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Chapter 1

Introduction

Liquid crystals are phases of matter intermediate between crystalline solid and liquid. The

ubiquitousness of these partially ordered phases, in both natural and synthetic settings, has

had a major impact in the display industry and has also been an important tool in the

understanding of soft matter and its role in describing order and function in biology [1].

Materials that show liquid crystal phases usually consist of rod-like elongated and rigid

molecules that tend to follow a preferred direction of alignment. In the nematic phase, the

molecules have orientational order but their centers of mass of lack positional order [2]. The

arrangement of these molecules can be characterized by a unit vector n, the director, which

describes the average molecular alignment of the liquid crystal molecules in a region.

A central theme in liquid crystal research is the ability to enforce macroscopic-sized

regions of uniform molecular alignment, an example of which is found in optical and dis-

play devices by electromagnetic fields [3]. Whereas electromagnetic fields for driving liquid

crystal alignment have been at the core of liquid crystal research and the ensuing technol-

ogy, the current trend focuses on topological control, with liquid crystal colloidal systems

being at the center of these new directions. Liquid crystal colloidal systems are composed

of small insoluable particles suspended in a liquid crystal matrix. These insoluable parti-

cles provide surfaces on which alignment can be enforced resulting in the development of

complex topologies. The intricate patterns and structure seen in liquid crystal colloids are

due to the abundance of many types of defects, i.e., regions in which the director becomes

discontinuous.

This Ph.D. dissertation is devoted to the computational study of liquid crystal defects.

By first establishing a rigorous mathematical and numerical foundation, we provide accurate

computation and visualization of defects, not previously found in literature. Key problems
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on the subject are revisited from a rigorous numerical perspective and new solution struc-

tures are found that better align with theoretical and experimental data. These methods

are then applied to computing the defect structures of colloidal systems.

A signature feature of liquid crystals is the wealth of visual patterns when observed in

the optical microscope. These are due to the defects that are present in the long range

molecular behavior of the material as observed and first described by Otto Lehman [4]

and Georges Friedel [5]. These defects are specific to each liquid crystal phase and serve

to classify the liquid crystal phases that are known today. Within these phases, there

exist two types of symmetries, uniaxial and biaxial, with molecules tending to follow one

or two distinguished directions of alignment, respectively. A great deal of the research in

liquid crystals has focused on the study of the detailed structure of the individual defects,

the nature of their cores, and the way that groups of defects organize themselves. Early

research on liquid crystals focused on uniaxial phases, since the discovery of the biaxial

nematic did not occur until 1980 [6].

A landmark fact, relevant to the present thesis, is the realization in 1971 that discs in

the plane with radial alignment on the boundaries can have liquid crystal configurations

which escape to the third dimension, that is, out of the plane of orientational order [7], [8].

This type of domain was previously believed to have a discontinuity in the director at the

center, namely a point defect. Subsequently, a full topological characterization of defects in

the nematic phase was carried out in the 1970s by researchers in France [9] and the Soviet

Union [10].

Defects can be understood as points or lines where multiple directions of alignment

come together, so n becomes undefined. These defects can be classified according to their

topological order. For S any oriented surface and u a mapping from S onto S2, there is an

integer associated with this map called the degree or order of u. It is computed through

the following formula:

deg(u) =
1

4π

∫
S

(∇su)∗ν · u da (1.1)

where (∇su)∗ is the adjoint of the surface gradient of u on S, ν is a normal of S, and a

denotes the area-measure [2]. Due to the invariance of the liquid crystal properties with

respect to changes of n to -n, defects of fractional degree ±1/2 are allowed. These also

happen to be very relevant to the research of this dissertation. These defects were called

Mobius defects by Sir Charles Frank due to their topological equivalence to the Mobius

band. A comprehensive outline of research on liquid crystal defects prior to 1980 can be

found in the article by Brinkman and Cladis [11].
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The first continuum theory of nematic liquid crystals is due to Frank, who in 1958

proposed an elastic energy that penalizes the distortion of the molecular alignment from

a preferred equilibrium direction [12]. His work gave a mathematical framework to earlier

ideas by Zocher (1925) and Oseen (1933). Also, a very successful theory of nematics is the

statistical one proposed by Maier and Saupe [13]. This theory includes contributions from

an attractive intermolecular potential from an induced dipole moment between adjacent

liquid crystal molecules. This anisotropic attractive force stabilizes parallel alignment of

neighboring molecules. The theory considers a mean-field average of the interactions. The

most general continuum theory for nematic liquid crystals was introduced by de Gennes in

1974 and developed from the Landau theory of phase transitions. Consistency between this

theory and that of Maier-Saupe was not shown until recent work on the latter [14].

In this thesis, we discuss the Oseen-Frank and Landau-de Gennes models focusing on

their analogies and subtle differences in order to motivate our choice of model for numerical

simulations. The chapters that follow contain computations using FEniCS, a computing

platform which uses finite elements to solve PDEs. Much of the past numerical work has

relied heavily on the use of simplified models and assumptions, and we take steps to give

a more robust numerical view of the behavior and structure of defects in various nematic

liquid crystal domains.

From the perspective of liquid crystal models, distortion from the preferred direction of

alignment causes the elastic energy to increase. Specifically, point, line, and surface defects

are locations with very large elastic energy where the director becomes discontinuous. They

often arise as a result of incompatible aligning mechanisms such as those coming from

molecular anchoring at the outer and inner boundaries. Controlling surface alignment and

the subsequent defects formed in the bulk of the liquid crystal is one main mechanism to

control the behavior of the system. There are two main types of anchoring: strong and weak.

The former corresponds to enforcing a molecular alignment on contact boundaries, that is,

prescribing Dirichlet boundary conditions on the fields of the problem. In weak anchoring,

a surface energy term penalizes departure from the preferred alignment direction imposed

by treatment of the surface.

A liquid crystal colloid is a system in which anchoring takes a pivotal role in defect

formation. A colloid is a mixture in which microscopically dispersed particles are suspended

throughout a liquid crystal. The main defects observed are of topological degrees +1,

and −1/2, with associated defect rings known as Saturn rings. These rings are a type

of disclination line which have been studied in liquid crystals for decades [15]. Recent

experimental and numerical analysis conclude that this is the preferred defect for confined
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geometries, which our numerical computations confirm. The core of these defects was once

believed to be isotropic, but it was recently discovered that the core is composed of liquid

crystals in the biaxial phase [16], an issue explored further in our numerical computations.

We first introduce the Oseen-Frank model in which uniaxial nematic liquid crystal con-

figurations are described by a unit vector field, n, the director of the theory. A few defi-

ciencies of this model will be illuminated, starting with the fact that line defects in three

dimensions may have infinite energy under the Oseen-Frank description. This model also

cannot account for fractional order defects, which are prevalent in colloidal systems. Addi-

tionally, since this model can only describe uniaxial liquid crystal alignment, it can result

in minimizing configurations which are not observed in physical systems. These issues are

resolved with the Landau-de Gennes model.

The inadequacies of the Oseen-Frank model motivated the development of the Landau-de

Gennes model. In contrast, the field that describes molecular alignment in the Landau-de

Gennes model is a symmetric, traceless, second order tensor Q. Unlike n, the tensor Q

respects the head-to-tail symmetry of the molecular alignment. Additionally, this model

accomodates a description of biaxial phases, and therefore more accurately characterizes

liquid crystal defect structures. Another important issue resolved with the use of Q is that

of orientability: a line field of a specific degree of smoothness is orientable if it can be

associated to a unit vector field with the same degree of smoothness. This is not a trivial

issue and we easily find liquid crystal configurations which are not orientable, such as the

one corresponding to the −1/2 order defect. In other words, a line field provides a more

accurate description of molecular behavior within the liquid crystal and also allows for more

possible minimizing configurations.

Our numerical computations begin by considering a simplified two-by-two tensor Q in

the Landau-de Gennes energy and the minimization is done over two-dimensional domains.

First, a manufactured solution over an annulus is examined in order to lay the ground-

work for the computations that follow. In some domains exact agreement with previous

theoretical and numerical work is found, such as the case when particle interactions are

considered. For annular domains in which we allow the inner radius to vary, we found that

the restriction of Q to purely uniaxial configurations resulted in a digression from previous

results since we could only resolve the purely planar radial solution. A pivotal result for this

simplified energy concerns the minimization over discs of various radii. In the literature,

numerical computations over a disc with normal Dirchlet boundary conditions resulted in

a split core defect, characterized by two −1/2 defects, for radii over a threshold value rc

[17], [18]. By refining the mesh further and studying the convergence of our numerically
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approximated solution, we show that this defect structure is an artifact of improper mesh

refinement.

We later take Q to be a three-by-three tensor and the numerical computations are done

over three-dimensional domains. Again, the method of manufactured solutions establishes

a rigorous foundation for the computational work that follows. The two particle domain

again gives agreement with previously described experimental and numerical results. There

is also a qualitative agreement with the single particle system, but our work contains a more

detailed study of the core structure not previously established. Specifically, the analytically

established result of Schophol and Sluckin, which states that the core of a Saturn ring defect

is uniaxial with negative scalar order parameter, is numerically verified for the first time

[19].

For concentric cylinder domains, the minimizing configurations are compared to a fun-

damental paper by Bethuel, Brezis, and Coleman [20]. Using the Oseen-Frank energy

expression, they prove that for ρ ≥ e−π, where ρ is the ratio of the inner to the outer

radius, the planar radial configuration is the minimizing configuration. For ρ < e−π, the

escape solution, characterized by a non-zero z-component, is the minimizer. Since they

consider the Oseen-Frank model, the configurations predicted by the theory are necessar-

ily uniaxial. Every minimizer found in our calculations had some level of biaxial behavior,

which is consistent with the theoretical predictions by Biscari and Virga using the Landau-de

Gennes energy [21]. In addition, our numerical procedure found three possible minimizing

configurations which, unlike the Bethuel et al. minimizers, transitioned continuously to one

another.

The effects of using symmetry to simplify three-dimensional calculations are studied in

the last chapter. In annular domains, the results are analogous to those seen in the con-

centric cylinder domains. In domains with particle interactions, this is no longer the case.

Projecting uniaxial configurations which cross in three-dimensions onto a two-dimensional

domain causes defects to form. For this reason, domains with colloidal particles contained

larger defect region when viewing the cross-sectional area and therefore can only give qual-

itative agreement.

