1Hk∩W 4,1L2 .

Proof. Since the projection error estimates do not depend on the form of A, we

only need to consider a priori estimates of the approximation errors θ
i+1/2
σ , θiv,

and θir.

In the proof of Theorem 3.7, the dependence of c in (3.36) on λ arises only

from (3.49) when coercivity of A is used. To avoid this dependence of the

constant c on λ, we show that ‖θj+1/2
σ ‖ ≤ c(∆t2 + hm) holds without using the

coercivity of A on L2(Ω;M).

We first show that, for 1 ≤ i ≤ N ,

‖θiσ‖A + ‖θiv‖ ≤ c(∆t2 + hk)‖σ, v, r‖W 2,1Hk∩W 4,1L2 , (3.77)

holds with c which is uniformly bounded as λ → +∞. To prove it, we follow

the proof of Theorem 3.8 and obtain (3.46) with no change. Note that if τ is

skew-symmetric, then, from (2.7), we have

Aτ =
1

2µ

(
τ − λ

2µ+ nλ
tr(τ)I

)
=

1

2µ
τ.

Using this and the facts that ω
j+1/2
3 , ω

j+1/2
4 in (3.45) are skew-symmetric, we

can rewrite (3.46) as

(‖θj+1
σ ‖2A + ‖θj+1

v ‖2ρ)− (‖θjσ‖2A + ‖θjv‖2ρ)

= 2∆t(A(ω
j+ 1

2
1 + ω

j+ 1
2

2 + 2µω
j+ 1

2
3 + 2µω

j+ 1
2

4 ), θ̂
j+ 1

2
σ )

+ 2∆t(ω
j+ 1

2
5 + ω

j+ 1
2

6 , θ̂
j+ 1

2
v ). (3.78)

If we use the fact that A is symmetric positive definite, then we have a weighted

Cauchy–Schwarz inequality, (Aσ, τ) = (A
1
2σ,A

1
2 τ) ≤ ‖σ‖A‖τ‖A. We use this

and the Cauchy–Schwarz inequality to (3.78), and divide both sides by (‖θj+1
σ ‖2A+

‖θj+1
v ‖2ρ)1/2 + (‖θjσ‖2A + ‖θjv‖2ρ)1/2. Then we can see

(‖θj+1
σ ‖2A + ‖θj+1

v ‖2ρ)
1
2 ≤ (‖θjσ‖2A + ‖θjv‖2ρ)

1
2 + c∆t

6∑
l=1

‖ωj+
1
2

l ‖.
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By applying the estimates (3.55–3.56), (3.58–3.59), we obtain (3.77).

As a consequence of (3.77), it is easy to see that the error estimate for the

error of v holds with a constant c which is uniformly bounded as λ→ +∞. Now

we consider the estimate for the error of σ.

From the form of A in (2.7), we have

(Aτ, I) =
1

2µ+ nλ

∫
Ω

tr(τ) dx. (3.79)

We first note that (Aσ̇, I) = 0 by taking τ = I in (3.9). Moreover, (Aσ, I) = 0

because (Aσ, I) = (ε(u), I) = (gradu, I) = (u,div I) = 0. By using these facts,

we have (A∂̄tE
j+1/2
σ , I) = 0 if we take τ = I in (3.41) because div I = 0 and

r, ṙ are skew-symmetric. From the assumption (3.18), (AE0
σ, I) = 0, whence

(AEjσ, I) = 0 for all 0 ≤ j ≤ N . Furthermore, (AeP,jσ , I) = (eP,jσ , AI) = 0 from

the definitions of ePσ and Π̃h in (2.57), and the facts that divAI = 0, AI ⊥ Kh.

Thus we have (Aθjσ, I) = 0 for 0 ≤ j ≤ N .

If we recall AI = (2µ + nλ)−1I, then (θjσ, AI) = 0 implies
∫

Ω
tr(θjσ) dx = 0

for λ < +∞ and (2.43) can be applied to θjσ. By Lemma 2.6 and Lemma 2.7,

‖θ̂j+
1
2

σ ‖2 ≤ c(‖θ̂j+
1
2

σ ‖2A + ‖ div θ̂
j+ 1

2
σ ‖2−1). (3.80)

Note that ‖θ̂j+
1
2

σ ‖2A can be estimated by (3.77) with a uniform constant c not

growing as λ → +∞. To handle ‖ div θ̂
j+1/2
σ ‖2−1, we take w = div θ̂

j+1/2
σ in

(3.44) and get ‖ div θ̂
j+1/2
σ ‖ ≤ c(‖∂̄tθj+1/2

v ‖ + ‖ωj+1/2
5 ‖ + ‖ωj+1/2

6 ‖). For the

estimate of ‖∂̄tθj+1/2
v ‖, we show a stronger estimate,

(‖∂̄tθ
j+ 1

2
σ ‖2A + ‖∂̄tθ

j+ 1
2

v ‖2ρ)
1
2 ≤ c(∆t2 + hm), 1 ≤ m ≤ k. (3.81)

In order to show it, consider the differences of (3.43–3.44) with indices j and

j − 1, which are

(A(∂̄tθ
j+ 1

2
σ − ∂̄tθ

j− 1
2

σ ), τ) + (div τ, θ̂
j+ 1

2
v − θ̂j−

1
2

v ) + (∂̄tθ
j+ 1

2
r − ∂̄tθ

j− 1
2

r , τ)

= (A(ηj1 + ηj2) + ηj3 + ηj4, τ),

(ρ(∂̄tθ
j+ 1

2
v − ∂̄tθ

j− 1
2

v ), w)− (div(θ̂
j+ 1

2
σ − θ̂j−

1
2

σ ), w) = (ηj5 + ηj6, w),

for τ ∈ Mh, w ∈ Vh, where ηjl = ω
j+1/2
l − ωj−1/2

l , l = 1, · · · , 6, 1 ≤ j ≤ N − 1.
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Note that

∂̄tY
j+1/2 + ∂̄tY

j−1/2 = (Ŷ j+1/2 − Ŷ j−1/2)/∆t, (3.82)

for any sequence {Y j}j∈N. If we take τ = ∂̄tθ
j+1/2
σ + ∂̄tθ

j−1/2
σ , w = ∂̄tθ

j+1/2
v +

∂̄tθ
j−1/2
v in the above two equations, add them, and consider cancellations due

to (3.82), then we have

(‖∂̄tθ
j+ 1

2
σ ‖2A + ‖∂̄tθ

j+ 1
2

v ‖2ρ)− (‖∂̄tθ
j− 1

2
σ ‖2A + ‖∂̄tθ

j− 1
2

v ‖2ρ)

= (A(ηj1 + ηj2) + ηj3 + ηj4, ∂̄tθ
j+ 1

2
σ + ∂̄tθ

j− 1
2

σ ) + (ηj5 + ηj6, ∂̄tθ
j+ 1

2
v + ∂̄tθ

j− 1
2

v ).

By repeating an argument used in (3.46–3.48), we get

(‖∂̄tθ
i+ 1

2
σ ‖2A + ‖∂̄tθ

i+ 1
2

v ‖2ρ)
1
2 ≤ (‖∂̄tθ

1
2
σ ‖2A + ‖∂̄tθ

1
2
v ‖2ρ)

1
2 + c

i−1∑
j=1

6∑
l=1

‖ηjl ‖. (3.83)

To prove (3.81), we first estimate (‖∂̄tθ1/2
σ ‖2A + ‖∂̄tθ1/2

v ‖2ρ)1/2 in (3.83). We

take τ = ∂̄tθ
1/2
σ and w = ∂̄tθ

1/2
v in (3.43–3.44) and add them. Recall that

div θ0 = 0 = θ0
v from the choice of initial data by (3.17), so (div ∂̄tθ

1/2
σ , θ̂

1/2
v ) =

(1/2∆t)(div θ1
σ, θ

1
v) = (div θ̂

1/2
σ , ∂̄tθ

1/2
v ) gives a cancellation in the sum. There-

fore we have

(A∂̄tθ
1
2
σ , ∂̄tθ

1
2
σ ) + (ρ∂̄tθ

1
2
v , ∂̄tθ

1
2
v )

= (A(ω
1
2
1 + ω

1
2
2 ) + ω

1
2
3 + ω

1
2
4 , ∂tθ

1
2
σ ) + (ω

1
2
5 + ω

1
2
6 , ∂̄tθ

1
2
v ),

which yields

(‖∂̄tθ
1
2
σ ‖2A + ‖∂̄tθ

1
2
v ‖2ρ)

1
2 ≤ c

6∑
l=1

‖ω
1
2

l ‖.

For ω
1/2
1 and ω

1/2
2 , from (3.55) and (3.58), one can have

‖ω
1
2
1 ‖ ≤ c∆t

∫ t1

0

‖...σ‖ds ≤ c∆t2‖...σ‖L∞L2 ,

‖ω
1
2
2 ‖ ≤

chm

∆t

∫ t1

0

‖σ̇‖mds ≤ chm‖σ̇‖L∞Hm .

Similarly, using (3.56–3.57) and (3.59–3.60), we can show ‖ω1/2
l ‖ ≤ c(∆t2 +hm)
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for l = 3, 4, 5, 6.

Now it remains to show
∑i−1
j=0 ‖ηil‖ ≤ c(hm + ∆t2) in (3.83) for each l =

1, · · · , 6. Note that

ηj1 = ω
j+ 1

2
1 − ωj−

1
2

1 = ∂̄tσ
j − ˆ̇σj+

1
2 − ∂̄tσj−1 + ˆ̇σj−

1
2

=
1

2∆t
(2σj+1 − 4σj + 2σj−1 −∆t(σ̇j+1 − σ̇j−1)).

If we apply (3.54) to the last formula of the above with 0 = tj , a = ∆t, g = σ,

then we obtain
∑i−1
j=0 ‖η

j
1‖ ≤ c∆t2 with c depending on ‖σ(4)‖L1L2 . Applying a

similar argument to ηj3 and ηj5 yields
∑i−1
j=0(‖ηj3‖+‖η

j
5‖) ≤ c∆t

2 with c depending

on ‖r(4)‖L1L2 , ‖v(4)‖L1L2 . We also see, by using (3.52), that

‖ηj2‖ =
1

∆t
‖eP,j+1
σ + eP,j−1

σ − 2eP,jσ ‖ ≤ c
∫ tj+1

tj−1

‖ëPσ ‖ ds ≤ chm
∫ tj+1

tj−1

‖σ̈‖m ds,

‖ηj4‖ =
1

∆t
‖eP,j+1
r + eP,j−1

r − 2eP,jr ‖ ≤ c
∫ tj+1

tj−1

‖ëPr ‖ ds ≤ chm
∫ tj+1

tj−1

‖r̈‖m ds,

‖ηj6‖ =
1

∆t
‖ρ(eP,j+1

v + eP,j−1
v − 2eP,jv )‖ ≤ c

∫ tj+1

tj−1

‖ëPv ‖ ds ≤ chm
∫ tj+1

tj−1

‖v̈‖m ds,

and obtain
∑m−1
j=0 (‖ηj2‖+ ‖ηj4‖+ ‖ηj6‖) ≤ chm. By the estimate (3.81), and the

estimates (3.57), (3.60), we have

‖ div θ̂
j+ 1

2
σ ‖−1 ≤ ‖div θ̂

j+ 1
2

σ ‖ ≤ c(‖∂̄tθ
j+ 1

2
v ‖+ ‖ωj+

1
2

5 ‖+ ‖ωj+
1
2

6 ‖)

≤ c(∆t2 + hm)‖σ, v, r‖W 2,1Hk .

Thus the inequality (3.80) yields ‖θ̂j+1/2
σ ‖ ≤ c(∆t2 + hm) as desired.

Remark 3.16. A similar result holds for the GG elements with appropriate

modifications of proof.

3.7 Numerical results

In this section, we present numerical results. We used Ω = [0, 1] × [0, 1] and

the AFW elements of degree k = 2 in most experiments except the one with

RadauIIA time discretization in Example 3.20. We assume the medium is ho-

mogeneous with density ρ = 1 and isotropic with constant Lamé coefficients λ

and µ. For each mesh size h, we take ∆t = h for the time step ∆t and the ex-

pected order of convergence from our analysis is 2. All numerical results present
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the errors at time T0 = 1. The implementations are carried out using the Dolfin

Python module [1] of the FEniCS project [2, 38].

Example 3.17. Consider the displacement field

u(t, x, y) =

(
sin(πx) sin(πy) sin t

x(1− x)y(1− y) sin t

)
, (3.84)

with homogeneous displacement boundary conditions. The numerical results

for (3.84) are shown in Table 3.1. One can see that the convergence rates are

same as that we expect in our error analysis.

Table 3.1: Order of convergence for the exact solution with displacement as in
(3.84) (λ = 1, µ = 1, h = ∆t and T0 = 1).

1
h

‖σ − σh‖ ‖v − vh‖ ‖u− uh‖ ‖r − rh‖
error order error order error order error order

4 5.73e-02 – 1.03e-02 – 1.61e-02 – 2.42e-02 –

8 1.19e-02 1.99 2.62e-03 1.98 4.06e-03 1.99 6.09e-03 1.99

16 2.78e-03 2.00 6.57e-04 2.00 1.02e-03 2.00 1.52e-03 2.00

32 6.77e-04 2.00 1.64e-04 2.00 2.54e-04 2.00 3.80e-04 2.00

64 1.67e-04 2.00 4.10e-05 2.00 6.35e-05 2.00 9.51e-05 2.00

Example 3.18. For an example of inhomogeneous displacement boundary con-

dition, we use

u(t, x, y) =

(
e−y sinx cos t

et+x

)
, (3.85)

and the variational form proposed in (3.13). The numerical results are shown

in Table 3.2.

Example 3.19. We consider an example that the solution is not smooth. Let

u(t, x, y) =

(
(1 + t2)x

17
8 y

(1 + t)y
14
5

)
. (3.86)

The corresponding stress tensor with λ = µ = 1 is

σ =

(
51
8 (1 + t2)x

9
8 y + 14

5 (1 + t)y
9
5 (1 + t2)x

17
8

(1 + t2)x
17
8

17
8 (1 + t2)x

9
8 y + 42

5 (1 + t)y
9
5

)
.
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Table 3.2: Order of convergence for the exact solution with displacement as in
(3.85) (λ = 1, µ = 1, h = ∆t and T0 = 1).

1
h

‖σ − σh‖ ‖v − vh‖ ‖u− uh‖ ‖r − rh‖
error order error order error order error order

4 2.36e-02 – 8.42e-03 – 2.75e-02 – 9.00e-03 –

8 5.82e-03 2.02 2.08e-03 2.01 6.87e-03 2.00 2.25e-03 2.00

16 1.45e-03 2.00 5.17e-04 2.01 1.72e-03 2.00 5.63e-04 2.00

32 3.62e-04 2.00 1.29e-04 2.00 4.30e-04 2.00 1.41e-04 2.00

64 9.05e-05 2.00 3.22e-05 2.00 1.07e-04 2.00 3.52e-05 2.00

Note that σ is not in H2 but in H13/8−δ for any δ > 0. The numerical results

are shown in Table 3.3 and the order of convergence for σ error is limited by

13/8 = 1.625. However, we can see the order of convergences for the other errors

are 2. From these numerical results, we expect that there is a way to obtain

error bounds of v and r errors, which are better than that of σ error. This will

be studied in the future.

Table 3.3: Order of convergence for the exact solution with displacement as in
(3.86) (λ = 1, µ = 1, h = ∆t and T0 = 1).

1
h

‖σ − σh‖ ‖v − vh‖ ‖u− uh‖ ‖r − rh‖
error order error order error order error order

4 3.50e-02 – 1.09e-02 – 2.58e-02 – 3.88e-03 –

8 1.17e-02 1.59 2.70e-03 2.02 6.46e-03 2.00 9.53e-04 2.02

16 3.84e-03 1.60 6.68e-04 2.01 1.62e-03 2.00 2.37e-04 2.01

32 1.25e-03 1.61 1.66e-04 2.01 4.04e-04 2.00 5.98e-05 1.99

64 4.08e-04 1.62 4.15e-05 2.00 1.01e-04 2.00 1.53e-05 1.96

Example 3.20. For higher order time discretization, we consider the implicit

Runge–Kutta methods. For an evolution equation ẏ = f(t, y), general Runge–

Kutta schemes are described by the Butcher’s table 3.4. When the i-th numer-

ical solution yi at time ti is given, the next numerical solution yi+1 with time

step interval ∆t is defined as

yi+1 = yi + ∆t

s∑
l=1

blf(ti + cl∆t, Yl), (3.87)
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Table 3.4: The Butcher’s table for general Runge–Kutta schemes.

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...
cs as1 · · · · · · ass

b1 b2 · · · bs

where {Yl}sl=1 are obtained by solving

Yj = yi + ∆t

s∑
l=1

ajlf(ti + cl∆t, Yl), 1 ≤ j ≤ s. (3.88)

A key idea of this numerical scheme is that the Yl is an approximation of ẏ at

ti + cl∆t because (3.88) is analogous to the equation ẏ = f(t, y), and a linear

combination of them with appropriate coefficient can be a good approximation

of ẏ at ti with high accuracy. For more details, we refer [12].

We present numerical results for (3.84) with the 2-stage RadauIIA method

whose Butcher’s table is as in Table 3.5.

Table 3.5: The Butcher’s table for the 2-stage RadauIIA Runge–Kutta scheme.

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4

For the s-stage RadauIIA method, the order of convergence in time is 2s−1.

Table 3.6: Order of convergence for the exact solution with displacement in
(3.84) (λ = 1, µ = 1, h = ∆t and T0 = 1). The AFW elements of degree 3 and
the 2-stage RadauIIA time discretization are used.

1
h

‖σ − σh‖ ‖v − vh‖ ‖u− uh‖ ‖r − rh‖
error order error order error order error order

4 1.31e-02 – 1.38e-03 – 2.10e-03 – 3.77e-03 –

8 1.02e-03 3.68 1.78e-04 2.96 2.58e-04 3.02 4.18e-04 3.17

16 9.88e-05 3.37 2.23e-05 3.00 3.25e-05 2.99 5.05e-05 3.05

32 1.14e-05 3.12 2.78e-06 3.00 4.09e-06 2.99 6.28e-06 3.01

64 1.40e-06 3.03 3.46e-07 3.00 5.13e-07 2.99 7.85e-07 3.00
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Hence the expected order of convergence is 3 if the AFW element of degree 3 is

used. In order to reconstruct numerical displacement, we use the numerical ap-

proximations of v̇ which correspond to Yl in (3.88) in the Runge–Kutta method.

These numerical approximations are byproducts of the Runge–Kutta scheme.

If we denote those terms as V
i+1/3
t and V i+1

t in the 2-stage RadauIIA method,

we have

V
i+ 1

3
t ≈ v̇(ti + ∆t/3), V i+1

t ≈ v̇(ti + ∆t),

in the time step at ti. By Taylor expansions, one can check that

g(a) = g(0) + ag′(0) +
a2

2
g′′(a/3) + o(a3),

so we define

U i+1 = U i + ∆tV i +
∆t2

2
V
i+ 1

3
t .

The numerical results in Table 3.6 show that the expected convergence rates are

obtained for all errors.
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Chapter 4

Mixed methods for the

Kelvin–Voigt model of

viscoelasticity

4.1 Introduction

In this chapter, we consider mixed methods for the Kelvin–Voigt model which

is the simplest model of linear viscoelastic solids. The Kelvin–Voigt model itself

is used to model soft tissues in biomedical engineering and is also an important

basis to make more complicated viscoelastic models. Therefore developing a

numerical scheme for the Kelvin–Voigt model is meaningful not only for its

direct applications but also as a landmark when more complicated models of

viscoelastic materials are studied.

There are not many results on mixed methods for the Kelvin–Voigt model.

Quasistatic problems of the Kelvin–Voigt model, meaning that the mass density

in equations is vanishing, were studied by Rognes and Winther [44] but, to our

knowledge, no one has studied fully dynamic problems of it. In the work of

Rognes and Winther, they suggest a mixed method framework for the Kelvin–

Voigt model using weak symmetry of stress and show a priori error analysis for

the AFW elements and a variant of the lowest order AFW element modified by

Falk (see [10, 30]).

In this chapter, using the mixed method framework in [44], we study mixed
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methods for the Kelvin–Voigt model with a positive mass density. We prove a

priori error estimates for the AFW and GG elements. The rest of this chapter

is organized as follows. In section 4.2, we establish a velocity-stress weak for-

mulation of the Kelvin–Voigt model with weak symmetry of stress. In section

4.3, we show an error analysis of semidiscrete solutions for the AFW elements.

In section 4.4, we show an error analysis of fully discrete solutions for the AFW

elements. In section 4.5, we show an error analysis for the GG elements and

present a postprocessing technique to improve accuracy of numerical solutions of

displacement. In section 4.6, we present some numerical results which support

our error analysis.

4.2 Weak formulations with weak symmetry

Let u be the displacement vector. As we have seen in (2.8), there are two stresses

related to spring and dashpot units in the Kelvin–Voigt model, and they are

called elastic and viscous stresses, respectively. By (2.8), the elastic and viscous

stresses have the relations

σ0 = C0ε(u), σ1 = C1ε(u̇),

with rank 4 tensors C0 and C1 which satisfy (2.6) and are uniformly bounded

above and below. The total stress is σ0 + σ1 = C0ε(u) + C1ε(u̇), and by the

balance law of linear momentum, we have

ρü− div(C0ε(u) + C1ε(u̇)) = f, (4.1)

for an external body force f . Throughout the discussion in this chapter, we

assume that the mass density ρ satisfies 0 < ρ0 ≤ ρ ≤ ρ1 <∞ for constants ρ0,

ρ1.

To have a velocity-stress weak formulation, we use v = u̇, σ0 = C0ε(u),

σ1 = C1ε(u̇) as unknowns. Then we have equations of the Kelvin–Voigt model

as

A0σ̇0 = A1σ1 = ε(v), ρv̇ − div(σ0 + σ1) = f, (4.2)

where A0 = C−1
0 , A1 = C−1

1 . We assume the homogeneous displacement bound-

ary conditions u ≡ 0, so v ≡ 0, on ∂Ω for simplicity.
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To rewrite the equations as a mixed form with weak symmetry of stress,

we also use a new unknown p = skw grad v. For f ∈ W 1,1([0, T0];V ), a weak

formulation of (4.1) with weak symmetry of stress is to seek (σ0, σ1, v, p) such

that

σ0 + σ1 ∈ C0([0, T0];M), σ0 ∈ C1([0, T0];L2(Ω;M)), (4.3)

v ∈ C1([0, T0];V ), p ∈ C0([0, T0];K), (4.4)

satisfying

(A0σ̇0, τ0) + (v,div τ0) + (p, τ0) = 0, τ0 ∈M, (4.5)

(A1σ1, τ1) + (v,div τ1) + (p, τ1) = 0, τ1 ∈M, (4.6)

(ρv̇, w)− (div(σ0 + σ1), w) = (f, w), w ∈ V, (4.7)

(σ0 + σ1, q) = 0, q ∈ K, (4.8)

with initial data (σ0(0), v(0)) ∈ L2(Ω,S)× H̊1(Ω;V).

Theorem 4.1. For given initial data σ0(0) ∈ S, and v(0) ∈ H̊1(Ω;V) such that

C1ε(v(0)) ∈ S, there is a unique solution (σ0, σ1, v, p) of (4.5–4.8) satisfying

(4.3–4.4).

Proof. For existence, we use the Hille–Yosida theorem. Using σ1 = C1ε(v) in

(4.2), we rewrite (4.2) as

σ̇0 = C0ε(v), v̇ = ρ−1(div(σ0 + C1ε(v)) + f).

Let X = L2(Ω; S)× V with the inner product

((σ, v), (τ, w))X = (A0σ, τ) + (ρv, w)ρ.

We define an unbounded operator L on X as L(τ, w) = (C0ε(w), ρ−1(div(τ +

C1ε(w)) with its domain,

D(L) = {(τ, w) ∈ L2(Ω;S)× H̊1(Ω;V) | τ + C1ε(w) ∈ S}. (4.9)

To apply the Hille–Yosida theorem, we need to check that the domain of L is

dense in X , and L is an m-dissipative operator. To see the domain of L is dense,
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let us define

H̊1(div) = {w ∈ H̊1(Ω;V) |C1ε(w) ∈ S}.

It is obvious that S × H̊1(div) is a subset of the domain of L, so it suffices to

show that S× H̊1(div) is dense in X . Since S is dense in L2(Ω; S), we only need

to show that H̊1(div) is dense in V .

For given g ∈ H−1(Ω;V), consider the equation

(C1ε(v), ε(w)) = (g, w), w ∈ H̊1(Ω;V). (4.10)

By the coercivity of C1, Korn’s inequality, and the Lax–Milgram lemma, this

equation gives a bijective map L : H̊1(Ω;V) → H−1(Ω;V). Since L and L−1

are bounded by the open mapping theorem, a dense set in H̊1(Ω;V) is mapped

to a dense set in H−1(Ω;V) and vice versa. For g ∈ V , consider the solution

v of (4.10) and one sees that divC1ε(v) = g in the sense of distributions and

v ∈ H̊1(div). Therefore the L−1 operator maps V to a subset of H̊1(div). As

V is dense in H−1(Ω;V), so is H̊1(div) in H̊1(Ω;V).

The closedness of the operator L is not difficult to check, so we omit details.

To show L is m-dissipative, we first check that for λ > 0,

((I − λL)(σ, v), (σ, v))X = ‖σ‖2A0
+ ‖v‖2ρ − λ(ε(v), σ)− λ(div(σ + C1ε(v)), v)

= ‖σ‖2A0
+ ‖v‖2ρ + λ(C1ε(v), ε(v))

≥ ‖(σ, v)‖2X ,

so ‖(I − λL)(σ, v)‖X ≥ ‖(σ, v)‖X . Now we check that I − λL : D(L) → X is

surjective. For given (η, z) ∈ X , we find (σ, v) ∈ D(L) satisfying

σ − λC0ε(v) = η, v − ρ−1(div σ + C1ε(v)) = z.

In the first equation, we get a constraint σ = λC0ε(v) + η. We can obtain

v−ρ−1(div(λC0ε(v)+η)+C1ε(v)) = z by substituting σ in the second equation

using the aforementioned constraint. Rewriting in a weak form, we first find

v ∈ H̊1(Ω;V) such that

(v, w)ρ + (λC0ε(v) + η + C1ε(v), ε(w)) = (z, w)ρ, w ∈ H̊1(Ω;V).

Existence of solutions of this equation is a consequence of Korn’s inequality,
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coercivity of C0 and C1, and the Lax–Milgram lemma. For the solution v,

σ = λC0ε(v) + η from the previous constraint, and the above equation implies

that σ + C1ε(v) ∈ S, i.e., (σ, v) ∈ D(L). Thus I − λL is surjective.

By the Hille–Yosida theorem, for initial data (σ0(0), v(0)) in D(L), there is

a solution of (4.2) such that

(σ0, v) ∈ C0([0, T0];D(L)) ∩ C1([0, T0];X ),

and σ1, p are defined to be σ1 = C1ε(v), p = skw grad v. From these definitions

and Lemma 2.20, we can see that (σ0, σ1, v, p) satisfies (4.5–4.8), so existence is

proved.

For uniqueness, suppose that there are two solutions for same initial data,

and we use (σd0 , σ
d
1 , v

d, pd) to denote the difference of the solutions. Then

(σd0 , σ
d
1 , v

d, pd) satisfies (4.5–4.8) and σd0(0) = 0 = vd(0). Taking τ0 = σ0,

τ1 = σ1, w = v, q = −p in (4.5–4.8), and adding all of them, we get

1

2

d

dt
‖σd0‖2A0

+ ‖σd1‖2A1
+

1

2

d

dt
‖vd‖2ρ = 0.

By integrating and using the fundamental theorem of calculus,

‖σd0(t)‖2A0
+ ‖vd(t)‖2ρ +

∫ t

0

‖σd1(s)‖2A1
ds = 0,

so σd0 = vd = σd1 ≡ 0. Since pd = skw grad vd, pd ≡ 0 as well. Thus uniqueness

is proved and the proof is completed.

Remark 4.2. The homogeneous displacement boundary conditions v = 0 can be

generalized to inhomogeneous boundary conditions v = g on ∂Ω. Then (4.5) in

the weak formulation is changed to be

(A0σ̇0, τ0) + (A1σ1, τ1) + (div(τ0 + τ1), v) + (p, τ0 + τ1)

=

∫
∂Ω

((τ0 + τ1)ν, g) dS, (4.11)

where ν is the outward unit normal vector field on ∂Ω.
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4.3 Semidiscrete problems

We show that semidiscrete problems of the Kelvin–Voigt model is well-posed

for the AFW elements. We also state and prove a priori error estimates.

4.3.1 Existence and uniqueness of semidiscrete solutions

Let (Mh, Vh,Kh) be the AFW elements of degree k ≥ 1. We seek σ0,h ∈
C1([0, T0];Mh), σ1,h ∈ C0([0, T0];Mh), vh ∈ C1([0, T0];Vh), ph ∈ C0([0, T0];Kh)

in the semidiscrete problem of Kelvin–Voigt model such that

(A0σ̇0,h, τ0) + (div τ0, vh) + (ph, τ0) = 0, (4.12)

(A1σ1,h, τ1) + (div τ1, vh) + (ph, τ1) = 0, (4.13)

(ρv̇h, w)− (div(σ0,h + σ1,h), w) = (f, w), (4.14)

(σ0,h + σ1,h, q) = 0, (4.15)

for all (τ0, τ1, w, q) ∈Mh ×Mh × Vh ×Kh with given initial data σ0,h(0) ∈Mh,

vh(0) ∈ Vh.

Theorem 4.3. For given σ0,h(0) ∈Mh, vh(0) ∈ Vh, the system (4.12–4.15) has

a unique solution.

Proof. Let {φi}, {ψi}, {χi} be bases of Mh, Vh, and Kh, respectively. We use

A0, A1, B, C , M , D to denote the matrices whose (i, j)-entries are

(A0φj , φi), (A1φj , φi), (div φj , ψi), (φj , χi), (ρψj , ψi), (ψj , ψi),

respectively. We write σ0,h =
∑
i αiφi, σ1,h =

∑
i βiφi, vh =

∑
i γiψi, ph =∑

i ζiχi, Phf = ξiψi, and use α, β, γ, ζ, ξ to denote the coefficient vectors.

Then, based on a new order of unknowns (σ0,h, vh, σ1,h, ph), we may rewrite

(4.12–4.15) as a matrix equation of the form
A0 0 0 0

0 M 0 0

0 0 0 0

0 0 0 0



α̇

γ̇

β̇

ζ̇

 =


0 −BT 0 −C T

B 0 B 0

0 −BT A1 −C T

−C 0 −C 0



α

γ

β

ζ

+


0

Dξ

0

0

 .

(4.16)

We use Lemma 2.17 to show existence and uniqueness of solutions of this system.
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If we regard the above system in the context of Lemma 2.17, the block matrices

E0, F22 in Lemma 2.17 are

E0 =

(
A0 0

0 M

)
, F22 =

(
A1 −C T

−C 0

)
.

It is obvious that E0 is nonsingular because A0 and M are symmetric positive

definite. Since A1 is symmetric positive definite and C T is injective from the

inf-sup condition (A2), F22 is nonsingular as well. By Lemma 2.17, there is a

unique solution of (4.12–4.15) for initial data (σ0,h(0), vh(0)).

Remark 4.4. If we let r = skw gradu and use ṙh instead of ph for a weak

formulation of the Kelvin–Voigt model with weak symmetry, we have a matrix

equation with different coefficient matrices. In this case, the coefficient matrix

of the left-hand side is 
A0 0 0 0

0 M 0 0

0 0 0 C T

0 0 C 0

 ,

and it is not obvious to make a block matrix form that Lemma 2.17 can be

applied.

4.3.2 Decomposition of semidiscrete errors

In this section, we state the main theorem in the semidiscrete error analysis and

discuss a decomposition of errors for the proof of the theorem.

In the semidiscrete problem of Kelvin–Voigt model, the initial data of σ0,h

and vh are given and σ1,h(0), ph(0) are determined by the equations. For our

error analysis, the initial data of σ0,h, vh for semidiscrete problems should be

chosen that the corresponding σ1,h(0), ph(0) are good approximations of σ1(0),

p(0). More precisely, when σ0,h(0) ∈Mh, vh(0) ∈ Vh are given to be

‖σ0(0)− σ0,h(0), v(0)− vh(0)‖ ≤ chm,

for some c > 0 and m ≥ 1 independent of h, we want that σ1,h(0) ∈ Mh,
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ph(0) ∈ Kh corresponding to them satisfy

‖σ1(0)− σ1,h(0), p(0)− ph(0)‖ ≤ c′hm,

for some c′ > 0 independent of h. We claim that there exists such initial

data (σ0,h(0), vh(0)) which is computable for implementations. Recall that

(σ1(0), v(0), p(0)) satisfies

(A1σ1(0), τ) + (div τ, v(0)) + (τ, p(0)) = 0, (σ1(0), q) = 0, (4.17)

for (τ, q) ∈M ×K from (4.6) at t = 0 and the symmetry of σ1(0). We consider

a solution (σ′h, v
′
h, p
′
h) of the system

(A1σ
′
h, τ) + (div τ, v′h) + (p′h, τ) = 0,

(div σ′h, w) = (div σ1(0), w), (4.18)

(σ′h, q) = 0,

for (τ, w, q) ∈Mh × Vh ×Kh. From (2.32–2.33), we have

‖σ1(0)− σ′h‖+ ‖v(0)− v′h‖+ ‖p(0)− p′h‖ ≤ chm‖σ1(0), v(0), p(0)‖m, (4.19)

for 1 ≤ m ≤ k and Ph div σ1(0) = div σ′h. Note that σ′h, v′h, p′h are computable

quantities by (4.18) when div σ1(0) = divC1ε(v(0)) is known.

Theorem 4.5. Let (Mh, Vh,Kh) be the AFW elements of degree k ≥ 1. Suppose

that σ0, v ∈ W 2,1([0, T0];Hm), σ1, p ∈ W 1,1([0, T0];Hm) and suppose also that

(σ0,h, σ1,h, vh, ph) is the semidiscrete solution of (4.12–4.15) with initial data

σ0,h(0) = Π̃hσ0(0), vh(0) = v′h,

for which v′h defined by (4.18). Then we have

‖σ0 − σ0,h, σ1 − σ1,h, v − vh, p− ph‖L∞L2

≤ chm(‖σ0, v‖W 2,1Hm + ‖σ1, p‖W 1,2Hm),

for 1 ≤ m ≤ k, where c depends on the time interval T0, elastic and viscous

compliance tensors A0, A1, and the lower and upper bound of the mass density

ρ0, ρ1 but is independent of h.
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In order to prove Theorem 4.5, we decompose errors into the projection and

approximation errors. We use eσ0 , eσ1 , ev, and ep to denote the semidiscrete

errors σ0− σ0,h, σ1− σ1,h, v− vh, and p− ph, respectively. The error equations

are

(A0ėσ0
, τ0) + (div τ0, ev) + (ep, τ0) = 0, (4.20)

(A1eσ1 , τ1) + (div τ1, ev) + (ep, τ1) = 0, (4.21)

(ρėv, w)− (div(eσ0
+ eσ1

), w) = 0, (4.22)

(eσ0
+ eσ1

, q) = 0, (4.23)

for (τ0, τ1, w, q) ∈Mh ×Mh × Vh ×Kh. We define (σP0,h, σ
P
1,h, v

P
h , p

P
h ) by

σP0,h = Π̃hσ0, σP1,h = Π̃hσ1, vPh = Phv, pPh = P ′hp, (4.24)

and split the semidiscrete errors into

eσi
= ePσi

+ ehσi
:= (σi − σPi,h) + (σPi,h − σi,h), i = 0, 1,

ev = ePv + ehv := (v − vPh ) + (vPh − vh), (4.25)

ep = ePp + ehp := (p− pPh ) + (pPh − ph),

where eP and eh terms are called the projection and approximation errors,

respectively.

4.3.3 Projection error estimates for the AFW elements

We state the projection error estimates but we omit the proof of this theorem

because it is almost same as the one of Theorem 3.5.

Theorem 4.6. Let (Mh, Vh,Kh) be the AFW elements of degree k ≥ 1 and

suppose that (σ0,h, σ1,h, vh, ph) is a semidiscrete solution of (4.12–4.15). For the

projection errors ePσ0
, ePσ1

, ePv , ePp , defined in (4.25), we get

‖ePσ0
, ePσ1
‖L∞L2 ≤ chm‖σ0, σ1‖L∞Hm , 1 ≤ m ≤ k + 1,

‖ePv , ePp ‖L∞L2 ≤ chm‖v, p‖L∞Hm , 0 ≤ m ≤ k.