In Chapter 2, we give a mathematical background which includes a description of both

the Oseen-Frank and the Landau-de Gennes models. When introducing these models, the

complexities and nuances of liquid crystal modeling are discussed. The Chapter ends with

a proof of existence of minimizers for the Landau-de Gennes model and the energy is

non-dimensionalized. In Chapter 3, we present two-dimensional simulations in a variety

of domains using a simplified two-dimensional version of the Landau-de Gennes energy
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expression. In Chapter 4, the focus is on fully three-dimensional domains using the full

Landau-de Gennes model to find minimizing configurations in a variety of domains with

varying boundary conditions. Finally, in Chapter 5, symmetry is used to simplify the three-

dimensional domains in order to illustrate that in certain domains, this simplification can

only give qualitative agreement.
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Chapter 2

Mathematical Background

2.1 What is a Liquid Crystal?

The three most prevalent phases of matter are solid, liquid, and gas, but this list is not

exhaustive. Material states differ from one another because the molecules in each state

possess distinct amounts of order. In the solid phase, the molecules have both positional

and orientational order which are both lost when the material is heated enough to become

a liquid. Between the solid and liquid states, certain materials exhibit an intermediate

phase in which the molecules have no positional order and diffuse about as in a liquid but

maintain some orientational order. These materials have elongated semi-rigid molecules

and their order is described in well-known models by a director n, which describes the

average alignment of these molecules. Since this phase is more ordered than a liquid, but

less ordered then a solid, it was given the name liquid cystal.

The optical properties of this material provide a useful way to study liquid crystal

behavior. When a liquid crystal is placed between two crossed polarizers the orientational

order within the material allows light to pass through certain areas as seen in Figure 2.1.

When light passes through a medium, the wavelength and velocity decrease by a factor

called the index of refraction. In a liquid crystal, unlike a standard liquid, the index of

refraction for polarized light is different in different directions. More specifically, light

polarized parallel to the director propagates according to one index of refraction and light

polarized perpendicular to the director has another index of refraction. This phenonmenon

is called birefringence and results in the stunning patterns seen in Figure 2.1.

Birefringence is used to determine molecular alignment in the liquid crystal. This is

best understood by studying the director’s behavior in the regions in which no light passes
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Figure 2.1: Liquid Crystal between Two Cross Polarizers

When a thin layer of liquid crystal is placed between two crossed polarizers, varying amount
of light can pass though depending on the orientation of the molecules. Notice there is a
white circle placed over the top of this image that may not be visible when printed. (Image
used with permission of Oleg Lavrentovich [22].)

through. Consider the drawing in Figure 2.2, which describes a liquid crystal between two

crossed polarizers. On the bottom plate, the region surrounded by a dashed line denotes a

location in the liquid crystal where the director is perfectly aligned with the direction of the

bottom polarizer. As light passes through the material, no light is visible in this region on

the top plate. This is due to the fact that the light propagates according to a single index

of refraction and therefore has no change in polarization. The top plate extinguishes this

light and the liquid crystal appears dark in this location [23].

Figure 2.2: Crossed Polarizer Diagram

When the director of the liquid crystal is parallel to one of the polarizers, light cannot pass
and the result is a black region.
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The director in the black regions seen in Figure 2.1 must lie parallel to one of the crossed

polarizer. In lighter regions, the directors have components in both directions which allows

some light to pass. These optical properties are not just an interesting phenomenon, but can

also be controlled through magnetic and electrical fields which attributes to the development

of the display devices we interact with on a daily basis.

2.2 Liquid Crystal Colloids

A colloid is a substance in which microscopically small insoluble particles are suspended in

a liquid matrix, much like a solution. There are a few defining factors which differentiate

a colloid from a solution. In a solution, the amount of particles placed into the surround-

ing medium is relatively small in comparison with the surrounding liquid mass. Molecular

interactions oftentimes break apart the particles. Because of this, the size of the resulting

particles is approximately the same order of magnitude as molecules in the surrounding liq-

uid. In comparison, within a colloid, the particles retain their shape and are large compared

with the molecules in the surrounding medium. In the colloids of interest, the particle size

varies between 1 and 1000 nanometers. The relatively large size of the particles, in this

case, implies that the volume taken up by the particles is of the same order of magnitude

as the volume of the surrounding fluid. One last differentiating characteristic is that in a

colloid, one is able to separate the particle from the surrounding fluid medium, while in a

solution this is not the case [24].

We are interested in modeling colloids in which the surrounding medium is a liquid

crystal. In order to better understand liquid crystal colloids, let us describe how they differ

from a colloid composed of a standard liquid. A classic example of a standard colloid is

milk. The particles are the milkfat globules dispersed in a water-like substance. They move

around the surrounding medium fairly freely, bouncing off one another and the walls. There

is minimal constraint on motion, but this is not the case in liquid crystal based colloids.

By controlling the boundary conditions on the walls of the liquid crystal container, defects

form in the liquid crystal. These defects are seen experimentally through their optical effects

and described mathematically as regions where there is no longer one preferred direction of

alignment for the molecules. The formation of defects around colloidal particles results in a

net particle-particle separation, as well as a separation between the particles and the walls

of the container. When multiple particles are present, the defects in the liquid crystal are

ubiquitous and cause the particles in the liquid crystal to lock together to create chains of

particles. Since the behavior of a liquid crystal colloid varies substantially from that of a
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standard colloid, a material with new properties often emerges. There are two main steps

in understading colloid behavior, the first being the unraveling of the interaction between

a single particle and the liquid crystal. The second ingredient is the interplay between two

particles. The first type of interaction is a direct result of the anchoring property of a liquid

crystal molecule with a solid surface. Many techologies have been developed to enforce a

preferred angle between the molecules and the surface normal, tangential and perpendicular

(homeotropic) being the standard ones. In many instances, the anchoring property, instead

of being formulated as a Dirichlet boundary condition, referred to as strong anchoring,

enters the model as a surface energy penalty, known as weak anchoring.

2.3 Historical Background: Modeling Liquid Crystals

The Oseen-Frank model was the first widely accepted static model for liquid crystal energy

and it consists of five terms which are dependent on a vector field, that describes the director,

and its derivative multiplied by elastic constants, which are material parameters. The model

was first introduced by Oseen in 1932, but in 1958 Frank discovered some inaccuracies with

the model coefficients and proposed a revised version [25], [12]. The existence of solutions

in the Oseen-Frank model and their partial regularity were established many years later by

Hardt, Kinderlehrer, and Lin in 1986 [26].

Experimental evidence suggested that in addition to point defects, liquid crystals also

present line defects, called disclinations, which are lines along which the optical director n is

singular. As we will show in a later section, the Oseen-Frank energy diverges in these types

of defect locations. In 1985, J.L. Ericksen proposed that this difficulty be circumvented by

modifying the Oseen-Frank model and permitting variations of the degree of orientation

quantified by the order parameter s [27]. Existence, local uniqueness, and global regularity

for this model were established in 1991 by Lin [28]. Defect regions were now described

by s = 0, implying that these are locations where the material becomes isotropic. Later

experimental evidence and theory suggests that the defect regions may not be regions of

isotropic melt, but instead locations where there are two preferred directions of alignment,

a phenomenon referred to as biaxiality. Neither the Oseen-Frank nor the Ericksen model

can account for this behavior.

The most general continuum theory for nematic liquid crystals developed, from the Lan-

dau theory of phase transitions, was introduced by de Gennes in 1974 [29]. He proposed

a Ginzburg-Landau expansion for the free energy of the liquid crystal near the point of

10



nematic-isotropic phase transition and that molecular orientation be described by a sym-

metric traceless tensor. In the case that two eigenvalues of the tensor are equal and distinct

from the third one, the eigenvector associated with the latter roughly corresponds to the

director field n of the Oseen-Frank Theory. Unlike the models previously developed, the

Landau- de Gennes model accounts for both line defects and biaxiality, and is one of the

major reasons de Gennes was awarded a Nobel prize for physics in 1991. Over twenty years

after its introduction, in 1998, Davis and Gartland established existence and regularity of

the Landau-de Gennes model [30]. While this model encompasses all the behavior observed

in liquid crystal domains, its added complexity has hindered its total adoption.

In this thesis, the Oseen-Frank model will be used to illustrate some of the subtleties and

complexities of liquid crystal modeling. Once there is a better understanding of the relevant

issues and short-coming of this model, the Landau-de Gennes model will be introduced and

a detailed description will be given. Existence will be established and all of the numerical

computations will be done using the Landau-de Gennes model.

2.4 Liquid Crystal Defects and Their Order

Defects are characterized by regions in which there is no well-defined direction of average

molecular alignment, i.e., a discontinuity in the director. Experimentally, the presence of

defects is identified by the behavior of the liquid crystal placed in crossed polarizers as

illustrated in Section 2.1. Let us consider the circular region in Figure 2.1. As described,

the black regions denote locations in which the director is aligned parallel to one of the

polarizers. The lighter regions give us locations in which the director has components

in the directions of both polarizers. At the very center, where these various regions of

alignment meet, the director cannot be defined. This is labeled as a defect being present in

the liquid crystal. Note that these defects are not confined to plane-like regions, but also

occur in three-dimensions and result in entire lines, called disclinations, or surfaces where

the molecular orientation is lost.

The presence of a defect results from an alignment incompatibility between the pre-

scribed anchoring direction of the liquid crystals on different surfaces in the domain. There

are two types of molecular alignments that can be enforced on the domain surfaces: weak

anchoring and strong anchoring. These are imposed by treating the surface with a sur-

factant or by rubbing it in a set direction in order to align the liquid crystal molecules.

Mathematically, strong anchoring is represented by defining a Dirichlet boundary condition

and will be reflected in the choice of admissible set. Weak anchoring is taken into account
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by inducing a surface penalty term in the energy. Later, we will introduce an expression for

the weak anchoring energy, but in our numerical computations only strong anchoring will

be considered.

Defects can be classified according to their topological order. Assume S is any oriented

surface and u is a mapping from S onto S2. There is an integer associated with this map

called the degree or order of u. It can be computed through the following formula:

deg(u) =
1

4π

∫
S

(∇su)∗ν · u da (2.1)

where (∇su)∗ is the adjoint of the surface gradient of u on S, ν is a normal of S, and

a denotes the area-measure [2]. Intuitively, this order is found by intersecting the defect

with a plane, considering a 2π rotation around the defect, and measuring the corresponding

change in angle of the director. In other words, the order k defines the 2πk change of the

angle in the director as we move around the defect. To better understand how the degree

of a defect is calculated, consider Figure 2.3.