Similar results hold for time derivatives of σi, v, and p for i = 0, 1.
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4.3.4 Approximation error estimates for the AFW ele-

ments

We show a priori estimates of the approximation errors.

Theorem 4.7. Suppose that (σ0, σ1, v, p) is a solution of (4.5–4.8) with the reg-

ularity assumptions in Theorem 4.5 and let ehσ0
, ehσ1

, ehv , e
h
p be the approximation

errors defined in (4.25). Then, for 1 ≤ m ≤ k,

‖ehσ0
, ehσ1

, ehv , e
h
p‖L∞L2 ≤ chm(‖σ0, v‖W 2,1Hm + ‖σ1, p‖W 1,2Hm), (4.26)

where c depends on T0, ρ1, A0, A1 but is independent of h.

Proof. We claim that, for 1 ≤ m ≤ k, it is enough to prove

‖ehσ0
, ehv‖L∞L2 ≤ chm(‖v(0)‖m + max{‖σ1, p‖L2Hm , ‖σ̇0, v̇, p‖L1Hm}), (4.27)

‖ėhσ0
‖L∞L2 ≤ c(‖ėhσ0

(0)‖+ ‖ėhv (0)‖ρ + hm max{‖σ̇1, ṗ‖L2Hm , ‖σ̈0, v̈, ṗ‖L1Hm}),
(4.28)

‖ehσ1
, ehp‖L∞L2 ≤ c‖ėhσ0

, ėPσ0
, ePσ1

, ePp ‖L∞L2 , (4.29)

‖ėhσ0
(0)‖+ ‖ėhv (0)‖ρ ≤ chm‖σ̇0(0), σ1(0), v̇(0)‖m. (4.30)

Note that (4.27) gives (4.26) for ehσ0
and ehv . From the estimates (4.28) and

(4.30), we have ‖ėhσ0
‖L∞L2 ≤ chm(‖σ0, v‖W 2,1Hm + ‖σ1, p‖W 1,2Hm). If we com-

bine this estimate with (4.29) and use Theorem 4.6, then (4.26) for ehσ1
, ehp

follows.

Now we begin proving (4.27–4.30). We first derive reduced error equations.

Rewriting (4.20–4.22), using the error decomposition in (4.25), we get

(A0(ėhσ0
+ ėPσ0

), τ0) + (div τ0, e
h
v + ePv ) + (τ0, e

h
p + ePp ) = 0,

(A1(ehσ1
+ ePσ1

), τ1) + (div τ1, e
h
v + ePv ) + (τ1, e

h
p + ePp ) = 0,

(ρ(ėhv + ėPv ), w)− (div(ehσ0
+ ePσ0

+ ehσ1
+ ePσ1

), w) = 0,

(eσ0 + eσ1 , q) = 0,

for (τ0, τ1, w) ∈ Mh × Mh × Vh. Note that (div(ePσ0
+ ePσ1

), w), (div τ0, e
P
v ),

(div τ1, e
P
v ), and (ePσ0

+ ePσ1
, q) vanish from the same argument as in (3.24).
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Thus

(A0ė
h
σ0
, τ0) + (div τ0, e

h
v ) + (τ0, e

h
p) = −(A0ė

P
σ0
, τ0)− (τ0, e

P
p ), (4.31)

(A1e
h
σ1
, τ1) + (div τ1, e

h
v ) + (τ1, e

h
p) = −(A1e

P
σ1
, τ1)− (τ1, e

P
p ), (4.32)

(ρėhv , w)− (div(ehσ0
+ ehσ1

), w) = −(ρėPv , w), (4.33)

(ehσ0
+ ehσ1

, q) = 0, (4.34)

for (τ0, τ1, w, q) ∈Mh ×Mh × Vh ×Kh.

For (4.27), we take τ0 = ehσ0
, τ1 = ehσ1

, w = ehv , q = −ehp in (4.31–4.34) and

add all equations, then,

1

2

d

dt
‖ehσ0
‖2A0

+ ‖ehσ1
‖2A1

+
1

2

d

dt
‖ehv‖2ρ

= −(A0ė
P
σ0
, ehσ0

)− (A1e
P
σ1
, ehσ1

)− (ehσ0
+ ehσ1

, ePp )− (ρėPv , e
h
v ).

Using Young’s inequality to (A1e
P
σ1
, ehσ1

) and (ehσ1
, ePp ), one can have

−(A1e
P
σ1

+ ePp , e
h
σ1

)− ‖ehσ1
‖2A1
≤ c(‖ePσ1

‖2 + ‖ePp ‖2),

for c > 0 depending only on A0, A1. If we use this inequality to the previous

equality, then one gets

1

2

d

dt
‖ehσ0
‖2A0

+
1

2

d

dt
‖ehv‖2ρ

≤ c(‖ePσ1
‖2 + ‖ePp ‖2)− (A0ė

P
σ0
, ehσ0

)− (ehσ0
, ePp )− (ρėPv , e

h
v ). (4.35)

By using a weighted Cauchy–Schwarz inequality, we obtain

1

2

d

dt
(‖ehσ0

‖2A0
+ ‖ehv‖2ρ) ≤c(‖ePσ1

‖2 + ‖ePp ‖2)

+ c(‖ėPσ0
‖+ ‖ePp ‖+ ‖ėPv ‖)(‖ehσ0

‖2A0
+ ‖ehv‖2ρ)

1
2 .

We apply Lemma 2.14 to this inequality regarding Q = (‖ehσ0
‖2A0

+ ‖ehv‖2ρ)1/2,

F = c(‖ėPσ0
‖+ ‖ePp ‖+ ‖ėPv ‖), and G = c(‖ePσ1

‖2 + ‖ePp ‖2). Then, using the facts

ehσ0
(0) = 0, ehv (0) = vPh (0)− v′h and the coercivity of A0, we get

‖ehσ0
, ehv‖L∞L2 ≤ c‖vPh (0)− v′h‖+ cmax

{
‖ePσ1

, ePp ‖L2L2 , ‖ėPσ0
, ėPv , e

P
p ‖L1L2

}
.

If we use the fact ‖vPh (0) − v(0)‖ ≤ chm‖v(0)‖m, (4.19), the projection error
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estimates in Theorem 4.6, and the triangle inequality, then we have

‖ehσ0
, ehv‖L∞L2 ≤ chm(‖v(0)‖+ max{‖σ1, p‖L2Hm , ‖σ̇0, v̇, p‖L1Hm}),

for 1 ≤ m ≤ k, so (4.27) is proved.

For (4.28), we take time derivatives of (4.31–4.34) and use a similar argument

by taking τ0 = ėhσ0
, τ1 = ėhσ1

, w = ėhv , and q = −ėhp . Following same steps in the

proof of (4.27), we have (4.28).

Now we turn to the proof of (4.29). We first show

‖ehp‖L∞L2 ≤ c‖ehσ1
, ePσ1

, ePp ‖L∞L2 . (4.36)

To prove (4.36), by using (A2), we take τ1 in (4.31) such that ‖τ1‖ ≤ c‖ehp‖,
div τ1 = 0 and (τ1, q) = (ehp , q) for all q ∈ Kh. Then,

‖ehp‖2 = (τ1, e
h
p) = −(A1ė

h
σ1
, τ1)− (A1ė

P
σ1
, τ1)− (τ1, e

P
p ),

and (4.36) is proved by the Cauchy–Schwarz inequality. To complete the proof

of (4.29), now it is enough to show ‖ehσ1
‖L∞L2 ≤ c‖ėhσ0

, ėPσ0
, ePσ1
‖L∞L2 . For this,

take −τ0 = ehσ1
= τ1 in (4.31–4.32) and add them. Then we get

(A1e
h
σ1
, ehσ1

) = −(A0(ėhσ0
+ ėPσ0

), ehσ1
)− (A1e

P
σ1
, ehσ1

),

and therefore ‖ehσ1
‖ ≤ c‖ėhσ0

, ėPσ0
, ePσ1
‖, which proves (4.29).

Finally, for (4.30), recall that ehσ0
(0) = 0, so div ehσ0

(0) = 0 and

div ehσ1
(0) = div Π̃hσ1(0)− div σ′h = 0.

If we take w = ėhv (0) in (4.33), then we have

‖ėhv (0)‖2ρ = −(ρėPv (0), ėhv (0)) ≤ ‖ėPv (0)‖ρ‖ėhv (0)‖ρ,

so ‖ėhv (0)‖ρ ≤ ‖ėPv (0)‖ρ ≤ chm‖v̇(0)‖m for 1 ≤ m ≤ k.

If we take τ0 = −τ1 = ėhσ0
(0) in (4.31–4.32) and add them, then we get

‖ėhσ0
(0)‖2A0

= −(A0ė
P
σ0

(0) +A1(ehσ1
(0) + ePσ1

(0)), ėhσ0
(0)).

By the coercivity of A0, the triangle inequality, and the estimate (4.19) with
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the projection error estimates, we get

‖ėhσ0
(0)‖ ≤ c‖ėPσ0

(0), ehσ1
(0), ePσ1

(0)‖ ≤ chm‖σ̇0(0), σ1(0)‖m,

for 1 ≤ m ≤ k + 1.

4.4 Full discretization

In this section, we consider the error analysis of full discretization with the

Crank–Nicolson scheme.

In semidiscrete problems, we only need initial data of σ0, v. However, if we

use the Crank–Nicolson scheme for full discretization, we need initial data of

σ1 and p as well. Thus we take Σ0
0 = Π̃hσ0(0), Σ0

1 = Π̃hσ1(0), V 0 = Phv(0),

and P 0 = P ′hp(0) as initial data. In full discretization with the Crank–Nicolson

scheme for the equations of Kelvin–Voigt model, initial data of σ1 and v are not

necessarily same as the ones in the semidiscrete problem. In fact, the algebraic

equation of the system involves the arithmetic mean of numerical solutions at

times 0 and ∆t, so the restriction for initial data is not as strong as that in

semidiscrete problems.

In the Crank–Nicolson scheme, (Σj+1
0 ,Σj+1

1 , V j+1, P j+1), the numerical so-

lution at time tj+1 is defined inductively by

(A0∂̄tΣ
j+ 1

2
0 , τ0) + (div τ0, V̂

j+ 1
2 ) + (P̂ j+

1
2 , τ0) = 0, (4.37)

(A1Σ̂
j+ 1

2
1 , τ1) + (div τ1, V̂

j+ 1
2 ) + (P̂ j+

1
2 , τ0) = 0, (4.38)(

∂̄tV
j+ 1

2 , w
)
− (div(Σ̂

j+ 1
2

0 + Σ̂
j+ 1

2
1 ), w) = (f̂ j+

1
2 , w), (4.39)

(Σ̂
j+ 1

2
0 + Σ̂

j+ 1
2

1 , q) = 0, (4.40)

for (τ0, τ1, w, q) ∈Mh ×Mh × Vh ×Kh and j ≥ 0.

Theorem 4.8. Suppose σ0(0), σ1(0), v(0), p(0) ∈ Hm for 1 ≤ m ≤ k and

σ0, v ∈W 2,1([0, T0];Hm) ∩W 4,1([0, T0];L2),

σ1, p ∈W 1,2([0, T0];Hm) ∩W 3,2([0, T0];L2).
(4.41)

For initial data Σ0
0 = Π̃hσ0(0), Σ0

1 = Π̃hσ1(0), V 0 = Phv(0), P 0 = P ′hp(0),

the fully discrete solution (Σj0,Σ
j
1, V

j , P j) in (4.37–4.40) is well-defined and for
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1 ≤ j ≤ N ,

‖σj0 − Σj0‖+ ‖vj − V j‖+ ‖σ̂j−
1
2

1 − Σ̂
j− 1

2
1 ‖+ ‖p̂j− 1

2 − P̂ j− 1
2 ‖

≤ c(∆t2 + hm)(‖σ0, v‖W 2,1Hm∩W 4,1L2 + ‖σ1, p‖W 1,2Hm∩W 3,2L2),

for c > 0 depending on A0, A1, ρ1, T0 but independent of h and ∆t.

The proof will be given in the rest of this section.

4.4.1 Well-definedness

First of all, we show that the full discretization scheme is well-defined. We need

to check when Σj0,Σ
j
1, V

j , P j , f j , f j+1 are given, a solution of the linear system

(4.37–4.40), which is (Σj+1
0 ,Σj+1

1 , V j+1, P j+1), is well-defined. If we rewrite

(4.37–4.40),

(A0Σj+1
0 , τ0) +

∆t

2
(V j+1,div τ0) +

∆t

2
(P j+1, τ0)

= (A0Σj0, τ0)− ∆t

2
(V j ,div τ0)− ∆t

2
(P j , τ0),

(A1Σj+1
1 , τ1) + (V j+1,div τ1) + (P j+1, τ1)

= −(A1Σj1, τ1)− (V j ,div τ1)− (P j , τ1),

(V j+1, w)− ∆t

2
(div(Σj+1

0 + Σj+1
1 ), w)

= (V j , w) +
∆t

2
(div(Σj0 + Σj1), w) + ∆t(f̂ j+

1
2 , w),

− ∆t

2
(Σj+1

0 + Σj+1
1 , q) =

∆t

2
(Σj0 + Σj1, q).

Regarding Σj+1
0 ,Σj+1

1 , V j+1, P j+1 as unknowns, the above is a system of linear

equations with same number of equations and unknowns. In order to show it is

well-defined, it is enough to show that Σj+1
0 = Σj+1

1 = V j+1 = P j+1 = 0 when

all of the right-hand side vanish. Suppose all right-hand side terms vanish. If we

take τ0 = Σj+1
0 , τ1 = Σj+1

1 , w = V j+1, q = P j+1 and add all equations, we have

|Σj+1
0 |2A0

+ (∆t/2)|Σj+1
1 |2A1

+ |V j+1|2 = 0 which implies Σj+1
0 = Σj+1

1 = V j+1 =

0. For P j+1, take τ0 in (4.37) such that (τ0, q) = (P j+1, q) for all q ∈ Kh. Then

the first equation yields |P j+1|2 = 0, so P j+1 = 0 and the fully discrete solution

is well-defined.
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4.4.2 Convergence

Let us denote the error (σj0 − Σj0, σ
j
1 − Σj1, v

j − V j , pj − P j) by

Ejσi
= σji − Σji = (σji − σ

P,j
i,h ) + (σP,ji,h − Σji ) =: eP,jσi

+ θjσi
, i = 0, 1, (4.42)

Ejv = vj − V j = (vj − vP,jh ) + (vP,jh − V j) =: eP,jv + θjv, (4.43)

Ejp = pj − P j = (pj − pP,jh ) + (pP,jh − P j) =: eP,jp + θjp. (4.44)

In the semidiscrete error analysis of the previous section, we already obtained

error bounds of eP,jσ0
, eP,jσ1

, eP,jv , and eP,jp in Theorem 4.6. By the triangle in-

equality, we only need to consider the a priori estimates of θjσ0
, θjσ1

, θjv, and

θjp.

Theorem 4.9. Suppose the assumptions of Theorem 4.8 hold. Then there exists

c > 0 which is independent of h and ∆t such that

‖θiσ0
‖+ ‖θ̂i−

1
2

σ1 ‖+ ‖θiv‖+ ‖θ̂i−
1
2

p ‖ ≤ c(∆t2 + hm), (4.45)

for 1 ≤ i ≤ N and 1 ≤ m ≤ k + 1.

Proof. The arithmetic mean of equations (4.5–4.7) at t = tj , tj+1 gives

(A0
ˆ̇σ
j+ 1

2
0 , τ0) + (div τ0, v̂

j+ 1
2 ) + (p̂j+

1
2 , τ0) = 0,

(A1σ̂
j+ 1

2
1 , τ1) + (div τ1, v̂

j+ 1
2 ) + (p̂j+

1
2 , τ1) = 0,

(ρˆ̇vj+
1
2 , w)− (div(σ̂

j+ 1
2

0 + σ̂
j+ 1

2
1 ), w) = (f̂ j+

1
2 , w).

By subtracting (4.37–4.39) from the above three equations and using definitions

of (Eσ0
, Eσ1

, Ev, Ep) in (4.42–4.44), we have

(A0∂̄tE
j+ 1

2
σ0 , τ0) + (div τ0, Ê

j+ 1
2

v ) + (Ê
j+ 1

2
p , τ0) = (A0(∂̄tσ

j+ 1
2

0 − ˆ̇σ
j+ 1

2

0 ), τ0),

(A1Ê
j+ 1

2
σ1 , τ1) + (div τ1, Ê

j+ 1
2

v ) + (Ê
j+ 1

2
p , τ1) = 0,

(ρ∂̄tE
j+ 1

2
v , w)− (div(Ê

j+ 1
2

σ0 + Ê
j+ 1

2
σ1 ), w) = (ρ(∂̄tv

j − ˆ̇vj+
1
2 ), w).

If we consider (4.42–4.44), and the facts (div τ, ePv ) = (div ePσi
, w) = 0, i = 0, 1

for τ ∈ Mh, w ∈ Vh, and adding the first two equations for simplicity, then we
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get

(A0∂̄tθ
j+ 1

2
σ0 , τ0) + (A1θ̂

j+ 1
2

σ1 , τ1) + (div(τ0 + τ1), θ̂
j+ 1

2
v ) + (θ̂

j+ 1
2

p , τ0 + τ1) (4.46)

= (A0(ω
j+ 1

2
1 + ω

j+ 1
2

2 ) + ω
j+ 1

2
4 , τ0) + (A1ω

j+ 1
2

3 + ω
j+ 1

2
4 , τ1),

(ρ∂̄tθ
j+ 1

2
v , w)− (div(θ̂

j+ 1
2

σ0 + θ̂
j+ 1

2
σ1 ), w) = (ω

j+ 1
2

5 + ω
j+ 1

2
6 , w), (4.47)

where

ω
j+ 1

2
1 = ∂̄tσ

j+ 1
2

0 − ˆ̇σ
j+ 1

2
0 , ω

j+ 1
2

2 = −∂̄te
P,j+ 1

2
σ0 , ω

j+ 1
2

3 = −êP,j+
1
2

σ1 ,

ω
j+ 1

2
4 = −êP,j+

1
2

p , ω
j+ 1

2
5 = ρ(∂̄tv

j+ 1
2 − ˆ̇vj+

1
2 ), ω

j+ 1
2

6 = −ρ∂̄te
P,j+ 1

2
v .