Figure 2.3: Defect Orders

In the images above, the defect is denoted by a circle in the center. (a) shows a +1 defect
since during a 2π rotation around the defect region the direction of the molecules also com-
pletes a 2π rotation. By similar analysis, (b) is a −1/2 ordered defect, (c) a −1 ordered
defect and (d) a 1/2 defect.

In the case of a single spherical particle with radial alignment in a uniformly aligned cell,

the far-field behavior has order zero, i.e., a zero topological charge. By the conservation law,

the interior must also have a zero charge. The radial alignment on the particle surface forms

a +1 charge and, therefore, the liquid crystal must have defects in the bulk which sum to

−1. Experiments have shown that there are two possibilities, the hedgehog or the Saturn

ring defect, and their occurence depends on a variety of factors such as the strength of

alignment, confinement, and the size of the particles in unconfined domains. The hedgehog

is characterized by a −1 order and the Saturn ring corresponds to two −1/2 defects. Figure
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2.4 provides a two-dimensional sketch of these defects.

Figure 2.4: Single Particle Defects

These diagrams represent a two-dimensional cross section of the possible defect behavior for
a single particle in a uniformly aligned cell. The hedgehog defect is shown on the left and
on the right the Saturn ring defect is shown. Note that in three dimensions, the Saturn ring
will be a defect region which wraps around the entire colloidal particle.

Such configurations have been verified in a number of articles both experimentally

[31],[32], [33], [34], [35], [36] and numerically with the use of Oseen-Frank model, [37],

[38], [39], and to some extent using the Landau-de Gennes energy expression [40],[41], [42],

[43], [44], [45], [46], [47], [48], [49], [50]. More specifically, experimental evidence suggest

that in confined domains a single particle with normal liquid crystal alignment on the sur-

face will result in a Saturn ring, which will be verified numerically in the following chapters

[31], [33].

2.5 Oseen-Frank Theory and the Existence of a Minimizer

Now that the physical background of liquid crystals has been established, we introduce and

discuss the first most widely used models for liquid crystal energy: The Oseen-Frank model.

Although this is not the model used in simulations, it is useful for illustrating some of the

subtleties in modeling liquid crystal systems. In this model, the orientation of the molecules

is described by a unit vector, n, called the director. As stated previously, this vector gives

the average direction of molecular alignment. The equilibrium states of a nematic liquid

crystal are minimizers of the following total energy:

EOF (n) =

∫
Ω
W (∇n,n) dx, |n| = 1, (2.2)

13



where

W (∇n,n) = k1(∇ · n)2 + k2(n · ∇ × n)2 + k3|n×∇× n|2

+(k2 + k4)(tr (∇n)2 − (∇ · n)2),
(2.3)

Ω ∈ R3 is the open bounded region with smooth boundary occupied by the liquid crystal,

and the Frank constants, ki, are experimentally measured [12], [2]. Note that the unit

director constraint |n| = 1 results in a non-convex admissible set. Before delving into the

nuances of modeling liquid crystal systems, the existence of a minimizer for this energy

expression is established. Let us begin by assuming:

k1, k2, k3 > 0, k2 ≥ |k4|, and 2k1 ≥ k2 + k4 (2.4)

and present a classical result from Hardt, Kinderlehrer, and Lin [26]. Their paper proves

the existence of global minimizer for the Oseen-Frank energy expression and also contains

some partial regularity results. Here, we present the results concerning the existence of a

minimizer and point out some relevant issues in the proofs. Let

H1(Ω,S2) = {u ∈ H1(Ω,R2) : |u| = 1 a.e. in Ω},

and define our admissible to be

A(n0) = {u ∈ H1(Ω, S2) : n0 = trace of u on ∂Ω}

The goal is to show that there is an n ∈ A(n0) such that

EOF (n) = inf
u∈A(n0)

EOF (u) <∞

To accomplish this, weak lower semi-continuity of the energy functional and coerciveness in

A(n0) are required. Let us begin by ensuring that the admissible set is nonempty. This is

established by the first lemma in Hardt et al.

Lemma 2.5.1. ([26], lemma 1.1): If n0 : ∂Ω → S2 is Lipschitz, then the family A(n0) is

nonempty.

We observe that the first three terms of the energy in (2.3) are positive. However, to

establish that the energy is bounded from below, we need to focus on the (k2 + k4) term.

For this, consider the following identity:

tr (∇n)2 − (∇ · n)2 = ∇ · [(∇n)n− (∇ · n)n]

Applying this identity to the last term in W (∇n,n), it can be written as a pure divergence,

which further implies the following lemma.
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Lemma 2.5.2. ([26], lemma 1.2): For any Lipschitz function n0 : ∂Ω → S2, there is a

number S(n0) such that for all u ∈ A(n0)

S(n0) =
1

2

∫
Ω

[tr(∇u)2 − (∇ · u)2] dx (2.5)

In the case of strong anchoring with n0 prescribed, this term depends completely on bound-

ary data, n0, and its tangential derivatives. For this reason, when Dirichlet boundary con-

ditions are considered, this term is often set equal to zero by setting k2 = −k4. Of course,

this is not the case for weak anchoring.

Let us now consider the modified expression

ẼOF (u) =

∫
Ω
W̃ (∇u,u) dx, (2.6)

where

W̃ (∇u,u) = W (∇u,u) + (α− k2 − k4)(tr (∇u)2 − (∇ · u)2)

= k1(∇ · u)2 + k2(u · ∇ × u)2

+ k3|u×∇× u|2 + α(tr (∇u)2 − (∇ · u)2)

(2.7)

with α = min{k1, k2, k3}. This new energy expression and the original expression are

simultaneously minimized:

Corollary 2.5.3. ([26], Corollary 1.3): For any Lipschitz function n0 : ∂Ω → S2 and

n ∈ A(n0), n minimizes EOF in A(n0) if and only if n minimizes ẼOF in A(n0).

Proof. For any u ∈ A(n0), from Lemma 3.2, we have that

ẼOF (u)− ẼOF (n) = EOF (u) + (α− k2 − k4)S(n0)

− (EOF (n) + (α− k2 − k4)S(n0))

= EOF (u)− EOF (n)

From the following Lemma, it will be clear that this new integrand has the properties

required for energy minimization.

Lemma 2.5.4. ([26], lemma 1.4): 1
2α|∇u|

2 ≤ W̃ (∇u,u) ≤ β|∇u|2 for β = 3(k1 + k2 + k3)

and u ∈ H1(Ω, S2). Furthermore, ẼOF is weak lower semi-continuous in H1(Ω,S2).

Existence of a minimizer for the Oseen-Frank energy can now be established:
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Theorem 2.5.5. ([26], Theorem 1.5): For any Lipschitz function n0 : ∂Ω → S2, there

exists an n ∈ A(n0) such that EOF (n) = infu∈A(n0)EOF (u).

Proof. Assume that nk is a minimizing sequence of ẼOF in A(n0). By Lemma 2.5.4,

this sequence is bounded in H1 and therefore there exists a weakly convergent subsequence

where nkj ⇀ n in H1(Ω,R2). This sequence converges strongly in L2, since H1 is compactly

embedded in L2, and by the property of traces n ∈ A(n0). By weak lower semi-conitinuity

in Lemma 2.5.4, ẼOF (n) = infu∈A(n0) ẼOF (u), and the Theorem follows from Corollary

2.5.3.

In addition to existence, Hardt, Kinderlehrer, and Lin also prove the following regularity

result:

Theorem 2.5.6. ([26], Theorem 2.6): If n ∈ H1(Ω, S2) is a minimizer of EOF , as in

(2.2), then n is analytic on Ω/Z for some relatively closed subset of Z of Ω which has a

one-dimensional Hausdorff measure zero.

These sets of measure zero are exactly defect locations in the liquid crystal. While the

existence of a minimizer for the Oseen-Frank model is guaranteed and the liquid crystal

is necessarily well-behaved away from these defect regions, this model may not be the

most appropriate for studying the minimizing configurations for domains with larger defect

regions. Notice the regularity result only allows for point defects in the theory, but line

defects may occur which will have infinite energy when described in the Oseen-Frank model,

as will be discussed further in the section to follow. Furthermore, the use of this model

necessarily implies that there is one preferred direction of alignment in the bulk of the liquid

crystal. This may not always be the case and numerical computations in Chapter 3 and 4

will show that this assumption fails to capture some of the behavior seen in certain liquid

crystal domains.

2.6 Defects in the Oseen-Frank Model

In Section 2.4, defects were described as locations in which the director became singular. It

of interest how these singular regions are reflected in the Oseen-Frank model. Consider the

case where k1 = k2 = k3 = K and k4 = 0. Under these assumptions, energy (2.2) reduces

to a Dirchlet integral:

E∗OF (n) = K

∫
Ω
|∇n|2 dx. (2.8)
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This simplified version is referred to as the one-constant approximation of the Oseen-Frank

energy and helps provide intuition about the behavior of the full model. Suppose that the

liquid crystal domain, Ω ∈ Rn, n = 2, 3, is a ball of radius one centered at the origin,

and such that the director has the form n = x/|x|. From Figure 2.3, it is clear that

this configuration results in the degree one defect at the origin which is referred to as the

hedgehog defect. First, assume n = 3. We begin by converting our energy integral to

spherical coordinates using

∂

∂x
= sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

∂

∂y
= sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ

where x = r cosφ sin θ, y = r sinφ sin θ, and z = r cos θ, 0 < θ < π, 0 < φ < 2π. Evaluating

the energy gives:

E∗OF

(
x

|x|

)
= K

∫
B1(0)

3

|x|2
dx = K

∫ 1

0

∫ 2π

0

∫ π

0

3

r2
r2 sin θ dθdφdr

= 6πK

∫ π

0
sin θ dθ = 12πK.

This implies that the hedgehog defect in a three dimensional domains has a finite energy.

Now, consider that same defect in two dimensions:

E∗OF

(
x

|x|

)
= K

∫
B1(0)

∣∣∣∣∇( x|x|
)∣∣∣∣2dx = K

∫
B1(0)

2

|x|2
dx.

Rewritting the integral in polar coordinates (r, θ):

E∗OF (n) = K

∫ 2π

0

∫ 1

0

2

r2
r drdθ = 4πK ln r

∣∣∣∣1
0

Clearly, this two dimensional configuration will have infinite energy. This structure would

correspond to the two-dimensional cross section of the line defect hypothesized to exist for

a cylinder with radial planar alignment on its lateral boundaries [51], [7],[52]. The infinite

energy of some line defects in the Oseen-Frank energy was a motivating factor for developing

other liquid crystal models. The later models were more complicated and therefore the

Oseen-Frank model was still used for analytic studies and numerical computations. In these

cases, an infinite energy value was avoided by removing a small area around the defect and

assigning an energy value to this removed volume, but these manipulations were artificial

17



and not ideal for truly understanding the liquid crystal system even if for certain domains

they gave qualitative understanding. We note, that an infinite energy for this configuration

may not be as inaccurate as once considered. More recent works hypothesize that the

capillary with planar radial alignment on the lateral boundaries may never have the planar

radial solution as the minimizing configuration. This implies that the configuration resulting

in a central line defect is not energetically favorable, an issue which will be discussed further

in Chapters 3, 4, and 5.

2.7 Liquid Crystal Alignment: Biaxial vs. Uniaxial

We now give a description of the types of symmetry of the nematic phase and how they affect

the nature of defects. These three types of symmetry associated with the bulk arangements

are isotropic, unaxial and biaxial. The state in which there is no preferred direction of

alignment is referred to as isotropic. In the uniaxial symmetry, the molecules are aligned

along a single preferred direction and are therefore rotationally symmetric. Since there is a

single direction governing anisotropy, rotating the material around this preferred direction

does not change optical behavior. In a biaxial system, there are two preferred directions

of alignment and rotational symmetry is lost. There are instead two perpendicular axes

which allow for reflectional symmetry and, therefore, two optical axes along which light can

propagate without birefringence [53]. It was not until nearly 100 years after the discovery

of the liquid crystal phase that the biaxial symmetry was theoretically predicted by Freiser

in 1970 [54]. This theory was later experimentally confirmed in 1980 by Yu and Saupe [6].

The Oseen-Frank theory solely models uniaxial liquid crystal phases. Since biaxial

phases are known to occur in liquid crystals, this model cannot capture all the behavior

seen in liquid crystal domains. Additionally, this theory necessarily describes defect regions

as locations where the liquid crystal becomes isotropic. While it was originally believed

that the Saturn ring, as shown in Figure 2.4, was a region in which the liquid crystal

became isotropic, later papers contested this assumption. Kralj, Virga, and Zumer explain,

in [16], that the Saturn ring is not a line along which the liquid crystal becomes isotropic,

but instead a torus in which the liquid crystal becomes biaxial in contrast to the uniaxial

behavior in the surrounding medium. More specifically, Schopohl and Sluckin in [19] discuss

that all defects cores have a region of biaxiality surrounding a core which is uniaxial with

negative scalar order parameter. When the order parameter is negative, the particles align

in a plane perpendicular to the order parameter and can appear to have an isotropic or

biaxial behavior. An important contribution of this thesis is the numerical verification of
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this core structure which will be presented in Chapters 4 and 5.

2.8 Detailed Description of the Tensor Order Parameter Q

We now introduce the order tensor Q, which is the main variable of the Landau-de Gennes

theory. This tensor describes molecular alignment in a way that respects the head-to-tail

symmetry of the molecules and allows for biaxial alignment. In order to define this tensor,

we begin with a probability measure µ(p). At each point in the region occupied by the

liquid crystal, µ(p) gives the probability that the molecules in a given small neighborhood

point in the direction p. The head-to-tail symmetry of the models results in a zero-valued

first moment and the first non-trivial information on µ comes from the second moments.

Define

M :=

∫
S2
p⊗ p dµ(p).

If the nematic liquid crystal is isotropic, then dµ(p) = 1
4πdA and

M0 :=
1

4π

∫
S2
p⊗ p dA =

1

3
Id.

The de Gennes order-parameter tensor is defined to be:

Q := M −M0.

Since Q is a symmetric and traceless the most general form, when the liquid crystal align-

ment is biaxial, is given by:

Q = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3 (2.9)

where {ni} is an orthonormal basis of eigenvectors for Q with corresponding eigenvectors

λ1, λ2, λ3 and λ1 + λ2 + λ3 = 0 with −1/3 ≤ λi ≤ 2/3. The alignment of the molecules is

encoded in the behavior of these eigenvalues. When λ1 > λ2 > λ3, the liquid cystal exhibits

the biaxial state. In this case, molecular alignment is not rotationally symmetric around a

single preferred direction. If λ1 > 0 > λ2 = λ3 the liquid crystal is uniaxial with positive

scalar order parameter λ1. Here, the unique preferred direction is given by the eigenvector

associated to λ1 and the thermal vibrations of the molecules are rotationally symmetric

about this direction. For λ3 < 0 < λ2 = λ1, the liquid crystal is said to be unaxial with

negative scalar order parameter. For this state, the molecules prefer to align themselves

in the plane perpendicular to the eigenvector associated with λ3. This alignment does not
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have a well-defined direction on the plane and results in a very disordered state confined to

a planar region.

Expression (2.10) is often rewritten in the following form

Q = s(n⊗ n− 1

3
I) + r(m⊗m− 1

3
I), (2.10)

where n = n1, m = n2, and the order parameters s, r ∈ R, with s = 2λ1 + λ2, and

r = λ1 + 2λ2. For the biaxial alignment, the two eigenvector n and m give the two

preferred directions of alignment for the biaxial phase. The parameters r and s give the

quality of alignment respectively. Note that the definition of Q is independent of whether

we choose to describe alignment with n and m or the negative of these vectors, respecting

the head-to-tail symmetry of the molecules. Since n and m are of unit length, letting θ, φ,

and ψ denote the Euler angles, we write these directors in the following way:

n = (cos θ cosφ, cos θ sinφ, sin θ). (2.11)

Since m is perpendicular to n:

m = (sinφ cosψ − cosφ sinψ sin θ,− sinφ sinψ sin θ − cosφ cosψ, sinψ cos θ) (2.12)

where ψ is the angle from m to the direction (sinφ,− cosφ, 0) in the xy-plane, which is

perpendicular to n. Consider the following matrix representation for Q:

Q =


q0 q2 q3

q2 q1 q4

q3 q4 −q0 − q1

 (2.13)

Following the article by Mottram and Newton [53], using (2.11) and (2.12), write the com-

ponents of Q in terms of θ, φ, and ψ:

q0 = s cos2 θ cos2 φ+ r(sinφ cosψ − cosφ sinψ sin θ)2 − 1

3
(s+ r)

q1 = s cos2 θ sin2 φ+ r(cosφ cosψ + sinφ sinψ sin θ)2 − 1

3
(s+ r)

q2 = s cos2 θ sinφ cosφ− r(cosφ cosψ + sinφ sinψ sin θ)(sinφ cosψ − cosφ sinψ sin θ)

q3 = s sin θ cos θ cosφ+ r sinψ cos θ(sinφ cosψ − cosφ sinψ sin θ)

q4 = s cos θ sin θ sinφ− r sinψ cos θ(cosφ cosψ + sinφ sinψ sin θ)

Now, let the directors n and m lie along the x and y axes, the laboratory frame of reference.

Then θ = 0, φ = 0, and ψ = π, and the above terms simplify to:

q0 =
1

3
(2s− r),
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q1 =
1

3
(2r − s),

q2 = q3 = q4 = 0.

The restriction to the uniaxial phase requires two eigenvalues to be equal, which happens

in three possible cases:

q0 = −q0 − q1 =⇒ q0 =
r

3
,

q1 = −q0 − q1 =⇒ q1 =
s

3
,

q0 = q1 =
s

3
=
r

3
.

When one of these occurs, the uniaxial tensor Q is becomes:

Q = s0(n⊗ n− 1

3
I) (2.14)

where s0 ∈ (−1/3, 1). Note that in this case, n corresponds to the director previously

described for the Oseen-Frank model.

A parameter of high interest in this work is the biaxiality parameter, β, which describes

the degree of biaxiality throughout the domain of interest. It is defined as:

β(Q) = 1− 6
(tr Q3)2

(tr Q2)3
. (2.15)

By Lemma 1, in [55], β(Q) ∈ [0, 1] and β(Q) = 0 if and only if Q is uniaxial. For highly

concentrated biaxial defect regions, the bulk is unaxial with positive order parameter away

from the defects, and therefore has a nice representation for the line field in terms of the

dominant eigenvector [19]. This fact will exploited for visualization purposes in Chapters

4 and 5. In some domains the biaxial behavior is not concentrated, as in the case with

concentric cylinders, and the line field will not be well-defined. In these cases, the biaxiality

parameter will be the only constructive way to understand the liquid crystal behavior in

the system.

2.9 The Landau-de Gennes Model

The most general continuum theory for nematic liquid crystals is the Landau-de Gennes the-

ory which can account for uniaxial and biaxial phases. In the Landau-de Gennes framework,

the state of a nematic liquid crystal is modeled by the symmetric, traceless three-by-three

matrix Q as defined above. In this model, three energy contributions are considered: energy
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due to elastic distortions, EE , energy due to homogenous alignment, EB, and energy due

to liquid crystal alignment on domain surfaces, ES . The total energy is:

ELDG = EE(∇Q) + EB(Q) + ES(Q)

=

∫
Ω

(fE(∇Q) + fB(Q)) +

∫
Γ
(fS(Q)).

(2.16)

fE is the elastic energy density that represents the contribution of the gradient of Q and

therefore penalizes spatial variations in the tensor field. fS is the surface free-energy density

and penalizes disagreement between the tensor field and the prescribed boundary tensor Q0.

fB is the volumetric free-energy density due to bulk contributions, and encodes the phase

transition behavior of the material [56],[30]. Note that in (2.16), ∇Q is a third order tensor

such that (∇Q)ijk = ∂Qij/∂xk. Written out explicitly these terms become:

fE(Q) =
1

2
L1Qαβ,γQαβ,γ +

1

2
L2Qαβ,βQαγ,γ +

1

2
L3Qαβ,γQαγ,β, (2.17)

fB(Q) =
A

2
tr (Q2)− B

3
tr (Q3) +

C

4
tr (Q2)2 +D(A,B,C), (2.18)

fS(Q) =
W

2

∣∣∣∣Q∣∣Γ −Q0

∣∣∣∣2, (2.19)

where L1, L2, L3 > 0, Q is the symmetric, traceless, second order tensor described in Section

2.8 above, Q
∣∣
Γ

is Q restricted to a surface in the domain, and D(A,B,B) is chosen so

that fB(Q) ≥ 0. We let D(A,B,C) = min fb(Q) where the minimum is taken over all

symmetric, traceless Q, which is guaranteed to exist by Proposition 16 of [55]. Before

studying the minimization of the entire Landau-de Gennes energy, we address the issue of

orientability which is a relevant feature of the model.