(4.48)

Letting τ0 = θ̂
j+1/2
σ0 , τ1 = θ̂

j+1/2
σ1 in (4.46), w = θ̂

j+1/2
v in (4.47), and adding

these equations,

‖θj+1
σ0
‖2A0

+ 2∆t‖θ̂j+
1
2

σ1 ‖2A1
+ ‖θj+1

v ‖2ρ − (‖θjσ0
‖2A0

+ ‖θjv‖2ρ) (4.49)

= 2∆t(A0(ω
j+ 1

2
1 + ω

j+ 1
2

2 ) + ω
j+ 1

2
4 , θ̂

j+ 1
2

σ0 )

+ 2∆t(A1ω
j+ 1

2
3 + ω

j+ 1
2

4 , θ̂
j+ 1

2
σ1 ) + 2∆t(ω

j+ 1
2

5 + ω
j+ 1

2
6 , θ̂

j+ 1
2

v ).

By Young’s inequality and the coercivity of A1, there is c > 0 independent of h

and ∆t such that

2∆t(A1ω
j+ 1

2
3 + ω

j+ 1
2

4 , θ̂
j+ 1

2
σ1 ) ≤ 2∆t‖θ̂j+

1
2

σ1 ‖2A1
+ c∆t(‖ωj+

1
2

3 ‖2 + ‖ωj+
1
2

4 ‖2).

If we use this inequality to (4.49), then we can get

(‖θj+1
σ0
‖2A0

+ ‖θj+1
v ‖2ρ)− (‖θjσ0

‖2A0
+ ‖θjv‖2ρ) (4.50)

≤ 2∆t(A0(ω
j+ 1

2
1 + ω

j+ 1
2

2 ) + ω
j+ 1

2
4 , θ̂

j+ 1
2

σ0 ) + 2∆t(ω
j+ 1

2
5 + ω

j+ 1
2

6 , θ̂
j+ 1

2
v )

+ c∆t(‖ωj+
1
2

3 ‖2 + ‖ωj+
1
2

4 ‖2).

By the Cauchy–Schwarz inequality, regarding ‖θjσ0
‖2A0

+ ‖θjv‖2ρ as Q2
i , we can
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apply Lemma 2.16 and have one of the followings:

(‖θiσ0
‖2A0

+ ‖θiv‖2ρ)
1
2 ≤ c∆t

i−1∑
j=0

‖ωj+
1
2

1 , ω
j+ 1

2
2 , ω

j+ 1
2

4 , ω
j+ 1

2
5 , ω

j+ 1
2

6 ‖, (4.51)

(‖θiσ0
‖2A0

+ ‖θiv‖2ρ)
1
2 ≤ c(∆t) 1

2

i−1∑
j=0

(‖ωj+
1
2

3 ‖2 + ‖ωj+
1
2

4 ‖2)

 1
2

. (4.52)

We claim that

∆t

i−1∑
j=0

‖ωj+
1
2

1 , ω
j+ 1

2
2 , ω

j+ 1
2

4 , ω
j+ 1

2
5 , ω

j+ 1
2

6 ‖ ≤ c(∆t2 + hm), (4.53)

(∆t)
1
2

i−1∑
j=0

(‖ωj+
1
2

3 ‖2 + ‖ωj+
1
2

4 ‖2)

 1
2

≤ c(∆t2 + hm), (4.54)

hold and note that these estimates imply (4.45) for θiσ0
by the coercivity of A0.

By applying the Taylor expansion (3.53), definitions of ω terms in (4.48),

and the projection error estimates, the estimates (4.53–4.54) are obtained from

the estimates,

∆t‖ωj+
1
2

1 ‖ =
1

2
‖2σj+1

0 − 2σj0 −∆tσ̇j+1
0 −∆tσ̇j0‖ ≤ c∆t2

∫ tj+1

tj

‖...σ 0‖ ds, (4.55)

∆t‖ωj+
1
2

5 ‖ =
1

2
‖ρ(2vj+1 − 2vj −∆tv̇j+1 −∆tv̇j)‖ ≤ c∆t2

∫ tj+1

tj

‖...v ‖ ds,

(4.56)

∆t‖ωj+
1
2

2 ‖ = ∆t‖∂̄te
P,j+ 1

2
σ0 ‖ =

∥∥∥∥∥
∫ tj+1

tj

ėPσ0
ds

∥∥∥∥∥ ≤ chm
∫ tj+1

tj

‖σ̇0‖m ds, (4.57)

∆t‖ωj+
1
2

6 ‖ = ∆t‖ρ∂̄te
P,j+ 1

2
v ‖ =

∥∥∥∥∥
∫ tj+1

tj

ρėPv ds

∥∥∥∥∥ ≤ chm
∫ tj+1

tj

‖v̇‖m ds, (4.58)

‖ωj+
1
2

3 ‖ = chm‖σ1‖L∞Hm , ‖ωj+
1
2

4 ‖ = chm‖p‖L∞Hm . (4.59)

It is easy to see that (4.55–4.59) imply (4.53). The estimate (4.54) comes from
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(4.59) with

i−1∑
j=0

‖ωj+
1
2

3 ‖2
 1

2

≤ cN 1
2hm‖σ1‖L∞Hm ≤ cT0(∆t)−

1
2hm‖σ1‖L∞Hm , (4.60)

i−1∑
j=0

‖ωj+
1
2

4 ‖2
 1

2

≤ cN 1
2hm‖p‖L∞Hm ≤ cT0(∆t)−

1
2hm‖p‖L∞Hm . (4.61)

Hence the estimate (4.45) for θiσ0
, θiv is proved.

Now we consider estimates in (4.45) for θ̂
i+1/2
σ1 , and θ̂

i+1/2
p . For the estimate

of θ̂
j+1/2
σ1 , let −τ0 = τ1 = θ̂

j+1/2
σ1 in (4.46). Then

‖θ̂j+
1
2

σ1 ‖2 ≤ c‖θ̂
j+ 1

2
σ1 ‖2A1

= c(A0∂̄tθ
j+ 1

2
σ0 −A0(ω

j+ 1
2

1 + ω
j+ 1

2
2 ) +A1ω

j+ 1
2

3 + ω
j+ 1

2
4 , θ̂

j+ 1
2

σ1 )

≤ c‖∂̄tθ
j+ 1

2
σ0 , ω

j+ 1
2

1 , ω
j+ 1

2
2 , ω

j+ 1
2

3 , ω
j+ 1

2
4 ‖‖θ̂j+

1
2

σ1 ‖.

For θ̂
j+1/2
p , in (4.46), let τ1 = 0 and take τ0 to be div τ0 = 0, (τ0, θ̂

j+1/2
p ) =

‖θ̂j+1/2
p ‖2 so that ‖τ0‖ ≤ c‖θ̂j+1/2

p ‖ by Corollary 2.4. Then

‖θ̂j+
1
2

p ‖2 = (−A0∂̄tθ
j+ 1

2
σ0 + ω

j+ 1
2

1 + ω
j+ 1

2
2 + ω

j+ 1
2

3 + ω
j+ 1

2
4 , τ0)

≤ c‖∂̄tθ
j+ 1

2
σ0 , ω

j+ 1
2

1 , ω
j+ 1

2
2 , ω

j+ 1
2

3 , ω
j+ 1

2
4 ‖‖θ̂j+

1
2

p ‖.

Consequently, we get ‖θ̂j+
1
2

σ1 , θ̂
j+ 1

2
p ‖ ≤ ‖∂̄tθ

j+ 1
2

σ0 , ω
j+ 1

2
1 , ω

j+ 1
2

2 , ω
j+ 1

2
3 , ω

j+ 1
2

4 ‖.
From the estimates (4.55), (4.57), and (4.59), it suffices to show ‖∂̄tθj+1/2

σ0 ‖ ≤
c(∆t2 + hm) to complete the proof of (4.45).

To estimate ‖∂̄tθj+1/2
σ0 ‖, we consider the differences of (4.46), (4.47) with

indices j and j − 1, which are

∆t(A0∂̄
2
t θ
j
σ0
, τ0) +

1

2
(A1(θj+1

σ1
− θj−1

σ1
), τ1) +

1

2
(div(τ0 + τ1), θj+1

v − θj−1
v )

+
1

2
(θj+1
p − θj−1

p , τ0 + τ1) = (A0(ηj1 + ηj2) + ηj4, τ0) + (A1η
j
3 + ηj4, τ1), (4.62)

∆t(∂̄2
t θ
j
v, w)− 1

2
(div(θj+1

σ0
− θj−1

σ0
+ θj+1

σ1
− θj−1

σ1
), w) = (ηj5 + ηj6, w), (4.63)
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where ηjl = ω
j+1/2
l − ωj−1/2

l , l = 1, · · · , 6. Let

τ0 =
θj+1
σ0
− θj−1

σ0

∆t
, τ1 =

θj+1
σ1
− θj−1

σ1

∆t
, w =

θj+1
v − θj−1

v

∆t
,

in (4.62) and (4.63), and add them. Then, after cancellations from the facts

Y j+1 − Y j−1

∆t
= ∂̄tY

j+ 1
2 + ∂̄tY

j− 1
2 , ∆t∂̄2

t Y
j = ∂̄tY

j+ 1
2 − ∂̄tY j−

1
2 ,

for a sequence {Y j}, we can get

‖∂̄tθ
j+ 1

2
σ0 ‖2A0

+‖∂̄tθ
j+ 1

2
v ‖2ρ+∆t‖∂̄tθ

j+ 1
2

σ1 +∂̄tθ
j− 1

2
σ1 ‖2A1

−(‖∂̄tθ
j− 1

2
σ0 ‖2A0

+‖∂̄tθ
j− 1

2
v ‖2ρ)

= (A0(ηj1 + ηj2) + ηj4, ∂̄tθ
j+ 1

2
σ0 + ∂̄tθ

j− 1
2

σ0 ) + (A1η
j
3 + ηj4, ∂̄tθ

j+ 1
2

σ1 + ∂̄tθ
j− 1

2
σ1 ).

We apply the following inequality, which is obtained from Young’s inequality,

to the above equality,

(A1η
j
3 + ηj4, ∂̄tθ

j+ 1
2

σ1 + ∂̄tθ
j− 1

2
σ1 )

≤ ∆t‖∂̄tθ
j+ 1

2
σ1 + ∂̄tθ

j− 1
2

σ1 ‖2A1
+ (c/∆t)(‖ηj3‖2 + ‖ηj4‖2),

then we have

(‖∂̄tθ
j+ 1

2
σ0 ‖2A0

+ ‖∂̄tθ
j+ 1

2
v ‖2ρ)− (‖∂̄tθ

j− 1
2

σ0 ‖2A0
+ ‖∂̄tθ

j− 1
2

v ‖2ρ)

≤ (A0(ηj1 + ηj2) + ηj4, ∂̄tθ
j+ 1

2
σ0 + ∂̄tθ

j− 1
2

σ0 ) + (c/∆t)(‖ηj3‖2 + ‖ηj4‖2).

By Lemma 2.16, we have either

(‖∂̄tθ
i+ 1

2
σ0 ‖2A0

+ ‖∂̄tθ
i+ 1

2
v ‖2ρ)

1
2

≤ (‖∂̄tθ
1
2
σ0‖2A0

+ ‖∂̄tθ
1
2
v ‖2ρ)

1
2 +

i−1∑
j=0

‖ηj1, η
j
2, η

j
4, η

j
5, η

j
6‖,

(4.64)

or

(‖∂̄tθ
i+ 1

2
σ0 ‖2A0

+ ‖∂̄tθ
i+ 1

2
v ‖2)

1
2

≤ (‖∂̄tθ
1
2
σ0‖2A0

+ ‖∂̄tθ
1
2
v ‖2ρ)

1
2 + c(∆t)−1/2

i−1∑
j=0

(‖ηj3‖2 + ‖ηj4‖2)

1/2

.
(4.65)
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Now our goal, the estimate ‖∂̄tθi+1/2
σ0 ‖ ≤ c(∆t2 + hm), is reduced to proving

(‖∂̄tθ
1
2
σ0‖2A0

+ ‖∂̄tθ
1
2
v ‖2ρ)

1
2 ≤ c(∆t2 + hm), (4.66)

i−1∑
j=1

‖ηj1, η
j
2, η

j
4, η

j
5, η

j
6‖ ≤ c(∆t2 + hm), (4.67)

i−1∑
j=1

(‖ηj3‖2 + ‖ηj4‖2)

 1
2

≤ c(∆t) 1
2hm. (4.68)

If we use the facts ∂̄tθ
1/2
σ0 = θ1

σ0
/∆t, ∂̄tθ

1/2
v = θ1

v/∆t, and the inequality (4.51),

then we get

(‖∂̄tθ
1
2
σ0‖2A0

+ ‖∂̄tθ
1
2
v ‖2ρ)

1
2 ≤ ‖ω

1
2
1 , ω

1
2
2 , ω

1
2
4 , ω

1
2
5 , ω

1
2
6 ‖.

By (4.55–4.59), we have

‖ω
1
2
1 ‖ ≤ c∆t2‖

...
σ 0‖L∞L2 , ‖ω

1
2
5 ‖ ≤ c∆t2‖

...
v ‖L∞L2 ,

‖ω
1
2
2 ‖ ≤ chm‖σ̇0‖L∞Hm , ‖ω

1
2
4 ‖ ≤ chm‖p‖L∞Hm , ‖ω

1
2
6 ‖ ≤ chm‖v̇‖L∞Hm ,

which completes the proof of (4.66).

Now we turn to the proof of (4.67). First, we obtain
∑i−1
j=0 ‖η

j
1‖ ≤ c∆t2 with

c depending on ‖σ(4)‖L1L2 from the Taylor expansion formula (3.54). Similarly,

we have
∑i−1
j=0 ‖η

j
5‖ ≤ c∆t

2 with c depending on ‖v(4)‖L1L2 . We also see

‖ηj2‖ =
1

∆t
‖eP,j+1
σ0

+ eP,j−1
σ0

− 2eP,jσ0
‖ ≤

∫ tj+1

tj−1

‖ëPσ0
‖ ds ≤ chm

∫ tj+1

tj−1

‖σ̈0‖m ds,

‖ηj6‖ =
1

∆t
‖ρ(eP,j+1

v + eP,j−1
v − 2eP,jv )‖ ≤

∫ tj+1

tj−1

‖ρëPv ‖ ds ≤ chm
∫ tj+1

tj−1

‖v̈‖m ds,

and conclude that
∑m−1
j=0 (‖ηj2‖+ ‖ηj6‖) ≤ chm. Note also that

‖ηj4‖ = ‖eP,j+1
p − eP,j−1

p ‖ =

∥∥∥∥∥
∫ tj+1

tj−1

ėPp ds

∥∥∥∥∥ ≤ chm
∫ tj+1

tj−1

‖ṗ‖m ds,

so combining all the above estimates of η terms, (4.67) is proved.
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For (4.68), by the Cauchy–Schwarz inequality, we get

‖ηj3, η
j
4‖2 ≤ ch2m

(∫ tj+1

tj−1

‖σ̇1, ṗ‖mds

)2

≤ c∆th2m

∫ tj+1

tj−1

‖σ̇1, ṗ‖2m ds,

for each 1 ≤ j ≤ N − 1 and we have

i−1∑
j=1

(‖ηj3‖2 + ‖ηj4‖2)

 1
2

≤ cT0(∆t)
1
2hm‖σ̇1, ṗ‖L2Hm .

Thus we proved (‖∂̄tσi+1/2
0 ‖2A0

+ ‖∂̄tvi+1/2‖2ρ)1/2 ≤ c(∆t2 + hm) and therefore

the proof of (4.45) is completed.

4.5 Error analysis for the GG elements

In this section we discuss the error analysis for the GG elements.

Theorem 4.10. Let (Mh, Vh,Kh) be the GG elements of degree k ≥ 1, m be

an integer of which 1 ≤ m ≤ k + 1, and m′ = m − δm,k+1 where δm,k+1 is the

Kronecker delta. Suppose ‖ρ‖W 1,∞
h

<∞ for ‖ρ‖W 1,∞
h

defined in (3.64) and

σ0 ∈W 2,1([0, T0];Hm) ∩W 4,1([0, T0];L2),

v ∈W 2,1([0, T0];Hm′) ∩W 4,1([0, T0];L2),

σ1, p ∈W 1,1([0, T0];Hm) ∩W 3,1([0, T0];L2).

(4.69)

Assume the initial data are given to be Σ0
0 = Π̃hσ0(0), Σ0

1 = Π̃hσ1(0), V 0 =

Phv(0), P 0 = P ′hp(0). Then the fully discrete solution (Σj0,Σ
j
1, V

j , P j) in (4.37–

4.39) is well-defined and for all 1 ≤ j ≤ N ,

‖σj0 − Σj0, Phv
j − V j , σ̂j−

1
2

1 − Σ̂
j− 1

2
1 , p̂j−

1
2 − P̂ j− 1

2 ‖ (4.70)

≤ c(∆t2 + hm),

‖vj − V j‖ ≤ c(∆t2 + hm
′
), (4.71)

where the constants c depend on

‖σ0‖W 2,1Hm∩W 4,1L2 , ‖σ1, p‖W 1,2Hm∩W 3,1L2 , ‖v‖W 2,1Hm′∩W 4,1L2 ,
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and A0, A1, ‖ρ‖W 1,∞
h

, T0 but is independent of h and ∆t.

In the previous section, the proof of Theorem 4.8 consists of the proof of well-

definedness of (Σj0,Σ
j
1, V

j , P j) and the proof of error estimates. Since we can

prove that (Σj0,Σ
j
1, V

j , P j) is well-defined with the same argument as before,

we only discuss the a priori error estimates.

For the error estimates, we consider the projection errors (eP,jσ0
, eP,jσ1

, eP,jv , eP,jp )

and the approximation errors (θjσ0
, θjσ1

, θjv, θ
j
p) as in (4.42–4.44).

Lemma 4.11. There exists a constant c > 0 independent of s and h so that the

following inequalities hold.

‖ePσi
‖ ≤ chm‖σi‖m, 1 ≤ m ≤ k + 1, i = 0, 1, (4.72)

‖ePv ‖ ≤ chm‖v‖m, 0 ≤ m ≤ k, (4.73)

‖ePp ‖ ≤ chm‖p‖m, 0 ≤ m ≤ k + 1. (4.74)

Similar estimates hold for the time derivatives of σi, v, p, respectively, as in

Theorem 4.6.

Since the proof of this theorem is almost same as the one of Theorem 3.11,

we omit details. For Theorem 4.10 we only need to consider a priori estimates

of the approximation errors (θjσ0
, θjσ1

, θjv, θ
j
p).