2.10 Orientability

We now introduce an important issue concerning the relationship between the tensor Q and

the director described by the vector field n. From (2.10), it is clear that Q respects the

head-to-tail symmetry of the liquid crystal molecules because of its invariance under the

transformations n → −n and m → −m. When Q is uniaxial as described by (2.14), this

invariance indicates that a line field associated with the tensor Q, rather than the vector

field n, is the appropriate variable to describe molecular alignment. On the other hand,

if there is a unit vector field, n, that can be associated with a line field, Q, such that no

discontinuities form, they will give equivalent molecular configurations. Defining such a

continuous vector field from a line field is oftentimes not possible and this issue, referred to
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as orientability, must be studied further. For the fixed non-zero constant s ∈ [−1/2, 1], let

Q := {Q ∈M3×3 : Q = s(n⊗ n− (1/3)I) for some n ∈ S2}

Also, define the projection operator P : S2 → Q by:

P (n) := s(n⊗ n− (1/3)I)

Ball and Zarnescu give a precise definition of the orientability of Q:

Definition 2.10.1. ([57], orientability): Let Ω be a domain. We say that Q ∈ W 1,p(Ω,Q)

is orientable if there exists an n ∈ W 1,p(Ω, S2) such that P (n) = Q a.e. Otherwise we call

Q non-orientably.

Note that the energy expression (2.16) is finite for Q ∈ H1(Ω). Additionally, Q must be

uniaxial everywhere in the domain Ω and cannot contain any line defects in order for its

associated line fields to be orientable. Ball and Zarnescu discuss orientability further in the

following theorem:

Theorem 2.10.1. ([57]): For simply connected domains, line fields belonging to W 1,p for

some p ≥ 2 are orientable.

Ball and Zarnescu explain that understanding the behavior on the boundary provides

insight into the orientability of Q. To better illustrate this issue, consider simply connected

domains out of which one cuts a finite number of ‘holes,’ which are also simply connected.

As an example, consider Figure 2.5, which is based on an image from [57]. An orientable

boundary condition is prescribed on the outer boundary and no boundary conditions are

prescribed on the interior boundaries. These boundary conditions can be satisfied by both

orientable and non-orientable line configurations, but the oriented boundary condition re-

sults in a higher energy since a gradient must develop.

We do not claim that the line field is the minimizer for the figure above, but instead, that

it will have a lower energy than if we try to impose an orientation. This necessarily implies

that the oriented configuration can have a higher energy than the non-oriented system.

From this simple example, it is clear that for domains which are not simply connected,

the Landau-de Gennes may allow for a configuration with less energy. If the domain under

consideration is simply connected, there are simple assumptions under which the two models

are exactly equal as we will show in the following section.
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Figure 2.5: Orientability in a Stadium

Assume that the distance between the two black circles is nonzero. On the left, a non-
orientable line field is imposed. Along any line that intersects the stadium between the
two circles, |∇Q| will be zero in the non-oriented configuration. On the right, consider
prescribing an orientation. Matching the oriented boundary conditions prescribed on the
exterior boundary causes a gradient to develop along this line.

2.11 Landau-de Gennes in Terms of Oseen-Frank

If the line field describing the molecular orientation is orientable, there are conditions un-

der which the one-constant approximations of the Oseen-Frank model and the Landau-de

Gennes model are equivalent. These results are summarized into the following proposition:

Proposition 2.11.1. Assume that Ω is a simply connected domain, s is constant, and

Q ∈ H1(Ω) is uniaxial. Then the first order approximation of the Oseen-Frank energy is

equal to the first order approximation of the Landau-de Gennes energy with K = Ls2.

Proof. Consider the first order approximation of the Landau-de Gennes model:

E∗LDG(Q) =

∫
Ω

L

2
|∇Q|2 dx. (2.20)

Since Q assumed uniaxial, |∇Q|2 can be expanded in the following way:

|∇Q|2 =
∂Qij
∂xk

∂Qij
∂xk

=

[
∇sk(n⊗ n−

1

3
I)ij + s(∇njkni +∇niknj)

]
[
∇sk(n⊗ n−

1

3
I)ij + s(∇njkni +∇niknj)

]
= ∇sk∇sk(n⊗ n−

1

3
I)ij(n⊗ n−

1

3
I)ij
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+ 2s∇sk(n⊗ n−
1

3
I)ij(∇njkni +∇niknj)

+ s2(∇njkni +∇niknj)(∇njkni +∇niknj).

This expression is simplified using the fact that |n|2 = 1. Let us consider each term

separately:

∇sk∇sk(n⊗ n−
1

3
I)ij(n⊗ n−

1

3
I)ij = ∇sk∇sk(ninjninj −

2

3
ninjδij +

1

9
IijIij)

= ∇sk∇sk(ninjnjni −
2

3
nini +

1

3
)

= ∇sk∇sk(1−
2

3
+

1

3
) =

2

3
|∇s|2

(2.21)

2s∇sk(n⊗ n−
1

3
I)ij(∇njkni +∇niknj) = 2s∇sk(ninj

∂nj
∂xk

ni + ninj
∂ni
∂xk

nj

− 1

3
δij
∂nj
∂xk

ni −
1

3
δij
∂ni
∂xk

nj)

= 2s∇sk(nj
∂nj
∂xk

+ ni
∂ni
∂xk
− 2

3

∂ni
∂xk

ni)

= 2s∇sk(
4

3
ni
∂ni
∂xk

) =
4

3
s∇sk

∂|n|2

∂xk
= 0

(2.22)

s2(∇njkni +∇niknj)(∇njkni +∇niknj) = s2(
∂nj
∂xk

ni
∂nj
∂xk

ni + 2
∂nj
∂xk

ni
∂ni
∂nk

nj

+
∂ni
∂xk

nj
∂ni
∂xk

nj)

= s2(2
∂ni
∂xk

∂ni
∂xk

+ 2

(
∂

∂xk

|n|2

2

)(
∂

∂xk

|n|2

2

)
)

= 2s2|∇n|2

(2.23)

Adding (2.21), (2.23) and (2.23), (2.14) becomes:

L

2
|∇Q|2 = L(

1

3
|∇s|2 + s2|∇n|2) (2.24)

Since s is constant and K = s2L by assumption, we have

E∗LDG(Q) =

∫
Ω

L

2
|∇Q|2 dx =

∫
Ω
K|∇n|2 dx = E∗OF (n)

Futhermore, since Q ∈ H1(Ω), Q and n will describe the same molecular orientation as a

result of Theorem 2.10.1.

Note that (2.24) is known as the Ericksen’s model for liquid crystal energy with variable

degree of orientation, which was briefly mentioned in Section 2.3. This model is dependent

on the order parameter s, and director n [2]. There is a slight change in convention where
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the order parameter s is the negative of the s defined for the tensor Q. In other words, now

s ∈ (−1/2, 1), and s = 0 continues to correspond to the isotropic state. According to this

model, point defects and disclinations will have finite energy. In fact, even if ∇n → ∞ in

the neighborhood of a defect, we can have s → 0 in such a way that s2|∇n|2 is bounded

[58]. Existence, local uniqueness, and regularity of minimizers for this energy expression

was proved by Lin in [28]. While this model, provides a more robust description since line

defects no longer have infinity energy, it does not allow for biaxial regions which we are

interested in computing.

Proposition 2.11.1 has a further extension to domains in which Q /∈ H1(Ω). For simply

connected domains, Majumdar and Zarnescu in [55] show that the predictions in Oseen-

Frank theory agree with Landau-de Gennes theory away from singularites. While these

results are important, we will be considering domains which are not simply connected and

therefore the issue of orientability will allow for more minimizers in the Q tensor description

than the vector field description, which further motivates our use of the Landau-de Gennes

energy expression. Although our numerical studies will concern the Landau-de Gennes

model, the comparison of that model with Oseen-Frank brings out subtle aspects of liquid

crystal behavior, some found for the first time. We next establish an existence result in the

following section before presenting our numerical work.

2.12 Existence of a Minimizer for Landau-de Gennes

We use the direct methods of calculus of variations to show existence and follow similar

arguments as outlined in Chapter 8 of [59]. Let us recall that the total energy is given by

E(Q) =

∫
Ω

(fE(∇Q) + fB(Q)) +

∫
Γ
(fS(Q)), (2.25)

where fE , fB, and fS are defined in (2.17), (2.18), and (2.19) respectively, Ω is the liquid

crystal domain, and Γ ⊆ ∂Ω is the surface on which weak anchoring is enforced. We begin

with the following definition:

Definition 2.12.1. We say that I[·] is (sequentially) weakly lower semicontinuous on

W 1,q(Ω), provided

I[Q] ≤ lim inf
k→∞

I[Qk]

whenever

Qk ⇀ Q weakly in W 1,q(Ω).
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In the main Theorem of this Section, we will not prove weak lower semi-continuity directly,

but instead use the following result.

Theorem 2.12.1. ([59], Weak lower semicontinuity): Assume that L is smooth, bounded

below, and in addition

the mapping B 7→ L(B, P,x) is convex,

for each P ∈M3×3, z ∈ Rm. Then

I[·] is weakly lower semicontinuous on W 1,q(Ω)

We now establish existence for a general functional dependent on a symmetric, traceless

tensor Q.

Theorem 2.12.2. (Existence for tensor dependence): Let I[Q] =
∫

Ω L(∇Q(x), Q(x),x) dx

and assume that L satisfies the coercivity inequality:

L(B, P,x) ≥ α|B|2 − β, (B ∈M3×3×3, P ∈M3×3, x ∈ Rm) (2.26)

for constants α > 0, β ≥ 0. Also, suppose L is convex in the variable B and the admissible

set,

A = {Q ∈ H1(Ω;Rm)|tr Q = 0 and Q = Q0 on ∂U/Γ in the trace sense}, (2.27)

where Q0 : ∂U/Γ → R given, is nonempty. Then there exists at least one function R ∈ A
such that I[R] = minQ∈A I[Q].