Theorem 4.12. Suppose the assumptions in Theorem 4.10 hold and θiσ0
, θiσ1

,

θiv, θir are defined as in (4.42–4.44). Then there exists a constant c > 0 inde-

pendent of h and ∆t so that

‖θiσ0
, θ̂
i− 1

2
σ1 , θiv, θ̂

i− 1
2

p ‖ ≤ c(∆t2 + hm), 1 ≤ i ≤ N, 1 ≤ m ≤ k + 1. (4.75)

Proof. Since the proof is almost same as the one of Theorem 4.9, we only sketch

it with some explanations of the steps which need to be modified.

For the a priori estimates, we can follow same argument in the proof of

Theorem 4.8 and obtain (4.49). Let ρc be the orthogonal L2 projection of ρ

into the space of piecewise constant functions associated to Th. Define ω̃
j+1/2
6 =

(ρ− ρc)∂̄teP,j+1/2
v and note that

(ω
j+ 1

2
6 , θ̂

j+ 1
2

v ) = (ρ∂̄te
P,j+ 1

2
v , θ̂

j+ 1
2

v ) = ((ρ− ρc)∂̄te
P,j+ 1

2
v , θ̂

j+ 1
2

v ) = (ω̃
j+ 1

2
6 , θ̂

j+ 1
2

v ),

because ρc∂̄te
P,j+1/2
v ⊥ Vh from the definition of ∂̄te

P,j+1/2
v and the fact that

eP,jv ⊥ Vh for all 0 ≤ j ≤ N . Therefore we have an equality analogous to (4.50)
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as

‖θj+1
σ0
‖2A0

+ 2∆t‖θ̂j+
1
2

σ1 ‖2A1
+ ‖θj+1

v ‖2ρ − (‖θjσ0
‖2A0

+ ‖θjv‖2ρ)

= 2∆t(A0(ω
j+ 1

2
1 + ω

j+ 1
2

2 ) + ω
j+ 1

2
4 , θ̂

j+ 1
2

σ0 )

+ 2∆t(A1ω
j+ 1

2
3 + ω

j+ 1
2

4 , θ̂
j+ 1

2
σ1 ) + 2∆t(ω

j+ 1
2

5 + ω̃
j+ 1

2
6 , θ̂

j+ 1
2

v ).

Repeating the steps from (4.50) to (4.52), we need to show

c∆t

i−1∑
j=0

‖ωj+
1
2

1 , ω
j+ 1

2
2 , ω

j+ 1
2

4 , ω
j+ 1

2
5 , ω̃

j+ 1
2

6 ‖ ≤ c(∆t2 + hm), (4.76)

(∆t)1/2

i−1∑
j=0

(‖ωj+
1
2

3 ‖2 + ‖ωj+
1
2

4 ‖2)

 1
2

≤ c(∆t2 + hm), (4.77)

for 1 ≤ m ≤ k + 1, to prove (4.75) for ‖θiσ0
‖ and ‖θiv‖.

In order to show (4.76), we use (4.55–4.57) and (4.59) for the estimates of

ω
j+1/2
l , l = 1, · · · 5. For ω̃

j+1/2
6 , we use

∆t‖ω̃j+
1
2

6 ‖ = ∆t‖(ρ− ρc)∂̄tvP,j‖ =

∥∥∥∥∥
∫ tj+1

tj

(ρ− ρc)(v̇Ph − v̇) ds

∥∥∥∥∥
≤ chm+1‖ρ‖W 1,∞

h

∫ tj+1

tj

‖v̇‖m ds, 1 ≤ m ≤ k.

In order to show (4.77), we can use (4.60–4.61).

For the proof of (4.75) for ‖θ̂i−1/2
σ1 , θ̂

i−1/2
p ‖, we repeat the argument in the

proof of Theorem 4.9 with the only difference that ω
j+1/2
6 is replaced by ω̃

j+1/2
6 .

Since the proof is same, we omit details.

We also show that a simple postprocessing can be used to find a more accu-

rate numerical solution of v. As we have done in elastodynamics problem in the

previous chapter, for Vh in the GG elements, let V ∗h be the space of (possibly

discontinuous) piecewise polynomials of one degree higher than Vh and Ṽh be

the orthogonal complement of Vh in V ∗h . The orthogonal L2 projections onto

V ∗h and Ṽh are denoted by P ∗h and P̃h, respectively.

Theorem 4.13. For simplicity, we assume that Theorem 4.10 holds with m =
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k + 1 and ‖v‖W 2,1Hk+1∩W 4,1L2 <∞. We define v
∗,i+1/2
h ∈ V ∗h to be

(gradh v
∗,i+ 1

2

h , gradh w) = (A1Σ̂
i+ 1

2
1 + P̂ i+

1
2 , gradh w), w ∈ Ṽh, (4.78)

(v
∗,i+ 1

2

h , w) = (V̂ i+
1
2 , w), w ∈ Vh, (4.79)

where gradh is the piecewise gradient operator adapted to the triangulation Th
for each 0 ≤ i ≤ N − 1. Then for each 0 ≤ i ≤ N − 1,

‖v∗,i+
1
2

h − v̂i+ 1
2 ‖

≤ c(∆t2 + hk+1)(‖σ0, v‖W 2,1Hk+1∩W 4,1L2 + ‖σ1, p‖W 1,1Hk+1∩W 3,1L2).

We do not show its proof here because it is almost same as that of Theorem

3.13 with minor modifications.

4.6 Numerical results

We present numerical results in this section. For numerical computations, we

use Ω = [0, 1] × [0, 1] and the AFW elements of degree k = 2 in all of our

numerical computations. We assume that the medium is homogeneous with

density ρ = 1, and the constitutive equations for A0 and A1 are the forms of

isotropic materials introduced in (2.7) with constants λ0, λ1, µ0, and µ1. For

each mesh size h, we take ∆t = h for time step ∆t and the expected order of

convergence from our analysis is 2. All numerical results are about the L2 errors

at time T0 = 1.

Although we only proved that error estimates of σ1, and p at the midpoints

of time steps are O(∆t2 +hm), it is not difficult to show, using trapezoidal rule,

that error bounds of same order of accuracy can be obtained at tj , 1 ≤ j ≤ N .

The implementations are done using Dolfin Python module [1] of FEniCS

project [2, 38].

Example 4.14. Consider the displacement field

u(t, x, y) =

(
sin t sin(πx) sin(πy)

sin tx(1− x)y(1− y)

)
, (4.80)

and boundary conditions are the homogeneous displacement boundary condi-

tions. The numerical result for (4.81) is in Table 4.1.
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Example 4.15. As an example of inhomogeneous displacement boundary con-

ditions, we use

u(t, x, y) =

(
e−y sinx cos t

et+x

)
, (4.81)

and the variational form proposed in (4.11) is used. The numerical results are

shown in Table 4.2. We see that the order of convergence is same as that in our

error analysis.

Example 4.16. For a nonsmooth solution with inhomogeneous displacement

boundary conditions, we consider a solution with displacement

u(t, x, y) =

(
x

7
3 cos t

x
7
3 (1 + t2)

)
. (4.82)

Then the corresponding σ0, σ1, p are

σ0 =

(
0 7

3 (x
4
3 (1 + t2) + y

4
3 cos t)

7
3 (x

4
3 (1 + t2) + y

4
3 cos t) 0

)
,

σ1 =

(
0 70

3 (2tx
4
3 − y 4

3 sin t)
70
3 (2tx

4
3 − y 4

3 sin t) 0

)
,

p =

(
0 − 7

6 (2tx
4
3 + y

4
3 sin t)

7
6 (2tx

4
3 + y

4
3 sin t) 0

)
,

so they are in H11/6−δ in space for any δ > 0. We again use the variational form

proposed in (4.11), and the numerical results are shown in Table 4.3. We can

see that the orders of convergence of σ0, σ1, p errors are limited by 11/6 ≈ 1.83

but the order of convergence of v error is still 2. As in the nonsmooth solution

Table 4.1: Order of convergence for displacement as in (4.80) (λ0 = µ0 = 1,
λ1 = µ1 = 10, h = ∆t and T0 = 1).

1
h

‖σ0 − σ0,h‖ ‖σ1 − σ1,h‖ ‖v − vh‖ ‖p− ph‖
error order error order error order error order

4 6.76e-02 – 4.05e-01 – 1.04e-02 – 1.59e-02 –

8 1.38e-02 2.29 7.19e-02 2.49 2.67e-03 1.96 4.15e-03 1.94

16 3.19e-03 2.11 1.57e-02 2.19 6.74e-04 1.98 1.06e-03 1.97

32 7.78e-04 2.04 3.76e-03 2.06 1.69e-04 1.99 2.67e-04 1.99

64 1.93e-04 2.01 9.28e-04 2.02 4.24e-05 2.00 6.69e-05 2.00
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Table 4.2: Order of convergence for displacement as in (4.81) (λ0 = µ0 = 1,
λ1 = µ1 = 10, h = ∆t and T0 = 1).

1
h

‖σ0 − σ0,h‖ ‖σ1 − σ1,h‖ ‖v − vh‖ ‖p− ph‖
error order error order error order error order

4 2.27e-02 – 6.65e-02 – 8.25e-03 – 4.58e-03 –

8 5.64e-03 2.01 1.55e-02 2.10 2.04e-03 2.02 1.12e-03 2.03

16 1.41e-03 2.00 3.73e-03 2.06 5.06e-04 2.01 2.78e-04 2.01

32 3.52e-04 2.00 9.14e-04 2.03 1.26e-04 2.01 6.92e-05 2.01

64 8.79e-05 2.00 2.26e-04 2.02 3.14e-05 2.00 1.72e-05 2.00

Table 4.3: Order of convergence for displacement as in (4.82) (λ0 = µ0 = 1,
λ1 = µ1 = 10, h = ∆t and T0 = 1).

1
h

‖σ0 − σ0,h‖ ‖σ1 − σ1,h‖ ‖v − vh‖ ‖p− ph‖
error order error order error order error order

4 5.34e-02 – 6.42e-01 – 3.69e-02 – 2.02e-02 –

8 1.58e-02 1.76 1.85e-01 1.80 9.04e-03 2.03 6.20e-03 1.70

16 4.54e-03 1.80 5.25e-02 1.82 2.23e-03 2.02 1.83e-03 1.76

32 1.28e-03 1.82 1.48e-02 1.82 5.55e-04 2.01 5.25e-04 1.80

64 3.61e-04 1.83 4.18e-03 1.83 1.38e-04 2.00 1.50e-04 1.81

example for elastodynamics, this result gives a motivation to find a better error

analysis for v error.
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Chapter 5

Mixed methods for the

Maxwell and generalized

Zener models

5.1 Introduction

In this chapter, we consider mixed methods for the Maxwell and generalized

Zener models. We use a unified framework such that the Maxwell model is a

special case of the Zener model, so we shall show a complete analysis only for

the Zener model. Since the generalized Zener model is a parallel connection of

multiple Zener components, it is straightforward to extend our analysis to the

generalized Zener model.

Although equations of the Maxwell and Zener models are similar in our

framework, they represent very different physical features. The Maxwell model

is the simplest model for viscoelastic fluids, but the Zener model, which is also

called the standard linear solid model, is a model one for viscoelastic solids.

There are several previous works for these two models using mixed methods.

In [16], Bécache, Joly, and Tsogka studied a priori error analysis and PML

implementation of Zener model with strongly symmetric rectangular elements

developed in [15]. They used a generalized Kelvin–Voigt form of the Zener

model and the difference of elastic and viscoelastic stresses is used as an internal

variable for mixed formulation. In [44], Rognes and Winther studied quasistatic
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problems, i.e., mass density is vanishing, of the Maxwell model with the Arnold–

Falk–Winther elements and a modified Arnold–Falk–Winther elements by Falk

[30]. They suggested a unified framework for the Maxwell and Zener models

that we adopt here but they did not show an analysis of the Zener model and

did not cover problems with nonvanishing mass densities.

In this chapter, we show the a priori error analysis of the Zener model for the

AFW and GG elements. We point out that our numerical scheme, compared

to the previous study in [16], is advantages from several viewpoints. First, we

use triangular finite elements, so our method is easy to apply to problems on

domains with more general geometry. Secondly, we use the Crank–Nicolson

scheme for time discretization which is absolutely stable whereas the leap-frog

type scheme in [16] needs a CFL condition for stability. The CFL condition in

[16] depends on material parameters and the constant of CFL condition may not

be easily obtained in anisotropic materials. In particular, the constant of CFL

condition in [16] is very small when the Lamé coefficient λ of material is large.

However, the time discretization in our numerical scheme is unconditionally

stable and can be used without concerning the range of material parameters.

The organization of this chapter is the following. In section 5.2, we derive

the governing equations of the models we are interested in and rewrite them in

velocity-stress weak forms with weak symmetry of stress. In sections 5.3 and

5.4, we show the a priori error analysis of the semidiscrete and fully discrete

solutions for the AFW elements. In section 5.5, we carry out the a priori error

analysis for the GG elements. Finally, in section 5.6, we present numerical

results which support our error analysis.

5.2 Weak formulations with weak symmetry

In this section, we only discuss a weak formulation of the Zener model with

weak symmetry of stresses in detail. Since the Maxwell model is a special case

of the Zener one, we will only briefly explain it after we derived a velocity-stress

mixed form of the Zener model.

We recall the description of Zener model in Figure 2.1 as a mechanical model.

For the displacement u, let u = u0 +u1 where u0, u1 are the displacement parts

involved in the spring and dashpot of the Maxwell component in the Zener

model. The stresses from the Maxwell component and from the other spring

unit, are denoted by σ0 and σ1. Then the total stress is σ := σ0 + σ1.
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By (2.8), σ1 = C1ε(u) for the spring unit. In the Maxwell component,

σ0 = C0ε(u̇0) = C ′0ε(u̇1) where C0, C ′0 are the stiffness tensor given by the spring

and dashpot units in the Maxwell component. Let A0, A′0, A1 be the inverses

of C0, C ′0, C1. Then we have A1σ1 = ε(u), A0σ̇0 = ε(u̇0), and A′0σ0 = ε(u̇1).

By adding the second and third equations and using u = u0 + u1,

A0σ̇0 +A′0σ0 = ε(u̇), A1σ1 = ε(u),

and from the balance of linear momentum, ρü−div(σ0 +σ1) = f for an external

body force f . We assume that 0 < ρ0 ≤ ρ ≤ ρ1 <∞ for constants ρ0, ρ1. Thus

the equations of the Zener model are

A0σ̇0 +A′0σ0 = ε(u̇), A1σ1 = ε(u), ρü− div(σ0 + σ1) = f. (5.1)

We only consider the problems with homogeneous displacement boundary con-

ditions u ≡ 0 on ∂Ω, and u(0), u̇(0), σ0(0) are given as initial data. Note that

σ1(0) is determined by u(0). If we take v = u̇, then we have a velocity-stress

formulation

A0σ̇0 +A′0σ0 = ε(v), A1σ̇1 = ε(v), ρv̇ − div(σ0 + σ1) = f, (5.2)

with v ≡ 0 on ∂Ω and initial data v(0) = u̇(0), σ0(0), and σ1(0).

In the Maxwell model, there is no spring unit which is related to σ1, so C1 ≡
0, σ1 ≡ 0 and we only get two equations A0σ̇0 +A′0σ0 = ε(v), ρv̇ − div σ0 = f .

For a weak formulation, consider the problem to seek (σ0, σ1, v, r) such that

(σ0, σ1, v, r) ∈ C1([0, T0];M)× C1([0, T0];M)× C1([0, T0];V )× C1([0, T0];K),

(5.3)

and

(A0σ̇0 +A′0σ0, τ0) + (div τ0, v) + (ṙ, τ0) = 0, τ0 ∈M, (5.4)

(A1σ̇1, τ1) + (div τ1, v) + (ṙ, τ1) = 0 τ1 ∈M, (5.5)

(ρv̇, w)− (div(σ0 + σ1), w) = (f, w), w ∈ V, (5.6)

(σ̇0 + σ̇1, q) = 0, q ∈ K, (5.7)

with initial data (σ0(0), σ1(0), v(0), r(0)) ∈ S × S × V ×K.
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Theorem 5.1. For given initial data (σ0(0), σ1(0), v(0), r(0)) ∈ S × S × V ×
K, satisfying σ1(0) = C1ε(u(0)) and r(0) = skw gradu(0) for some u(0) ∈
H̊1(Ω;V), there is a unique solution (σ0, σ1, v, r) of (5.4–5.7) satisfying (5.3).

Proof. For existence, we use the Hille–Yosida theorem. Let X = L2(Ω;S) ×
L2(Ω;S)× V with the inner product

((σ0, σ1, v), (τ0, τ1, w))X = (σ0, τ0)A0
+ (σ1, τ1)A1

+ (v, w)ρ.

We define an unbounded operator L on X as

L(τ0, τ1, w) = (C0ε(w)− C0A
′
0τ0, C1ε(w), ρ−1(div(τ0 + τ1))),

with domain

D(L) = {(τ0, τ1, w) ∈ X | τ0 + τ1 ∈ S, w ∈ H̊1(Ω,V)}.

It is obvious that D(L) is dense in X because S×S×H̊1(Ω,V) ⊂ D(L) is dense

in X .

We check that L is an m-dissipative operator. For (τ0, τ1, w) ∈ D(L), it is

not difficult to check that (L(τ0, τ1, w), (τ0, τ1, w))X = −(A′0τ0, τ0), so for some

λ > 0 and (τ0, τ1, w) ∈ D(L), ‖(I − λL)(τ0, τ1, w)‖X ≥ ‖(τ0, τ1, w)‖X . Now

we check that I − λL : D(L) → X is surjective. Let (η0, η1, z) ∈ X be given.

Rewriting the equation (I − λL)(σ0, σ1, v) = (η0, η1, z),

σ0 − λC0ε(v) + λC0A
′
0σ0 = η0, σ1 − λC1ε(v) = η1,

v − λρ−1(div(σ0 + σ1)) = z.

Since I + λC0A
′
0 is coercive, so is invertible and the first equation gives a con-

straint σ0 = (I + λC0A
′
0)−1(λC0ε(v) + η0). From the second equation, we get

another constraint σ1 = λC1ε(v)+η1. Substituting σ0, σ1 in the third equation,

using these constraints, we have

v − λρ−1(div((I + λC0A
′
0)−1(λC0ε(v) + η0) + λC1ε(v) + η1)) = z.