Proof. Begin by setting m = infR∈A I[R] and assume that m is finite. Choose a minimizing

sequence Qk so that I[Qk] → m as k → ∞. For simplification, take β = 0 in (2.26), since

one can always consider L̃ = L + β and the same arguments would apply. This inequality

then implies

I[Q] ≥ α
∫

Ω
|∇Q|2 dx. (2.28)

Since m finite,

sup
k
||∇Qk||L2(Ω) <∞ (2.29)

Consider any function R ∈ A. Since Qk and R both equal Q0 on ∂Ω/Γ in the trace sense,

Qk −R ∈ H1
0 (Ω). Poincare’s inequality and (2.29) then imply

||Qk||L2(Ω) ≤ ||Qk −R||L2(Ω) + ||R||L2(Ω) ≤ C||∇Qk −∇R||L2(Ω) + C ≤ C (2.30)
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and so sup ||Qk||L2(Ω) < ∞. Together with (2.29), this implies Qk ∈ H1(Ω). Therefore,

there exists a subsequence {Qkj}∞j=1 ⊂ {Qk} and a Q∗ ∈ H1(Ω) such that

Qkj ⇀ Q∗ weakly in H1(Ω) (2.31)

Q∗ is a candidate for our minimizer, but we must verify that Q∗ ∈ A. By the Rellich-

Kondrachov Theorem, H1(Ω) ⊂⊂ L2(Ω). Since Qkj is a uniformly bounded sequence in

H1(Ω), it will converge strongly in L2(Ω) which further implies Qkj (x) → Q∗(x) for a.e.

x ∈ Ω. Since the matrix trace is continuous, tr Qkj → tr Q∗ and tr Q∗ = 0. Strong

convergence in L2 further implies that

Q0 = Qkj
∣∣∣∣
Γ

→ Q∗
∣∣∣∣
Γ

= Q0 (2.32)

giving us that Q∗ ∈ A. By Theorem 2.12.1

I[Q] ≤ lim inf
j→∞

I[Qkj ] = m (2.33)

but since Q ∈ A, it follows that

I[Q] = m = min
R∈A

I[R]

When proving the existence of a minimizer for the Landau-de Gennes energy the Extension

Theorem is used to show that the admissible set is nonempty and we include it below for

completeness.

Theorem 2.12.3. ([59], Extension): Assume Ω is bounded and ∂Ω is C1. Select a bounded

open set V such that Ω ⊂⊂ V. Then there exists a bounded linear operator E : W 1,p(Ω) →
W 1,p(Rn) such that for each Q ∈W 1,p(Ω):

(1) EQ = Q a.e.

(2) EQ has support within V

(3) ||EQ||W 1,p(Rn) ≤ C||Q||W 1,p(Ω) where C depends only on p,Ω and V

We can now use Theorem 2.12.2 to show the existence of a minimizer for the Landau-de

Gennes energy model.

Theorem 2.12.4. (Existence of a Minimizer for Landau-de Gennes): Assume that Li ≥ 0,

i = 1, 2, 3 and 1
2L1 − 2L2 − 2L3 > 0. Then there exists a Q̄ such that

E(Q̄) = inf
Q∈A

E(Q) (2.34)

where E and A are given by (2.25) and (2.27) respectively.
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Proof. Using Theorem 2.12.3, extend Q0 ∈ H1(Ω), which is prescribed on Γ, to all of Rn.

Then the restriction to Ω is in the admissible set. Notice that fB(Q) and fS(Q) do not

depend on the derivatives of Q, and so we only need to show that fE(∇Q) is convex. This

is straightforward using the linearity of the derivative:

fE(λ∂Q+ (1− λ)∂P ) = fE(∂(λQ+ (1− λ)P ))

=
1

2
L1(λQ+ (1− λ)P )αβ,γ(λQ+ (1− λ)P )αβ,γ+

+
1

2
L2(λQ+ (1− λ)P )αβ,β(λQ+ (1− λ)P )αγ,γ+

+
1

2
L3(λQ+ (1− λ)P )αβ,γ(λQ+ (1− λ)P )αγ,β

= λ(
1

2
L1Qαβ,γQαβ,γ +

1

2
L2Qαβ,βQαγ,γ +

1

2
L3Qαβ,γQαγ,β)

+ (1− λ)(
1

2
L1Pαβ,γPαβ,γ +

1

2
L2Pαβ,βPαγ,γ +

1

2
L3Pαβ,γPαγ,β)

= λfE(∂Q) + (1− λ)fE(∂P )

Next, we show that fE is coercive. Notice that the first term of fE can be written as
1
2L1Qαβ,γQαβ,γ = 1

2L1|∇Q|2. Using this, and the triangle inequality, we can show that the

entire term is bounded below by a constant times |∇Q|2

fE(∂Q) =
1

2
L1Qαβ,γQαβ,γ +

1

2
L2Qαβ,βQαγ,γ +

1

2
L3Qαβ,γQαγ,β

≥ 1

2
L1|∇Q|2 + L2(−Qαβ,βQαβ,β −Qαγ,γQαγ,γ)+

+ L3(−Qαβ,γQαβ,γ −Qαγ,βQαγ,β)

=
1

2
L1|∇Q|2 − L2(2|∇Q|2)− L3(2|∇Q|2)

= (
1

2
L1 − 2L2 − 2L3)|∇Q|2

By definition, fS(Q) ≥ 0. Also, recall fB(Q) ≥ 0 by the choice of D(A,B,C) > 0 as

the minimum of fB(Q) which is guaranteed to exist by [55]. The assumptions on L1, L2, L3

then ensure coercivity and Theorem 2.12.2 guarantees that the minimizer exists for (2.25).

2.13 Non-Dimensionalization of the Landau-de Gennes Model

In the chapters that follow, the focus will be on numerical computing with the Landau-

de Gennes energy integral. The one-constant approximation of the elastic energy, where

L1 = L and L2 = 0 = L3, will be used. Additionally, the bulk terms without the constant
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D(A,B,C) will be considered, and the use of Dirchlet boundary conditions results in the

elimination of the surface integral. The energy now has the following form:∫
Ω
L|∇Q|2 + f(Q) dx (2.35)

where f(Q) = fB(Q) −D(A,B,C), with fB(Q) is defined as in (2.18), and Q is the sym-

metric, traceless, second-order tensor described in Section 2.8.

We will now use parameter values for the compound 5CB, a standard liquid crystal. The

bulk and elastic constants are given by A = −.172× 106N/m2, B = −2.12× 106N/m2, C =

1.73 × 106N/m2, and L = 4 × 10−11N [60]. Since the bulk constants are approximatedly

1017 times larger than the elastic constants in these units, this suggests that we may have

a very singularly perturbed problem. To study this further, the energy expression is non-

dimensionalized. Let

x̂ = x/L0 and Ω̂ = (Ω/L0), (2.36)

where Ω̂ is the non-dimensionalized domain and L0 is a characteristic length scale. The

one-constant approximation for the elastic energy can be rewritten in the following way:

E(Q) =

∫
Ω

L

2
|∇Q|2 + f(Q) dx =

∫
Ω̂L0

[
L

2L2
0

|∇̂Q̂|2 + |A|f̂(Q̂)

]
L3

0 dx̂,

where Q(x) = Q̂(x̂) and f̂(Q̂) = (1/|A|)f(Q). Let us define the dimensionless energy to be

Ê(Q̂) = (1/LL0)E(Q):

Ê(Q̂) =

∫
Ω̂

1

2
|∇̂Q̂|2 +

|A|L2
0

L

[
−1

2
tr Q̂2 +

1

3

B

|A|
tr Q3 +

1

4

C

|A|
(tr Q̂2)2

]
dx̂

=

∫
Ω̂

1

2
|∇̂Q̂|2 +A

[
−1

2
tr Q̂2 +

1

3
Btr Q̂3 +

1

4
C(tr Q̂2)2

]
dx̂

(2.37)

where

C = C/|A|,B = B/|A|, and A = (|A|L2
0)/L. (2.38)

C and B are constants depending on the material parameters of the liquid crystal. L0 is

chosen to be the coherence length scale so that A = 1, i.e.,

L0 =
√
L/|A| ≈ 1.52× 10−8m

Notice that bulk and elastic constants are now of the same order of magnitude and, when an

appropriate domain is chosen, the problem is not singularly perturbed. For the remainder of

this thesis, the dimensionless energy will be used, but the hat will be dropped for simplicity:

E(Q) =

∫
Ω

1

2
|∇Q|2 − 1

2
tr Q2 +

B
3

tr Q3 +
C
4

(tr Q2)2 dx (2.39)
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In the Chapters that follow, we use this energy expression to examine computational and

theoretical liquid crystal configurations for a variety of domains. In some cases, we reproduce

previous numerical results and compare the minimizing configurations to theoretical and

experimental evidence. In other domains, the energy minimizing configurations produced

were not previously predicted in the literature, but better align with liquid crystal behavior

seen in experiments.
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Chapter 3

Numerical Simulations in Two

Dimensions

In this Chapter, we consider two-dimensional domains and a reduced two-dimensional ver-

sion of the Landau-de Gennes energy. While these assumptions are not physically mean-

ingful, they help us understand the behavior of the liquid crystal in three dimensions and

allow us to compare with previous numerical results in such geometries. The restriction to

a two-dimensional energy expression will necessarily enforce that Q be uniaxial everywhere

and lie in the plane. This fact will be exploited for visualization purposes since the line field

will be well-defined everywhere. This also allows for interesting comparision with previous

numerical works done using Oseen-Frank.

A variety of domains and boundary conditions will be considered and energy minimizing

configurations will be found using FEniCS, a computing platform which uses finite elements

to solve PDEs. For some of the domains, our computations will be in agreement with

previous theoretical and numerical work, as in the case of domains with particles embedded.

On the other hand, for the annulus, the inability of the director to relax out of the plane

suppresses some of the observed behavior [7]. For the droplet, we find that the split core

defect seen in previous numerical studies may actually be an artifact of improper mesh

refinement. All of these issues will be discussed in further detail in the sections that follow.

3.1 The Weak Energy Expression

In order to compute the minimizing configurations using FEniCS, the Landau-de Gennes

energy must be expressed in weak form. Since we are considering a restriction to two
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dimensions, our symmetric, traceless tensor Q has the following form:

Q =

[
q0 q1

q1 −q0

]
. (3.1)

The energy expression used for the numerical computing will be the non-dimensionalized

version of Landau-de Gennes defined in Chapter 2. For Q as defined in (3.1), tr Q3 = 0

and the dimensionless energy expression becomes:

E(Q) =

∫
Ω

1

2
|∇Q|2 − 1

2
tr Q2 +

C
4

(tr Q2)2 dx (3.2)

In order to compute the minimizer of this integral, the elastic and bulk terms of the energy

are expressed in terms of the components of Q:

E(q0, q1) =

∫
Ω

(
∂q0

∂x0
)2 + (

∂q0

∂x1
)2 + (

∂q1

∂x0
)2 + (

∂q1

∂x1
)2 − (q2

0 + q2
1) + C(q2

0 + q2
1)2 dx

Let q = (q0, q1) and q ∈ W̃ 1,2(Ω) = {p ∈ H1(Ω)| p = g on ∂Ω}, where g ∈ W 1/2,2(Ω) is

prescribed on the boundary of Ω, ∂Ω. We now set the problem in variational formulation

and calculate the weak Euler-Lagrange equations. For the test function ν = (ν0, ν1) ∈
W 1,2

0 (Ω) = {p ∈ H1(Ω)| p = 0 on ∂Ω} the first variation is calculated,

d

de
E(q0 + ev0, q1)

∣∣∣∣
e=0

=
d

de

∫
Ω

[
(
∂q0

∂x0
+ e

∂v0

∂x0
)2 + (

∂q0

∂x1
+ e

∂v0

∂x1
)2 + (

∂q1

∂x0
)2 + (

∂q1

∂x1
)2

]
−
[
(q0 + ev0)2 + q2

1

]
+ C

[
(q0 + ev0)2 + q2

1

]2
dx

∣∣∣∣
e=0

=

∫
Ω

2
∂q0

∂x0

∂v0

∂x0
+
∂q0

∂x1

∂v0

∂x1
− 2q0v0 + 4C(q2

0 + q2
1)q0v0 dx

=

∫
Ω

2∇q0 · ∇v0 + (−2q0 + 4C(q2
0 + q2

1)q0)v0 dx = 0,

and

d

de
E(q0, q1 + ev1)

∣∣∣∣
e=0

=

∫
Ω

2L∇q1 · ∇v1 + (−2q1 + 4C(q2
0 + q2

1)q1)v1 dx = 0.

Both expressions can be combined into∫
Ω

2L∇q : ∇v + (−2 + 4C(q2
0 + q2

1))q · v dx = 0, (3.3)

where A : B denotes the Frobenius inner product. Note that the above integral expression

is the weak form of a semi-linear elliptic equation.
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3.2 Visualization of the Solution

A finite element method based on piecewise polynomials over triangles, is used to solve (3.3).

First, a mesh which consists of a finite number of disjoint triangles is generated using mshr,

the mesh generation component of FEniCS. If the domain contains curved surfaces, they are

approximated using polygons. After each mesh refinement, I ensure that the vertices which

lie on the polygonal boundary are snapped out to the circular boundary which is being

approximated. This results in the approximating polygon having an increased number

of sides with each iteration. This process will be referred to as snapping the boundary

and is done because it reduces the introduction of error due to boundary approximation.

The approximate solution, qh = (q0,h, q1,h), is then computed over this mesh by calling

‘NonlinearVariationalSolve,’ a class which implements a solver for nonlinear problems using

Newton’s method.

In order to visualize the computed minimizer, I calculate the line field and the uniaxial

order parameter s. Using relation (3.1), Qh is defined in terms of (q0,h, q1,h). Since Qh is

uniaxial and restricted to two dimensions, Qh = sh(nh ⊗ nh − (1/2)I). In Section 2.8, we

showed that nh is the eigenvector associated to λh and sh = 2λh, where λh is the dominant

eigenvalue of Qh. Once sh and nh are calculated over the mesh, I exported the data to a

pvd file and processed it in Paraview, an application for interactive, scientific visualization.

This program allows us to plot the line field and sh over the domain. The figures in this

thesis which show the domain, mesh, line field, and sh have been generated in Paraview.

3.3 Specifying Boundary Conditions

Through the use of a surfactant, liquid crystal molecules can be forced to attach on domain

boundaries in a rigid way. This inflexible attachment is referred to as strong anchoring and

will be enforced with the use of a Dirichlet boundary condition. These boundary conditions

must be described in terms of the components of Q, with s = 1. For radial alignment, the

associated vector field is nr = x/|x|. The boundary conditions are described in terms of

the components of Q using relation (3.1):

Q =

∣∣∣∣∣ (x2
0)/|x|2 − 1/2 (x0x1)/|x|2

(x0x1)/|x|2 (x2
1)/|x|2 − 1/2

∣∣∣∣∣ =

∣∣∣∣∣ q0 q1

q1 −q0

∣∣∣∣∣ .
This implies

q0 = x2
0/|x|2 − 1/2, q1 = (x0x1)/|x|2. (3.4)
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Everywhere vertical Dirichlet boundary conditions are also prescribed in simulations. In

this case, nv = (0, 1) which implies

q0 = −s/2, q1 = 0. (3.5)

These describe the only two boundary conditions used in the simulations presented in this

Chapter.

3.4 Manufactured Solution for an Annulus

The method of manufactured solutions provides a procedure for generating solutions for

code accuracy verification. The idea is to include in the code a source term and use it to

generate a nontrivial but known solution structure, without being concerned with whether it

is physically realistic [61]. For this solution, we choose a minimizing configuration predicted

by the Oseen-Frank model for an annular region. This solution is then used to define

the Dirchlet boundary conditions and plugged into the strong form of the Euler-Lagrange

equations to calculate the source term used in the minimization.

Consider the domain composed of an annulus with the liquid crystal 5CB filling the

region between the two bounding circles. We prescribe normal Dirichlet boundary conditions

on both boundaries using relation (3.4). For the manufactured solution, a configuration

which is a reasonable energy minimizer for this domain is chosen. Bethuel, Brezis, Coleman,

and Hélein use the Oseen-Frank energy expression to prove that for a liquid crystal domain

bounded by two concentric circles, the unique energy minimizer will be radial for ρ ≥ e−π ≈
.0432, where ρ is the ratio of the inner to the outer radius [20]. Bearing this in mind, the

outer radius is chosen to be L0 and the inner radius is chosen to be .5L0, for L0 being the

characteristic length defined in Section 2.13. The annular domain satisfies the condition

ρ > e−π. Note that, we do not claim that the Oseen-Frank energy expression will have the

same minimizer as the Landau-de Gennes energy, but instead that the radial solution is a

reasonable choice when producing a manufactured solution. We begin by calculating the

forcing term, f , according to:

− 2∆q + [−2 + 4C(q2
0 + q2

1)]q = f (3.6)

where the left-hand side of is the strong form of the left-hand side of (3.3). The man-

ufactured solution is given by qm = (x2
0/(x

2
0 + x2

1) − 1/2, (x0x1)/(x2
0 + x2

1)) where nr =

(x0/
√
x2

0 + x2
1, x1/

√
x2

0 + x2
1) corresponds to the radial line field. Inputting this into the
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left-hand side of (3.4) allows us to calculate f :

f0 = −2∆q0 + (−2 + 4C(q2
0 + q2

0))q0

=
4(x2

0 − x2
1)

(x2
0 + x2

1)2
+

(
−2 + 4C

[(
x2

0

|x|2
− 1

2

)2

+

(
x0x1

|x|2

)2
])(

x2
0

|x|2
− 1

2

)
f1 = −2∆q1 + (−2 + 4C(q2

0 + q2
0))q1

=
8x0x1

(x2
0 + x2

1)2
+

(
−2 + 4C

[(
x2

0

|x|2
− 1

2

)2

+

(
x0x1

|x|2

)2
])(

x0x1

|x|2

)
We find the approximate solution, qh, of (3.4) using FEniCS on the initial mesh pictured

in Figure 3.1. This mesh is refined several times and the approximate solution, qh, is

calculated in every iteration. The maximum, minimum and average cell diameter, h, for

the initial and final meshes are calculated and organized into Table 3.1.

Table 3.1: Mesh Details for Annulus with ρ = .5

Mesh Max h Min h Average h Number of Triangles

Initial Mesh 2.33e− 01 1.13e− 01 1.78e− 01 2.18e+ 02

Final Mesh 2.66e− 03 8.80e− 04 1.64e− 03 3.57e+ 06

Figure 3.1: Initial Mesh for Annular Domain with ρ = .5

The initial mesh for the annular region with ρ = .5 on which the Landau-de Gennes energy

will be minimized is shown.

We interpolate the manufactured solution, qm, onto each mesh and the error between

this and qh is found, where qh is calculated using degree one and two Lagrange elements.
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The largest cell diameter for each mesh is used to calculate the orders of convergence. The

results are summarized into Tables 3.2 and 3.3.

Table 3.2: Convergence with Degree 1 Elements on Annular Domain with ρ = .5

Max h Max Error Max Order L2 Error L2 Order H1 Error H1 Order

2.33e− 01 9.85e− 03 3.92e− 03 4.07e− 02

1.71e− 01 5.28e− 03 2.00 2.13e− 03 1.96 8.19e− 02 −2.25

8.53e− 02 1.56e− 03 1.76 5.54e− 04 1.94 4.39e− 02 0.90

4.26e− 02 4.39e− 04 1.82 1.40e− 04 1.99 2.27e− 02 0.95

2.13e− 02 1.22e− 04 1.85 3.50e− 05 2.00 1.16e− 02 0.97

1.07e− 02 3.36e− 05 1.86 8.77e− 06 2.00 5.83e− 03 0.99

5.33e− 03 9.19e− 06 1.87 2.20e− 06 2.00 2.93e− 03 0.99

2.66e− 03 2.49e− 06 1.88 5.49e− 07 2.00 1.47e− 03 1.00

Table 3.3: Convergence with Degree 2 Elements on Annular Domain with ρ = .5

Max h Max Error Max Order L2 Error L2 Order H1 Error H1 Order

2.33e− 01 5.92e− 04 1.44e− 04 4.40e− 03
1.71e− 01 1.79e− 04 3.85 6.12e− 05 2.75 4.88e− 03 −0.34
8.53e− 02 2.65e− 05 2.75 8.19e− 06 2.90 1.22e− 03 2.00
4.26e− 02 3.84e− 06 2.79 1.05e− 06 2.96 3.00e− 04 2.02
2.13e− 02 5.24e− 07 2.87 1.34e− 07 2.98 7.41e− 05 2.02
1.07e− 02 6.88e− 08 2.93 1.68e− 08 2.99 1.84e− 05 2.01
5.33e− 03 8.84e− 09 2.96 2.11e− 09 2.99 4.58e− 06 2.01

Using degree one elements the maximum and L2 rates are converging to two and the H1

order is approaching one, giving the optimal rates predicted by the theory. Using degree

two elements, we also see solid convergence results since the orders of the maximum norm

and the L2 norm are approaching three, while the order of the H1 norm is approaching a

value of two. This reassures us that the subsequent computations do not contain errors.