Rewriting in a weak formulation, we find v ∈ H̊1(Ω;V) such that

(v, w)ρ + λ(((I + λC0A
′
0)−1(λC0ε(v) + η0) + λC1ε(v) + η1), ε(w)) = (z, w)ρ,
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for w ∈ H̊1(Ω;V). Since (I + λC0A
′
0)−1 is also coercive, existence of a unique

solution of this equation follows from Korn’s inequality and the Lax–Milgram

lemma. Moreover, the equation above and the constraints of σ0, σ1 give σ0+σ1 ∈
S, so (σ0, σ1, v) ∈ D(L) and L is an m-dissipative operator.

By the Hille–Yosida theorem, for initial data (σ0(0), σ1(0), v(0)) ∈ S × S ×
H̊1(Ω;V), (5.2) has a unique solution (σ0, σ1, v) such that

σ0, σ1 ∈ C1([0, T0];L2(Ω; S)), σ0 + σ1 ∈ C0([0, T0];S), v ∈ C1([0, T0];V ).

For σ1(0), there is a unique u(0) ∈ H̊1(Ω;V) such that σ1(0) = C1ε(u(0)). Let

u(t) = u(0) +
∫ t

0
v(s) ds. Then u(t) ∈ H̊1(Ω;V) and r(t) := skw gradu(t) is

well-defined. Now it is clear that ṙ = skw grad u̇. By Corollary 2.20, we can

check that (σ0, σ1, v, r) satisfies (5.4–5.5). Moreover, (5.6–5.7) are satisfied from

the third equation in (5.1) and the symmetry of σ0, σ1, so existence is proved.

For uniqueness, we assume that there are two solutions for the same initial

data. Then their difference, denoted by (σd0 , σ
d
1 , v

d, rd) satisfies (5.4–5.7) with

vanishing initial data and f ≡ 0. From (5.7) and the fundamental theorem of

calculus, (σd0 + σd1 , q) = 0 for all q ∈ K. Taking τd0 = σd0 , τ1 = σd1 , w = vd in

(5.4–5.6) and adding them, we get

1

2

d

dt
‖σd0‖2A0

+ ‖σd0‖2A′0 +
1

2

d

dt
‖σd1‖2A1

+
1

2

d

dt
‖vd‖2ρ = 0.

From the vanishing initial data and the Gronwall inequality, we see σd0 = σd1 =

vd ≡ 0. We also see rd ≡ 0 from rd = skw grad vd. Hence uniqueness is

proved.

Remark 5.2. As in the Kelvin–Voigt model, we may consider inhomogeneous

displacement boundary conditions v = g on ∂Ω. Then, (5.4) and (5.5) in the

weak formulation (5.4–5.7), are replaced by

(A0σ̇0 +A′0σ0, τ0) + (div τ0, v) + (ṙ, τ0) =

∫
∂Ω

(τ0ν, g) dS, τ0 ∈M, (5.8)

(A1σ̇1, τ1) + (div τ1, v) + (ṙ, τ1) =

∫
∂Ω

(τ1ν, g) dS, τ1 ∈M, (5.9)

where ν is the outward unit normal vector field on ∂Ω.
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5.3 Semidiscrete problems

5.3.1 Existence and uniqueness of semidiscrete solutions

Suppose that σ0,h(0), σ1,h(0) ∈ Mh, vh(0) ∈ Vh, rh(0) ∈ Kh are given. Then

the semidiscrete problem of Zener model is to seek (σ0,h, σ1,h, vh, rh) such that

σ0,h, σ1,h ∈ C1([0, T0];Mh), vh ∈ C1([0, T0];Vh), rh ∈ C1([0, T0];Kh),

and

(A0σ̇0,h, τ0) + (A′0σ0,h, τ0) + (div τ0, vh) + (ṙh, τ0) = 0, (5.10)

(A1σ̇1,h, τ1) + (div τ1, vh) + (ṙh, τ1) = 0, (5.11)

(ρv̇h, w)− (div(σ0,h + σ1,h), w) = (f, w), (5.12)

(σ̇0,h + σ̇1,h, q) = 0, (5.13)

for (τ0, τ1, w, q) ∈Mh ×Mh × Vh ×Kh, for all time t ∈ [0, T0].

Theorem 5.3. For any given σ0,h(0), σ1,h(0) ∈ Mh, vh(0) ∈ Vh, rh(0) ∈ Kh,

there is a unique solution of (5.10–5.13).

Proof. Let {φi}, {ψi}, {χi} be bases of Mh, Vh, and Kh, respectively. We use

A0, A ′0 , A1, B, C , M , D to denote the matrices whose (i, j)-entries are

(A0φj , φi), (A′0φj , φi), (A1φj , φi), (div φj , ψi),

(φj , χi), (ρψj , ψi), (ψj , ψi),

respectively. We write σ0,h =
∑
i αiφi, σ1,h =

∑
i βiφi, vh =

∑
i γiψi, rh =∑

i ζiχi, Phf = ξiψi, and use α, β, γ, ζ, ξ to denote the coefficient vectors of

them. Then we may rewrite (5.10–5.13) as a matrix equation of the form
A0 0 0 C T

0 A1 0 C T

0 0 M 0

C C 0 0



α̇

β̇

γ̇

ζ̇

 =


−A ′0 0 −BT 0

0 0 −BT 0

B B 0 0

0 0 0 0



α

β

γ

ζ

+


0

0

Dξ

0

 .

The coefficient matrix of the left-hand side is nonsingular because A0, A1, M

are symmetric positive definite and C T is injective from the inf-sup condition

(A2). Hence it is a well-posed system of ordinary differential equations and a
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solution exists uniquely for given initial data.

5.3.2 Decomposition of semidiscrete errors

Now we state the main theorem in semidiscrete error analysis.

Theorem 5.4. Let (Mh, Vh,Kh) be the AFW elements of degree k ≥ 1 and let

m be an integer of 1 ≤ m ≤ k. Suppose σ0, σ1, v, r ∈ W 1,1([0, T0];Hm) and

let (σ0,h, σ1,h, vh, rh) be the semidiscrete solution of (5.10–5.13) with initial data

satisfying σ0,h(0) + σ1,h(0) ⊥ Kh and

‖σ0(0)− σ0,h(0), σ1(0)− σ1,h(0), v(0)− vh(0), r(0)− rh(0)‖ (5.14)

≤ chm‖σ0(0), σ1(0), v(0), r(0)‖m,

(σ1,h(0), τ) + (rh(0), τ) = 0, τ ∈Mh, div τ = 0. (5.15)

Then we have

‖σ0 − σ0,h, σ1 − σ1,h, v − vh, r − rh‖L∞L2 ≤ chm‖σ0, σ1, v, r‖W 1,1Hm ,

where c depends on A0, A′0, A1, ρ0, and ρ1 but is independent of h. Moreover,

the constant c in the estimate is uniformly bounded above as A′0 decays.

As in our analysis of elastodynamics and the Kelvin–Voigt model, we de-

compose errors into the projection and approximation errors. We use eσ0 , eσ1 ,

ev, and er to denote the semidiscrete errors σ0 − σ0,h, σ1 − σ1,h, v − vh, and

r − rh, respectively. Then the error equations are

(A0ėσ0
+A′0eσ0

, τ0) + (div τ0, ev) + (ėr, τ0) = 0, (5.16)

(A1ėσ1 , τ1) + (div τ1, ev) + (ėr, τ1) = 0, (5.17)

(ρėv, w)− (div(eσ0
+ eσ1

), w) = 0, (5.18)

(ėσ0
+ ėσ1

, q) = 0, (5.19)

for (τ0, τ1, w, q) ∈Mh ×Mh × Vh ×Kh. We define (σP0,h, σ
P
1,h, v

P
h , r

P
h ) by

σP0,h = Π̃hσ0, σP1,h = Π̃hσ1, vPh = Phv, rPh = P ′hr, (5.20)

and split the semidiscrete errors into the projection errors and the approximation
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errors as

eσi
= ePσi

+ ehσi
:= (σi − σPi,h) + (σPi,h − σi,h), i = 0, 1,

ev = ePv + ehv := (v − vPh ) + (vPh − vh), (5.21)

er = ePr + ehr := (r − rPh ) + (rPh − rh).

5.3.3 Projection error estimates for the AFW elements

We state the projection error estimates but omit its proof because it is same as

that of Theorem 3.5.

Theorem 5.5. Let (Mh, Vh,Kh) be the AFW elements of degree k ≥ 1. Suppose

ePσ0
, ePσ1

, ePv , ePr are defined as in (5.21). Then we have

‖ePσi
‖L∞L2 ≤ chm‖σi‖L∞Hm , 1 ≤ m ≤ k + 1, i = 0, 1,

‖ePv , ePr ‖L∞L2 ≤ chm‖v, r‖L∞Hm , 0 ≤ m ≤ k,

where c depends on ‖σ0, σ1, v, r‖L∞Hm . Similar estimates hold for the time

derivatives of σi, v, and r.

5.3.4 Approximation error estimates for the AFW ele-

ments

In this section, we will discuss the a priori estimates of approximation errors.

Theorem 5.6. Let ehσ0
, ehσ1

, ehv , ehr be the approximation errors defined in (5.21)

and the assumptions of Theorem 5.4 hold. Then, for 1 ≤ m ≤ k,

‖ehσ0
, ehσ1

, ehv , e
h
r‖L∞L2 ≤ chm‖σ0, σ1, v, r‖W 1,1Hm , (5.22)

where c depends on ρ0, ρ1, A0, A′0, and A1 but is independent of h and is

uniformly bounded as A′0 decays.

Proof. It is enough to show, for 1 ≤ m ≤ k,

‖ehσ0
, ehσ1

, ehv‖L∞L2 ≤ chm‖σ0, σ̇0, σ̇1, v̇, ṙ‖L1Hm , (5.23)

‖ehr‖L∞L2 ≤ ‖ehσ1
, ePσ1

, ePr ‖L∞L2 . (5.24)

Suppose that these estimates are proved. Then the estimates (5.22) for ehσ0
, ehσ1

,
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and ehv follow immediately from (5.23). The estimate (5.22) for ehr is obtained

by combining (5.24) and Theorem 5.5.

To show (5.23), we first rewrite (5.16–5.18), using the notions in (5.21), as

(A0(ėhσ0
+ ėPσ0

), τ0) + (A′0(ehσ0
+ ePσ0

), τ0) + (div τ0, e
h
v + ePv ) + (ėhr + ėPr , τ0) = 0,

(A1(ėhσ1
+ ėPσ1

), τ1) + (div τ1, e
h
v + ePv ) + (ėhr + ėPr , τ1) = 0,

(ρ(ėhv + ėPv ), w)− (div(ehσ0
+ ePσ0

+ ehσ1
+ ePσ1

), w) = 0.

From (3.24), one can see (div τ, ePv ) = (div ePσi
, w) = 0 for τ ∈ Mh, w ∈ Vh and

we get simplified error equations

(A0ė
h
σ0
, τ0) + (A′0e

h
σ0
, τ0) + (div τ0, e

h
v ) + (ėhr , τ0)

= −(A0ė
P
σ0
, τ0)− (A′0e

P
σ0
, τ0)− (ėPr , τ0),

(5.25)

(A1ė
h
σ1
, τ1) + (div τ1, e

h
v ) + (ėhr , τ1) = −(AėPσ1

, τ1)− (ėPr , τ1), (5.26)

(ρėhv , w)− (div(ehσ0
+ ehσ1

), w) = −(ρėPv , w), (5.27)

for τ0, τ1 ∈ Mh and w ∈ Vh. Note that eσ0
+ eσ1

⊥ Kh from (5.19) because

eσ0
(0) + eσ1

(0) ⊥ Kh and the fundamental theorem of calculus. Moreover,

ehσ0
+ ehσ1

⊥ Kh because ePσ0
+ ePσ1

⊥ Kh from the definitions of ePσ0
and ePσ1

. If

we take τ0 = ehσ0
, τ1 = ehσ1

, w = ehv in (5.25–5.27) and add the three equations,

then we have

1

2

d

dt
‖ehσ0
‖2A0

+ ‖ehσ0
‖2A′0 +

1

2

d

dt
‖ehσ1
‖2A1

+
1

2

d

dt
‖ehv‖2ρ

= −(A0ė
P
σ0
, ehσ0

)− (A′0e
P
σ0
, ehσ0

)− (A1ė
P
σ1
, ehσ1

)− (ėPr , e
h
σ0

+ ehσ1
)− (ρėPv , e

h
v ),

where ‖ehσ‖2A = (Aehσ, e
h
σ) and ‖ehv‖2ρ = (ρehv , e

h
v ). By a weighted Cauchy–Schwarz

inequality, and dropping the nonnegative term ‖ehσ0
‖2A′0 , we have

1

2

d

dt
‖ehσ0
‖2A0

+
1

2

d

dt
‖ehσ1
‖2A1

+
1

2

d

dt
‖ehv‖2ρ

≤ c‖ėPσ0
, ePσ0

, ėPσ1
, ėPr , ė

P
v ‖(‖ehσ0

‖2A0
+ ‖ehσ1

‖2A1
+ ‖ehv‖2ρ)

1
2 .

Regarding (‖ehσ0
(t)‖2A0

+ ‖ehσ1
(t)‖2A1

+ ‖ehv (t)‖2ρ)1/2 as the Q(t) in Lemma 2.14,
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the lemma gives

(‖ehσ0
(t)‖2A0

+ ‖ehσ1
(t)‖2A1

+ ‖ehv (t)‖2ρ)
1
2

≤ (‖ehσ0
(0)‖2A0

+ ‖ehσ1
(0)‖2A1

+ ‖ehv (0)‖2ρ)
1
2 + c

∫ t

0

‖ePσ0
, ėPσ0

, ėPσ1
, ėPr , ė

P
v ‖ ds.

By (5.14) and applying Theorem 5.5, we get (5.23).

In order to show (5.24), note that

(A1σ1(0), τ) + (r(0), τ) = 0, τ ∈Mh, div τ = 0.

From (5.15), (A1eσ1
(0), τ) + (er(0), τ) = 0 for τ ∈ Mh such that div τ = 0. By

(5.11) with div τ = 0 and the fundamental theorem of calculus, (A1eσ1
, τ) +

(er, τ) = 0 which is equivalent to

(ehr , τ) = −(A1(ehσ1
+ ePσ1

), τ)− (ePr , τ) = 0, τ ∈Mh, div τ = 0.

By (A2), there exists τ ∈ Mh such that div τ = 0, (q, τ) = ‖ehr‖2, and

‖τ‖ ≤ c‖ehr‖. If we take such τ in this equation, and apply the Cauchy–Schwarz

inequality, then (5.24) follows.

In the steps of the proof, it is not difficult to see that the constant c in the

theorem is uniformly bounded as A′0 decays to zero.

5.4 Full discretization

In this section, we use the Crank–Nicolson scheme for full discretization and

prove a priori error estimates for the AFW elements of degree k ≥ 1.

Let (Σj0,Σ
j
1, V

j , Rj) denote the numerical solution of (σ0, σ1, v, r) at time

tj . In the Crank–Nicolson scheme, for given initial data (Σ0
0,Σ

0
1, V

0, R0), the

numerical solution (Σj0,Σ
j
1, V

j , Rj), j ≥ 1 is defined inductively by(
A0∂̄tΣ

j+ 1
2

0 , τ0

)
+ (A′0Σ̂

j+ 1
2

0 , τ0) + (V̂ j+
1
2 ,div τ0) + (∂̄tR

j+ 1
2 , τ0) = 0, (5.28)(

A1∂̄tΣ
j+ 1

2
1 , τ1

)
+ (V̂ j+

1
2 ,div τ1) + (∂̄tR

j+ 1
2 , τ1) = 0, (5.29)(

ρ∂̄tV
j+ 1

2 , w
)
− (div(Σ̂

j+ 1
2

0 + Σ̂
j+ 1

2
1 ), w) = (f̂ j+

1
2 , w),

(5.30)

(∂̄tΣ
j+ 1

2
0 + ∂̄tΣ

j+ 1
2

1 , q) = 0, (5.31)
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for (τ0, τ1, w, q) ∈Mh×Mh×Vh×Kh. The numerical solution (Σj0,Σ
j
1, V

j , Rj)

in (5.28–5.31) is well-defined.

Theorem 5.7. Let Mh×Vh×Kh be the AFW elements of degree k ≥ 1. Suppose

σ0, σ1, v, r ∈W 1,1([0, T0];Hm) ∩W 3,1([0, T0];L2), (5.32)

and given initial data (Σ0
0,Σ

0
1, V

0, R0) ∈Mh ×Mh × Vh ×Kh satisfying (5.14–

5.15). Then the fully discrete solution (Σj0,Σ
j
1, V

j , Rj) with the initial data

satisfies

‖σj0 − Σj0, σ
j
1 − Σj1, v

j − V j , rj −Rj‖ (5.33)

≤ c(∆t2 + hm)‖σ0, σ1, v, r‖W 1,1Hm∩W 3,1L2 ,

for 1 ≤ m ≤ k, where c > 0 depends on A0, A′0, A1, ρ0, ρ1 but is independent

of h and ∆t. Moreover, the constant c is uniformly bounded as A′0 decays.

The proof of this theorem will be given in the rest of this section.

5.4.1 Well-definedness

We first show the full discretization is well-defined. We need to check that

(Σj+1
0 ,Σj+1

1 , V j+1, Rj+1) is well-defined as a solution of the linear system (5.28–

5.31) when Σj0, Σj1, V j , Rj , f j , f j+1 are given. If we rewrite (5.28–5.31),

(
A0Σj+1

0 , τ0

)
+

∆t

2
(A′0Σj+1

0 , τ0) +
∆t

2
(V j+1,div τ0) + (Rj+1, τ0)

= (A0Σj0, τ0)− ∆t

2
(A′0Σj0, τ0)− ∆t

2
(V j ,div τ0) + (Rj , τ0),

(A1Σj+1
1 , τ1) +

∆t

2
(V j+1,div τ1) + (Rj+1, τ1)

= (A1Σj1, τ1)− ∆t

2
(V j ,div τ1) + (Rj , τ1),

(ρV j+1, w)− ∆t

2
(div(Σj+1

0 + Σj+1
1 ), w)

= (ρV j , w) +
∆t

2
(div(Σj0 + Σj1), w) + ∆t(f̂ j+

1
2 , w),

(Σj+1
0 + Σj+1

1 , q) = (Σj0 + Σj1, q),

for (τ0, τ1, w, q) ∈ Mh × Mh × Vh × Kh. The above is a system of linear

equations with same number of equations and unknowns, so in order to show
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(Σj+1
0 ,Σj+1

1 , V j+1, Rj+1) is well-defined, it suffices to show that Σj+1
0 = Σj+1

1 =

V j+1 = Rj+1 = 0 if all right-hand sides are vanishing. Suppose that the right-

hand sides vanish. By taking τ0 = Σj+1
0 , τ1 = Σj+1

1 , w = V j+1, q = −Rj+1 and

adding the four equations, we have

(A0Σj+1
0 ,Σj+1

0 ) +
∆t

2
(A′0Σj+1

0 ,Σj+1
0 ) + (A1Σj+1

1 ,Σj+1
1 ) + (ρV j+1, V j+1) = 0,

which yields Σj+1
0 = Σj+1

1 = V j+1 = 0. From the stability condition (A2)

of mixed finite elements, there is τ ∈ Mh so that div τ = 0 and (Rj+1, τ) =

(Rj+1, Rj+1). If we use such τ in the first equation, we obtain Rj+1 = 0 since

Σj+1
0 = V j+1 = 0. Hence the full discretization is well-defined.

5.4.2 Convergence

We now turn to the proof of a priori estimates in Theorem 5.7. Let us denote

the error (σj0 − Σj0, σ
j
1 − Σj1, v

j − V j , rj −Rj) by

Ejσi
:= σji − Σji = (σji − σ

P,j
i,h ) + (σP,ji,h − Σji ) =: eP,jσi

+ θjσi
, i = 0, 1, (5.34)

Ejv := vj − V j = (vj − vP,jh ) + (vP,jh − V j) =: eP,jv + θjv, (5.35)

Ejr := rj −Rj = (rj − rP,jh ) + (rP,jh −Rj) =: eP,jr + θjr. (5.36)

In Theorem 5.5, we already obtained error bounds of the projection errors

(ePσ0
, ePσ1

, ePv , e
P
r ). Thus we only need to consider a priori estimates of the ap-

proximation errors, (θjσ0
, θjσ1

, θjv, θ
j
r), for Theorem 5.7. More specifically, we want

to show the following.

Theorem 5.8. Suppose the assumptions of Theorem 5.7 hold and θiσ0
, θiσ1

, θiv,

θir are defined as in (5.34–5.36). Then for 0 ≤ i ≤ N and 1 ≤ m ≤ k,

‖θiσ0
, θiσ1

, θiv, θ
i
r‖ ≤ c(∆t

2 + hm)‖σ0, σ1, v, r‖W 1,1Hm∩W 3,1L2 , (5.37)

where the constant c depends on A0, A′0, A1, ρ0, ρ1 but is independent of h, ∆t.

Moreover, the constant is uniformly bounded as A′0 decays.

Proof. In order to show (5.37), consider the arithmetic mean of equations (5.4–
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5.6) at t = tj and t = tj+1, which are

(A0
ˆ̇σ
j+ 1

2
0 , τ0) + (A′0σ̂

j+ 1
2

0 , τ0) + (div τ0, v̂
j+ 1

2 ) + (ˆ̇rj+
1
2 , τ0) = 0,

(A1
ˆ̇σ
j+ 1

2
1 , τ1) + (div τ1, v̂

j+ 1
2 ) + (ˆ̇rj+

1
2 , τ1) = 0,

(ρˆ̇vj+
1
2 , w)− (div(σ̂

j+ 1
2

0 + σ̂
j+ 1

2
1 ), w) = (f̂ j+

1
2 , w),

for (τ0, τ1, w) ∈ Mh ×Mh × Vh. We subtract (5.28–5.30) from the above equa-

tions. If we rewrite the difference equations with (Eσ0 , Eσ1 , Ev, Er) defined in

(5.34–5.36), then

(A0∂̄tE
j+ 1

2
σ0 , τ0) + (A′0Ê

j+ 1
2

σ0 , τ0) + (div τ0, Ê
j+ 1

2
v ) + (∂̄tE

j+ 1
2

r , τ0)

= (A0(∂̄tσ
j+ 1

2
0 − ˆ̇σ

j+ 1
2

0 ), τ0) + (∂̄tr
j+ 1

2 − ˆ̇rj+
1
2 , τ0),

(5.38)

(A1∂̄tE
j+ 1

2
σ1 , τ1) + (div τ1, Ê

j+ 1
2

v ) + (∂̄tE
j+ 1

2
r , τ1)

= (A1(∂̄tσ
j+ 1

2
1 − ˆ̇σ

j+ 1
2

1 ), τ1) + (∂̄tr
j+ 1

2 − ˆ̇rj+
1
2 , τ1),

(5.39)

(ρ∂̄tE
j+ 1

2
v , w)− (div(Ê

j+ 1
2

σ0 + Ê
j+ 1

2
σ1 ), w) = (ρ∂̄tv

j+ 1
2 − ρˆ̇vj+

1
2 , w). (5.40)

Considering (5.34–5.36) with the reductions which are similar to the ones in

(3.24), we have

(A0∂̄tθ
j+ 1

2
σ0 , τ0) + (A′0θ̂

j+ 1
2

σ0 , τ0) + (div τ0, θ̂
j+ 1

2
v ) + (∂̄tθ

j+ 1
2

r , τ0)

= (A0(ω
j+ 1

2
1 + ω

j+ 1
2

2 ) +A′0ω
j+ 1

2
3 + ω

j+ 1
2

4 + ω
j+ 1

2
5 , τ0),

(5.41)

(A1∂̄tθ
j+ 1

2
σ1 , τ1) + (div τ1, θ̂

j+ 1
2

v ) + (∂̄tθ
j+ 1

2
r , τ1)

= (A1(ω
j+ 1

2
6 + ω

j+ 1
2

7 ) + ω
j+ 1

2
4 + ω

j+ 1
2

5 , τ1),
(5.42)

(ρ∂̄tθ
j+ 1

2
v , w)− (div(θ̂

j+ 1
2

σ0 + θ̂
j+ 1

2
σ1 ), w) = (ω

j+ 1
2

8 + ω
j+ 1

2
9 , w), (5.43)

where

ω
j+ 1

2
1 = ∂̄tσ

j+ 1
2

0 − ˆ̇σ
j+ 1

2
0 , ω

j+ 1
2

2 = ∂̄te
P,j+ 1

2
σ0 , ω

j+ 1
2

3 = ê
P,j+ 1

2
σ0 ,

ω
j+ 1

2
4 = ∂̄tr

j+ 1
2 − ˆ̇rj+

1
2 , ω

j+ 1
2

5 = ∂̄te
P,j+ 1

2
r , ω

j+ 1
2

6 = ∂̄tσ
j+ 1

2
1 − ˆ̇σ

j+ 1
2

1 , (5.44)

ω
j+ 1

2
7 = ∂̄te

P,j+ 1
2

σ1 , ω
j+ 1

2
8 = ρ(∂̄tv

j+ 1
2 − ˆ̇vj+

1
2 ), ω

j+ 1
2

9 = ρ∂̄te
P,j+ 1

2
v .

Letting τ0 = θ̂
j+1/2
σ0 , τ1 = θ̂

j+1/2
σ1 , w = θ̂

j+1/2
v in (5.41–5.43), and adding those
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equations yield

(‖θj+1
σ0
‖2A0

+ 2∆t‖θ̂j+
1
2

σ0 ‖2A′0 + ‖θj+1
σ1
‖2A1

+ ‖θj+1
v ‖2ρ) (5.45)

− (‖θjσ0
‖2A0

+ ‖θjσ1
‖2A1

+ ‖θjv‖2ρ)

=(A0(ω
j+ 1

2
1 + ω

j+ 1
2

2 ) +A′0ω
j+ 1

2
3 + ω

j+ 1
2

4 + ω
j+ 1

2
5 , θ̂

j+ 1
2

σ0 )

+ 2∆t(A0(ω
j+ 1

2
6 + ω

j+ 1
2

7 ) + ω
j+ 1

2
4 + ω

j+ 1
2

5 , θ̂
j+ 1

2
σ1 ) + (ω

j+ 1
2

8 + ω
j+ 1

2
9 , θ̂

j+ 1
2

v ).

If we drop 2∆t‖θ̂j+
1
2

σ0 ‖2A′0 , divide both sides by

(‖θj+1
σ0
‖2A0

+ ‖θj+1
σ1
‖2A1

+ ‖θj+1
v ‖2ρ)

1
2 + (‖θjσ0

‖2A0
+ ‖θjσ1

‖2A1
+ ‖θjv‖2ρ)

1
2 ,

and apply a weighted Cauchy–Schwarz inequality, then

(‖θj+1
σ0
‖2A0

+ ‖θj+1
σ1
‖2A1

+ ‖θj+1
v ‖2ρ)

1
2

≤ (‖θjσ0
‖2A0

+ ‖θjσ1
‖2A1

+ ‖θjv‖2ρ)
1
2 + c∆t

9∑
l=1

‖ωj+
1
2

l ‖, (5.46)

for each 0 ≤ j ≤ N−1, with c independent of h and ∆t. Using (5.46) inductively,

(‖θiσ0
‖2A0

+ ‖θiσ1
‖2A1

+ ‖θiv‖2ρ)
1
2

≤ (‖θ0
σ0
‖2A0

+ ‖θ0
σ1
‖2A1

+ ‖θ0
v‖2ρ)

1
2 + c∆t

i−1∑
j=0

9∑
l=1

‖ωj+
1
2

l ‖. (5.47)

Since A0, A1 are coercive and 0 < ρ0 ≤ ρ for a constant ρ0, we can obtain

‖θiσ0
‖ + ‖θiσ1

‖ + ‖θiv‖ ≤ c(‖θiσ0
‖2A0

+ ‖θiσ1
‖2A1

+ ‖θiv‖2ρ)1/2 where c > 0 depends

only on A0, A1, and ρ0. Note that (‖θ0
σ0
‖2A0

+ ‖θ0
σ1
‖2A1

+ ‖θ0
v‖2ρ)1/2 ≤ chm for

1 ≤ m ≤ k by boundedness of A0, A1, ρ, the assumption (5.14), and the triangle

inequality. Henceforth, if we show

c∆t

i−1∑
j=0

9∑
l=1

‖ωj+
1
2

l ‖ ≤ c(∆t2 + hm), 1 ≤ m ≤ k, (5.48)

then (5.37) for ‖θiσ0
‖+‖θiσ1

‖+‖θiv‖ is proved. In order to show (5.48), we recall

Taylor expansions (3.53) and (3.54). From (3.53) and the definitions of ω
i+1/2
l ’s
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in (5.44), we have

∆t‖ωj+
1
2

1 ‖ =
1

2
‖2σj+1

0 − 2σj0 −∆tσ̇j+1
0 −∆tσ̇j0‖ ≤ c∆t2

∫ tj+1

tj

‖...σ 0‖ ds, (5.49)

∆t‖ωj+
1
2

6 ‖ =
1

2
‖2σj+1

1 − 2σj1 −∆tσ̇j+1
1 −∆tσ̇j1‖ ≤ c∆t2

∫ tj+1

tj

‖...σ 1‖ ds, (5.50)

∆t‖ωj+
1
2

4 ‖ =
1

2
‖2rj+1 − 2rj −∆tṙj+1 −∆tṙj‖ ≤ c∆t2

∫ tj+1

tj

‖...r ‖ ds, (5.51)

∆t‖ωj+
1
2

8 ‖ =
1

2
‖ρ(2vj+1 − 2vj −∆tv̇j+1 −∆tv̇j)‖ ≤ c∆t2

∫ tj+1

tj

‖...v ‖ ds.

(5.52)

By (2.57) and the definitions of ω
i+1/2
l ’s in (5.44), for 1 ≤ m ≤ k,

∆t‖ωj+
1
2

2 ‖ = ∆t‖∂̄te
P,j+ 1

2
σ0 ‖ =

∥∥∥∥∥
∫ tj+1

tj

ėPσ0
ds

∥∥∥∥∥ ≤ chm
∫ tj+1

tj

‖σ̇0‖m ds, (5.53)

∆t‖ωj+
1
2

3 ‖ ≤ c∆t‖êP,j+
1
2

σ0 ‖ ≤ chm∆t‖σ0‖L∞Hm , (5.54)

∆t‖ωj+
1
2

7 ‖ = ∆t‖∂̄te
P,j+ 1

2
σ1 ‖ =

∥∥∥∥∥
∫ tj+1

tj

ėPσ1
ds

∥∥∥∥∥ ≤ chm
∫ tj+1

tj

‖σ̇1‖m ds, (5.55)

∆t‖ωj+
1
2

5 ‖ = ∆t‖∂̄te
P,j+ 1

2
r ‖ =

∥∥∥∥∥
∫ tj+1

tj

ėPr ds

∥∥∥∥∥ ≤ chm
∫ tj+1

tj

‖ṙ‖m ds, (5.56)

∆t‖ωj+
1
2

9 ‖ = ∆t‖ρ∂̄te
P,j+ 1

2
v ‖ =

∥∥∥∥∥
∫ tj+1

tj

ρėPv ds

∥∥∥∥∥ ≤ chm
∫ tj+1

tj

‖v̇‖m ds. (5.57)

Combining (5.49–5.57) with (5.47), Theorem 5.8 is proved for ‖θiσ0
, θiσ1

, θiv‖.
In order to show (5.37) for ‖θir‖, we use the argument similar to the semidis-

crete error analysis. From (5.15) (A1(σ1(0) − Σ0
1), τ1) + (r(0) − R0, τ1) = 0 for

τ1 ∈Mh such that div τ1 = 0. If we combine this with (5.29), then we get

(A1E
j
σ1
, τ) + (Rj , τ) = 0, τ ∈Mh, div τ = 0,

which is equivalent to

(θjr, τ) = −(A1(eP,jσ1
+ θjσ1

), τ)− (eP,jr , τ), τ ∈Mh, div τ = 0.

If we take τ ∈ Mh such that div τ = 0, (τ, q) = ‖θjr‖2, and ‖τ‖ ≤ c‖θjr‖, then

we have ‖θjr‖ ≤ c‖eP,jσ1
, θjσ1

, eP,jr ‖, which yields (5.37) for ‖θir‖. The proof is
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completed.

Corollary 5.9 (Numerical solution of displacement). Let U0 ∈ Vh be an ap-

proximation of initial displacement u(0) with ‖u(0) − U0‖ ≤ chm, 1 ≤ m ≤ k.

If we reconstruct displacement U i from {V j}, using the trapezoidal rule, as

U i = U0 + ∆t

i∑
j=1

V j + V j−1

2
= U0 + ∆t

i∑
j=1

V̂ j+
1
2 ,

then for 0 ≤ i ≤ N , 1 ≤ m ≤ k,

‖ui − U i‖ ≤ c(hm + ∆t2).

The proof is same as that of Corollary 3.9, so we omit it.

5.5 Error analysis for the GG elements

In this section we discuss the error analysis for the GG elements. As in previous

chapters, we do not repeat all details of error analysis but focus on the steps

that should be modified.

Theorem 5.10. Let (Mh, Vh,Kh) be the GG elements of degree k ≥ 1. Suppose

that m is an integer of 1 ≤ m ≤ k + 1 and m′ = m − δm,k+1 where δm,k+1 is

the Kronecker delta. Suppose ‖ρ‖W 1,∞
h

<∞ for ‖ρ‖W 1,∞
h

defined in (3.64) and

σ0, σ1, r ∈W 1,1([0, T0];Hm) ∩W 3,1([0, T0];L2),

v ∈W 1,1([0, T0];Hm′) ∩W 3,1([0, T0];L2).
(5.58)

Assume the initial data are given to be Σ0
0 = Π̃hσ0(0), Σ0

1 = Π̃hσ1(0), V 0 =

Phv(0), R0 = P ′hr(0). Then the fully discrete solution (Σj0,Σ
j
1, V

j , Rj) in (5.28–

5.31) is well-defined and for all 1 ≤ j ≤ N ,

‖σj0 − Σj0, σ
j
1 − Σj1, Phv

j − V j , rj −Rj‖ (5.59)

≤ c(∆t2 + hm)(‖σ0, σ1, r‖W 1,1Hm∩W 3,1L2 + ‖v‖W 1,1Hm′∩W 3,1L2),

‖vj − V j‖ (5.60)

≤ c(∆t2 + hm
′
)(‖σ0, σ1, r‖W 1,1Hm∩W 3,1L2 + ‖v‖W 1,1Hm′∩W 3,1L2),
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where c depends on A0, A′0, A1, ρ0, and ‖ρ‖W 1,∞
h

but is independent of h and

∆t. The constants c in (5.59–5.60) are uniformly bounded as A′0 decays.

Well-definedness of fully discrete solutions is same as the proof of Theo-

rem 5.7, so we only discuss a priori error estimates. We decompose the errors

(Ejσ0
, Ejσ1

, Ejv, E
j
r) into the projection errors (eP,jσ0

, eP,jσ1
, eP,jv , eP,jr ) and the ap-

proximation errors (θjσ0
, θjσ1

, θjv, θ
j
r) as in (5.34–5.36).

Theorem 5.11. There exists a constant c > 0 independent h so that the fol-

lowing inequalities hold.

‖ePσi
‖ ≤ chm‖σi‖m, 1 ≤ m ≤ k + 1, i = 0, 1,

‖ePv ‖ ≤ chm‖v‖m, 0 ≤ m ≤ k,

‖ePr ‖ ≤ chm‖r‖m, 0 ≤ m ≤ k + 1.

Furthermore, similar inequalities hold for the time derivatives of σ0, σ1, v, and

r, respectively, as in Theorem 5.5.

We omit its proof because it is same as the proof of Theorem 5.5.

For Theorem 5.10, we only need to consider a priori estimates of the approx-

imation errors (θjσ0
, θjσ1

, θjv, θ
j
r) by the triangle inequality.

Theorem 5.12. Suppose the assumptions in Theorem 5.10 hold and θiσ0
, θjσ1

,

θiv, θir are defined as in (5.34–5.36). Then there exists a constant c > 0 depending

on A0, A′0, A1, ρ0, ‖ρ‖W 1,∞
h

but is independent of h and ∆t so that

‖θiσ0
, θiσ1

, θiv, θ
i
r‖

≤ c(∆t2 + hm)(‖σ0, σ1, r‖W 1,1Hm∩W 3,1L2 + ‖v‖W 1,1Hm′∩W 3,1L2), (5.61)

for 0 ≤ i ≤ N , 1 ≤ m ≤ k + 1.

Proof. For a priori error estimates, we follow same argument in the proof of

Theorem 5.7 and obtain (5.45).

To prove (5.61) for ‖θiσ0
, θiσ1

, θiv‖, let ρc be the orthogonal L2 projection of ρ

into the space of piecewise constant functions associated to Th. Then we define

ω̃
j+1/2
9 = (ρ− ρc)∂̄teP,j+1/2

v . Note that ρc∂̄te
P,j+1/2
v ⊥ Vh from the definition of

∂̄te
P,j+1/2
v and

(ω
j+ 1

2
9 , θ̂

j+ 1
2

v ) = (ρ∂̄tv
P,j+ 1

2 , θ̂
j+ 1

2
v ) = ((ρ− ρc)∂̄te

P,j+ 1
2

v , θ̂
j+ 1

2
v ) = (ω̃

j+ 1
2

9 , θ̂
j+ 1

2
v ).
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Therefore we have an inequality analogous to (5.46) as follows.

(‖θj+1
σ0
‖2A0

+ ‖θj+1
σ1
‖2A1

+ ‖θj+1
v ‖2ρ)

1
2

≤ (‖θjσ0
‖2A0

+ ‖θjσ1
‖2A1

+ ‖θjv‖2ρ)
1
2 + c∆t

(
8∑
l=1

‖ωj+
1
2

l ‖+ ‖ω̃j+
1
2

9 ‖

)
.

Repeating the steps in (5.46) and (5.47), for the proof of (5.61) for ‖θiσ0
, θiσ1

, θiv‖,
we only need to show

c∆t

i−1∑
j=0

(
8∑
l=1

‖ωj+
1
2

l ‖+ ‖ω̃j+
1
2

9 ‖

)
≤ c(∆t2 + hm), 1 ≤ m ≤ k + 1.

For the estimates of ω
j+1/2
l , l = 1, · · · , 8, we use (5.49–5.56) and note that the

integer m ranges 1 ≤ m ≤ k + 1 for the GG elements. For ω̃
j+1/2
9 ,

∆t‖ω̃j+
1
2

9 ‖ = ∆t‖(ρ− ρc)∂̄teP,jv ‖ =

∥∥∥∥∥
∫ tj+1

tj

(ρ− ρc)(v̇Ph − v̇) ds

∥∥∥∥∥
≤ chm+1‖ρ‖W 1,∞

h

∫ tj+1

tj

‖v̇‖mds, 1 ≤ m ≤ k.

For the proof of (5.61) for ‖θir‖, we repeat the argument for ‖θir‖ in the proof

of Theorem 5.8. Details are omitted.

We also claim that a simple postprocessing can be used to find a better

numerical solution of u as we have done in previous chapters. Its proof is same

as the proof of Theorem 3.13, so we only state it below without a proof.

For Vh in the GG elements, let V ∗h be the space of (possibly discontinuous)

piecewise polynomials of one degree higher than Vh, and Ṽh be the orthogonal

complement of Vh in V ∗h . The orthogonal L2 projections onto V ∗h and Ṽh are

denoted by P ∗h and P̃h.

Theorem 5.13. Suppose that Theorem 5.10 holds with m = k + 1 and also

‖v‖W 1,1Hk+1 <∞. Let U i be a numerical solution of displacement in Corollary

5.9 with an assumption that ‖Phu(0)− U0‖ ≤ chk+1. We define U∗,i ∈ V ∗h by

(gradh U
∗,i, gradh w) = (A1Σi1 +Ri, gradh w), w ∈ Ṽh, (5.62)

(U∗,i, w) = (U i, w), w ∈ Vh, (5.63)
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for each 0 ≤ i ≤ N where gradh is the piecewise gradient operator adapted to the

triangulation Th. Then U∗,i is well-defined and there exists c > 0 independent

of h and ∆t such that

‖ui − U∗,i‖ ≤ c(∆t2 + hk+1)‖σ0, σ1, v, r‖W 1,1Hk+1∩W 3,1L2 . (5.64)

5.6 Numerical results

In this section, we present numerical results. We use Ω = [0, 1] × [0, 1] and

the AFW elements of degree k = 2 in all our numerical computations. We

assume that the medium is homogeneous with density ρ = 1, and compliance

tensors A0, A′0, A1 are given as in (2.7) with parameters µ0, λ0, µ′0, λ′0, µ1,

λ1. For simplicity, we put µ0 = λ0 = 1, µ′0 = λ′0 = 5, and µ1 = λ1 = 10 in all

experiments.

For each spatial mesh size h, we take ∆t = h for time step ∆t, so the expected

order of convergence is 2 from our error bound O(h2+∆t2). We present L2 errors

of σ0, σ1, v, and r at time T0 = 1, with mesh sizes h = 1/4, 1/8, 1/16, 1/32, 1/64,

and compute the order of convergences.

Finally, as in the previous chapters, all codes are implemented using the

Dolfin Python module [1] of FEniCS project [2, 38].

Example 5.14. Let the displacement field be

u(t, x, y) =

(
(1− x)x2 sin(πy) cos t

(1 + t) sin(πx) sin(πy)

)
, (5.65)

and σ0(0) = 0. Then one can find v, σ0, σ1, and f using (5.1). For this exact

solution, we compute a numerical solution with inhomogeneous displacement

Table 5.1: Order of convergence for the exact solution with the displacement as
in (5.65) and σ0(0) = 0 (µ0 = λ0 = 1, µ′0 = λ′0 = 5, µ1 = λ1 = 10, h = ∆t and
T0 = 1).

1
h

‖σ0 − σ0,h‖ ‖σ1 − σ1,h‖ ‖v − vh‖ ‖r − rh‖
error order error order error order error order

4 2.37e-01 – 1.08e+00 – 1.96e-02 – 5.77e-02 –

8 3.15e-02 2.91 1.83e-01 2.55 4.88e-03 2.01 1.46e-02 1.99

16 4.81e-03 2.71 3.82e-02 2.26 1.22e-03 2.00 3.64e-03 2.00

32 9.11e-04 2.40 8.93e-03 2.10 3.05e-04 2.00 9.09e-04 2.00

64 2.05e-04 2.15 2.18e-03 2.03 7.62e-05 2.00 2.27e-04 2.00
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Table 5.2: Order of convergence for the exact solution with the displacement as
in (5.66) and σ0(0) = 0 (µ0 = λ0 = 1, µ′0 = λ′0 = 5, µ1 = λ1 = 10, h = ∆t and
T0 = 1).

1
h

‖σ0 − σ0,h‖ ‖σ1 − σ1,h‖ ‖v − vh‖ ‖r − rh‖
error order error order error order error order

4 1.79e-02 – 2.28e-01 – 8.41e-03 – 9.07e-03 –

8 4.44e-03 2.01 5.67e-02 2.01 2.09e-03 2.01 2.27e-03 2.00

16 1.11e-03 2.00 1.41e-02 2.00 5.17e-04 2.01 5.67e-04 2.00

32 2.76e-04 2.00 3.53e-03 2.00 1.29e-04 2.00 1.42e-04 2.00

64 6.90e-05 2.00 8.83e-04 2.00 3.22e-05 2.00 3.54e-05 2.00

boundary conditions using the weak formulation (5.6–5.9). The numerical result

for (5.65) is in Table 5.1.

Example 5.15. As an example with inhomogeneous displacement boundary

conditions, we let the displacement field be

u(t, x, y) =

(
e−y cos t sinx

et+x

)
, (5.66)

and let σ0(0) = 0. Then one can compute v, σ0, σ1, and f using (5.1). We

compute a numerical solution with inhomogeneous displacement boundary con-

ditions using the weak formulation (5.6–5.9). The numerical results for (5.66)

are shown in Table 5.2.

Example 5.16. For a nonsmooth solution, let

u(t, x, y) =

(
(1 + t2)x

7
3 y

y
7
3 cos t

)
, (5.67)

Table 5.3: Order of convergence for the exact solution with displacement as in
(5.67) and σ0(0) = 0 (µ0 = λ0 = 1, µ′0 = λ′0 = 5, µ1 = λ1 = 10, h = ∆t and
T0 = 1).

1
h

‖σ0 − σ0,h‖ ‖σ1 − σ1,h‖ ‖v − vh‖ ‖r − rh‖
error order error order error order error order

4 3.61e-01 – 2.27e-01 – 1.07e-02 – 4.27e-03 –

8 1.06e-01 1.76 6.44e-02 1.82 2.63e-03 2.02 1.05e-03 2.03

16 3.06e-02 1.80 1.81e-02 1.83 6.52e-04 2.01 2.60e-04 2.01

32 8.69e-03 1.81 5.07e-03 1.84 1.62e-04 2.01 6.46e-05 2.01

64 2.45e-03 1.82 1.42e-03 1.84 4.04e-05 2.00 1.61e-05 2.00
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and σ0(0) = 0. The corresponding σ0, σ1 are(
(70t− 350)yx

4
3 + 35

78y
4
3 (5 cos t− sin t) 10(−5 + t)x

7
3

10(−5 + t)x
7
3

70
3 (t− 5)yx

4
3 + 35

26y
4
3 (5 cos t− sin t)

)
,

10

(
7y((1 + t2)x

4
3 + y

1
3 cos t) (1 + t2)x

7
3

(1 + t2)x
7
3

7
3y((1 + t2)x

4
3 + 3y

1
3 cos t)

)
,

respectively. From the fractional order 4/3 of polynomial terms in σ0 and σ1,

they belong to H5/6−δ in space for any δ > 0.

As in the previous example, we compute a numerical solution with inhomoge-

neous displacement boundary condition using (5.8–5.9). The numerical results

for (5.67) are shown in Table 5.3. The orders of convergence of σ0, σ1 approach

11/6 ≈ 1.833 as we expected in our error analysis but the order of convergence

of v is 2. It is consistent to the results we have seen for the examples of elasto-

dynamics and the equations of the Kelvin–Voigt model in the previous chapters,

so we again get a motivation to study a better estimate for the v error.
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Chapter 6

Numerical simulations

In this chapter we present numerical simulations which are more closely involved

in physical situations using the numerical schemes that we developed in previous

chapters. In section 6.1, we show wave propagation in homogeneous isotropic,

heterogeneous isotropic, and anisotropic elastic media. In section 6.2, we show

the creep test of viscoelastic materials and one seismology model problem of

wave propagation in viscoelastic media.

6.1 Elastodynamics

In this section, we present three numerical simulations. In the first simulation,

we will see the difference of two different types of wave propagation, P and S

waves, in homogeneous isotropic medium. In the second simulation, we consider

two isotropic heterogeneous media and will see that different parameters of elas-

tic media affect differently to P and S waves. In the last one, we consider wave

propagation in two anisotropic materials and show that a radially symmetric

initial data becomes asymmetric waves.

6.1.1 Wave propagation in homogeneous isotropic elastic

media

In Figure 6.1, we see a series of screen-shots of wave propagation in an isotropic

homogeneous linear elastic medium. For initial data, the initial displacement is

vanishing (hence initial stress is vanishing) and the initial velocity is given as a

bump function of horizontal direction. The magnitude of wave is described as
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height in Figure 6.1. The splitting of P and S waves is one of the features of

Figure 6.1: Magnitude of elastic waves in homogeneous isotropic elastic
medium.

elastic wave propagation. It is known that P wave is faster than S wave, but

S wave is more destructive. In the above figures, we observe these features of

P and S waves. We can see that P wave mostly propagates horizontally with

faster speed and small magnitude, but S wave propagates vertically with slower

speed and big magnitude.

6.1.2 Wave propagation in isotropic heterogeneous elastic

media

We compare wave propagation in two different heterogeneous media with same

initial data. In these simulations, we can see different parameters of elastic

medium influence differently to propagation of P and S waves.

The domain is [−6, 6] × [−6, 6] and the two media are heterogeneous with

different parameters on the left and right of the vertical line x = −1.2. For
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convenience, we call the two subdomains, splited by x = −1.2, as left and

right domains. In Figure 6.2, we see the wave propagation is not completely

symmetric with respect to x = −1.2, but two crescent shape waves propagate

symmetrically. It is because S wave propagation is not affected by the difference

of material parameter, but P wave is affected and has increased propagation

speed.

On the contrary, we can see both S and P waves propagates faster on right

domain in Figure 6.3. Since there are reflections and refractions of waves, the

wave propagation becomes more complicated in time and is not simply de-

scribed.

6.1.3 Wave propagation in anisotropic media

Wave propagation in anisotropic materials is much more complicated than the

one in isotropic materials. The elastic waves in anisotropic materials are not

simply classified into P and S waves, so it is extremely difficult to classify waves

and establish principles on wave propagation even in linear elastodynamics. This

is a broad research area which still needs many works to be done in the future.

Therefore we do not discuss theoretical parts of this topic but present wave

propagation examples on the media which may somewhat represent features of

components of the compliance tensor.

For initial data, we always give a radially symmetric initial velocity and

vanishing stress, so vanishing displacement as well. In isotropic media, the

wave propagation with this initial data is radially symmetric as we see in Figure

6.4. However, we see that wave propagation in anisotropic media may become

strongly asymmetric up to the compliance tensor, which is a symmetric 3 × 3

matrix A satisfying ε11

ε12

ε22

 = A

σ11

σ12

σ22

 .

For the materials that we used in our numerical computations, compliance ten-

sors are given by

Orthotropic 1 : c

 4 0 −1/2

0 4 0

−1/2 0 2

 , Orthotropic 2 : c

 4 0 −1

0 4 0

−1 0 2

 ,
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Figure 6.2: Magnitude of waves in heterogeneous medium 1. For the medium
1, the Lamé coefficient λ is 90 if x ≤ −1.2 and is 10 if x > −1.2. Another Lamé
coefficient µ is 10, and the mass density ρ is 5 on the whole domain.

where c = 1.0e − 2. These are examples of orthotropic materials which means

that the material has two or three mutually orthogonal twofold axes of rotational

symmetry. For more details on orthotropic materials, see [43]

In all examples, ρ = 10. For the domain of numerical computations, [−5, 5]×
[−5, 5] is used with the triangulation that 100 meshes in horizontal and vertical

directions. The AFW elements of degree 2 is used for spatial discretization
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Figure 6.3: Magnitude of waves in heterogeneous medium 2. For the medium
2, the Lamé coefficients λ and µ are both 10 on the whole domain but the mass
density is 5 if x ≤ −1.2 and is 45 if x > −1.2.

and the Crank–Nicolson scheme is used for time discretization with time step

∆t = 0.01. In all figures, the red–blue color range corresponds to the magnitude

of displacement.

In Figures 6.4–6.6, we compare wave propagation in an isotropic medium,

and two orthotropic media. The media Ortho. 1 and Ortho. 2 have compliance

tensors which are given as above.
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Figure 6.4: Isotropic Figure 6.5: Ortho. 1 Figure 6.6: Ortho. 2
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6.2 Viscoelasticity of materials

In this section, we show numerical experiments which are more involved in

physical implications. In 6.2.1, we compare creep compliances of the viscoelastic

models.

6.2.1 Creep compliance

We use our numerical schemes to test creep compliance of viscoelastic materials.

As a model problem, we consider a rectangular object on [−1, 1] × [0, 1]. We

assume that the top is clamped, i.e., vanishing displacement boundary condi-

tions are given. For the other sides, the left and right are traction-free and the

bottom is exerted by a given normal force(
0

10e−10x2

)

only from t = 2 to t = 10.

In our numerical computations, we used 16×32 mesh refinements, the AFW

elements of degree 1, and ∆t = 0.1 for time stepping. The mass density ρ is 1

in all simulations. The materials parameters are

Zener : µ0 = 500, µ1 = µ2 = 10, λ0 = 500, λ1 = λ2 = 10,

Kelvin–Voigt : µ0 = µ1 = 10, λ0 = λ1 = 100,

Maxwell : µ0 = 1000, µ1 = 100, λ0 = 1000, λ1 = 100.

Note that these parameters are not involved in specific physical motivations and

are only based on purely numerical experiments for visualization.

In Figure 6.7 we compare vertical displacements at (0, 0) in time of the

three materials. In this figure, we can see that the Zener and Kelvin–Voigt

models show similar behaviors. From the physical viewpoint, the shape begins

deforming under the exerted force at t = 2 but the deformation process is not

instantaneous. When the exerted force is removed at t = 10, the shape recovers

to the original shape but this recovering is not instantaneous either. We can see

that the Maxwell model shows a very different, fluid-like, behavior. The shape

deformation is proportional to the exerted time and it does not recover after

the exerted force is removed.
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6.2.2 Attenuation of reflected waves

We consider a simple model problem for reflected waves. We compare reflected

waves for two media. The first medium, say Medium I, consists of purely elastic

materials and the second medium, Medium II, has an intermediate layer which

is viscoelastic. In Figure 6.8, regions of elastic and viscoelastic materials are

described. We call the three layers as Layer 1, 2, and 3.

For implementation, we use the Zener model with A′0 which is vanishing

on regions that the medium is elastic. The domain is [−15, 15] × [−15, 0] with

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Zener

Kelvin−Voigt

Maxwell

Figure 6.7: Comparison of creep compliances of the Zener, Kelvin–Voigt, and
Maxwell models. (∆t = 0.1)

elastic
elastic/viscoelastic

elastic with high mass density

Figure 6.8: Regions of elastic and viscoelastic materials.
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180× 60 structured triangular meshes. The coordinates of two internal border

lines of layers are y = −1.5, y = −3.0, respectively. We used the AFW elements

of degree 1 and the time step interval is ∆t = 0.01. The material parameters in

the layers for Medium I and II are as follows.

Medium I

Layer 1 : µ0 = µ2 = λ0 = λ2 = 10, ρ = 1

Layer 2 : µ0 = µ2 = λ0 = λ2 = 10, ρ = 1

Layer 3 : µ0 = µ2 = λ0 = λ2 = 10, ρ = 5.

Medium II

Layer 1 : µ0 = µ2 = λ0 = λ2 = 10, ρ = 1

Layer 2 : µ0 = µ2 = λ0 = λ2 = 10, µ1 = λ1 = 500, ρ = 1

Layer 3 : µ0 = µ2 = λ0 = λ2 = 10, ρ = 5.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
x 10

−5

Elastic
Viscoelastic

Figure 6.9: Magnitude of reflected waves for the media of elastic and viscoelastic
intermediate layers.
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In Figure 6.9, we recorded the magnitude of displacement at (0.0) for Medium

I and II. The red dashed line, denoting the magnitude of the reflected waves

for Medium II, has lower peak than the one for Medium I. Although this model

is a schematic simplified one and the material parameters are not based on

physical motivations, we expect that this attenuation phenomenon of reflected

waves can be used for constructing more realistic models when it is combined

with experimental data in practical situations. However, a further study of this

modeling problem is beyond the scope of this dissertation.
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