3.5 Various Annular Domains

In the following chapters, we focus on the minimizing configurations of concentric cylinder

domains with planar radial Dirichlet boundary conditions on the lateral boundaries. One

of the most influential papers concerning minimizers in this domain, by Bethuel et al. was
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briefly mentioned in the previous section [20]. They use the one-constant approximation of

the Oseen-Frank energy to prove that a liquid crystal confined between concentric cylinders

have two possible energy minimizing configurations which depend on the parameter ρ, the

ratio of the inner cylinder radius to the outer cylinder radius. For completeness, their results

are summarized here. Their first theorem states that minimizers of the three-dimensional

system will also be minimizers over the two-dimensional cross sections. Let Ω be a smooth

bounded domain in R2, D = Ω× [0, 1], and φ be a smooth map from ∂Ω to S2. Define

F = {u ∈ H1(D,S2);u(x, y, z) = φ(x, y) for (x, y, z) ∈ ∂Ω× [0, 1]} (3.7)

and

E = {u ∈ H1(D,S2);u(x, y) = φ(x, y) for (x, y, z) ∈ ∂Ω}. (3.8)

Theorem 3.5.1. ([20], Theorem 0): If u is a minimizer for

min
u∈F

∫
D
|∇u|2 dx dy dz, (3.9)

then u is independent of z and is a minimizer for

min
u∈E

∫
D
|∇u|2 dx dy = min

u∈E
E∗OF . (3.10)

Now, let Ω = B1/Bρ, and let

E =
{
u ∈ H1(Ω, S2);u0(x, y) =

(x
r
,
y

r
, 0
)
on ∂Ω

}
(3.11)

where r =
√
x2 + y2. Let E0 be the set of functions in E which are radially symmetric, i.e.

of the form

u(x, y) = c(r)u0(x, y) + t(r)(0, 0, 1) (3.12)

with c2 + t2 = 1. Notice this set contains the escape solutions characterized by t nonzero

away from the boundaries. Which of these solutions is the minimizing configuration is

addressed by the following theorem

Theorem 3.5.2. ([20], Theorem 1): (1) If ρ ≥ e−π, then u0 is a minimizer of E∗OF on E;

if ρ > e−π, u0 is the unique minimizer in E (2) If ρ < e−π, then u0 is not a minimizer

of E∗OF on E, but there is a minimizer on E that belongs to E0 and has t(r) > 0 for every

r ∈ (ρ, 1); this minimzer is unique in E0 to within replacement of t(r) by −t(r).

Let us consider a wide range of ratios, ρ = .8, .5, .3, .2, .15, .1, .05, .02, 0. In each case, the

initial mesh is generated using mshr, the mesh generation component of FEniCS, and the

38



approximating boundary is snapped to the circles they are approximating. For every ρ, the

mesh is refined five times and the number of cells in the final mesh will be approximately

1.5 million in every case. As a illustrative example, consider ρ = .15. The initial mesh is

shown in Figure 3.2 and the mesh details for the initial and final meshes are organized into

the Table 3.4.

Figure 3.2: Initial Mesh for Annulus with ρ = .15

For ρ = .15, the initial mesh is shown on the left. On the right a zoomed in portion of the
mesh is pictured so that the mesh details can be seen more easily.

Table 3.4: Mesh Details for Annulus with ρ = .15

Mesh Max h Min h Average h Number of Triangles

Initial Mesh 1.09e− 01 2.94e− 02 7.75e− 02 1.50e+ 03
Final Mesh 5.17e− 03 9.20e− 04 2.86e− 03 1.54e+ 06

We find that for all values of ρ, the domains have comparable initial and final meshes.

The approximate energy minimizer, qh, is found on each annular domain using FEniCS.

From this approximate solution, the order tensor Qh is defined as in relation (3.1) and its

maximal eigenvalue is calculated from which we find sh. In Figure 3.3, sh is plotted over

the final mesh on each domain. The line field plots are not included for two reasons. The

first being that they will not be well-defined for the three-dimensional concentric cylinder

domains and therefore cannot be a point of comparison. Secondly, the line fields are the

planar radial line fields for every ρ, an issue which will be expanded on in what follows.

We now discuss the results shown in Figure 3.3. First, notice that our Dirichlet boundary

conditions force s = 1 on both boundaries for every ρ. Additionally, in every domain, sh

decreases away from the boundaries. As ρ decreases, the minimal value of sh also decreases
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Figure 3.3: sh for Various Annular Domains

The first row from left to right shows plots of sh over the annuli with ρ = .8, .5, .3. In the
middle row, ρ = .2, .15, .1 from left to right respectively. In the final row, the plots for sh
and ρ = .05, .02, 0 are shown.

and approaches zero for ρ small enough, namely less that .05. Bethuel et al. predict that

the escape solution should be present for these small values of ρ, but this is not reflected

in our results using two-by-two Landau-de Gennes tensor. Instead, the line field becomes

isotropic.

For ρ = 0, there is a defect located at the center of the disc as also predicted by the

Oseen-Frank model. In the section that follows, the outer radius will be allowed to vary

and the liquid crystal behavior of this defect is studied in further detail.

We once again consider ρ = .15 and study the convergence of the approximated solution

to the planar radial configuration. On each mesh refinement, the planar radial configuration

is interpolated onto the mesh and compared to qh, where qh is approximated using degree

one Lagrange elements. The errors are computed and organized in to Table 3.5.
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Table 3.5: Convergence with Degree 1 Elements for ρ = .15

Max h Max Error Max Order L2 Error L2 Order H1 Error H1 Order

1.09e− 01 2.39e− 02 5.97e− 03 1.28e− 01
8.15e− 02 1.25e− 02 2.20 2.21e− 03 3.37 1.16e− 01 0.35
4.09e− 02 3.59e− 03 1.81 5.64e− 04 1.98 5.90e− 02 0.98
2.06e− 02 1.03e− 03 1.81 1.41e− 04 2.02 2.99e− 02 0.99
1.03e− 02 3.12e− 04 1.74 3.50e− 05 2.02 1.51e− 02 0.99
5.17e− 03 8.38e− 05 1.90 8.72e− 06 2.01 7.59e− 03 0.99

Clearly, the minimizing configuration is converging to the planar radial configuration.

We performed the same analysis for every ρ considered above and qh converged to the pla-

nar radial solution in every case. This implies that when minimizing the two-dimensional

Landau-de Gennes energy over annular regions, the radial configuration is the only pos-

sible result. This is not unexpected under our assumptions, but these results are not in

agreement with experimental evidence nor the numerical computations presented in the

following chapters. This illustrates that our restrictions are too limiting to give intuition

into the liquid crystal behavior in these domains.

3.6 The Radial Hedgehog in a Disc

The radial hedgehog configuration, characterized by an order +1 defect as shown in (a)

of Figure 2.3, is unique because it is an explicit solution to the Landau-de Gennes Euler-

Lagrange equations. Let the tensor associated with the radial hedgehog be denoted by

Qr = h(r)(nr ⊗ nr − (1/2)I), where nr is the radial vector and h is a function, dependent

on the radial distance r, which is the global minimizer of the following functional:

I[h] = π

∫ R

0
r

[
h′2

2
− h

r
h′ + (

2

r2
− 1

2
)h2 + Ch

4

8

]
dr (3.13)

This expression is the result of rewriting the two-dimensional Landau-de Gennes energy in

terms of h and a detailed description of the process can be found in Section A.1 of the

Appendix for the interested reader. Majumdar proves that a global minimizer of (3.13)

exists and that Qr is a solution to the Landau-de Gennes Euler-Lagrange equations:

Proposition 3.6.1. ([62], Proposition 2.1): (a) There exists a global minimizer h∗ ∈ Ah
for (3.13), where Ah = {h ∈ H1([0, R],R) : h(R) = 1, h(0) = 0}, and h∗ is analytic for all

r ≥ 0.
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(b) Define the radial hedgehog solution Q∗r(r) = h∗(r)(n ⊗ n − (1/2)I), where h∗(r) is

the global minimizer of (3.13), in the admissible space Ah. Then Q∗ is a stationary point

of the Landau-de Gennes energy functional.

Additionally, it is shown in [62] that the solution to (3.13) is uniquie.

Previous numerical results showed that the radial hedgehog is the minimizing configura-

tion for liquid crystal droplets with homeotropic strong anchoring for radii up to a certain

threshold radius rc, after which a new minimizing configuration forms [17], [18]. In [17] and

[18], the authors use the full Landau-de Gennes energy over a cross section of capillaries,

i.e. discs, of varying sizes and find at least two distinct defect structures. One which corre-

sponds to the radial hedgehog and a second which contains two −1/2 defects, called the split

core solution. Mkaddem and Gartland, in [17], use two elastic terms for their calculations,

while Sonnet, Killian, and Hess, in [18], use a single elastic term as in our calculations.

We are interested in comparing the minimizer found using FEniCS for radii which are

both larger and smaller than rc. Using the simplified two-dimensional version of the energy

expression, it first appears that our results are consistent with these finding, but further

refinement of the domain illustrates that the radial hedgehog continues to be the minimizer.

This implies that as the droplet radius becomes larger, a finer mesh is needed so that the

elements continue to be small enough to resolve the proper defect structure.

We now consider circular droplet domains with radii r = L0, 6L0, 11L0, respectively.

All droplets have prescribed homeotropic Dirichlet boundary conditions. For each droplet

domain, the minimizer, hh, of expression (3.13) is found using FEniCS and then interpolated

onto the mesh defined over our circular region. We also interpolate the radial vector field

nr onto the droplet domain and compute qr, which is the vector associated to Qr through

relation (3.1). This exact solution is then compared to the approximate solution, qh, found

from minimizing the Landau-de Gennes energy. This is first done for a course mesh. The

mesh is then refined six times, snapping the boundary each time, the process is repeated,

and the orders of convergence are calculated. We begin with r = L0. The norms of the exact

radial solution are computed and organized into Table 3.6 so that they can be compared to

the computed errors.

Table 3.6: Norms for Exact Radial Hedgehog over Disc of Radius L0

Max Norm L2 Norm H1 Norm

5.00e− 01 5.02e− 01 1.84e+ 00

The errors and orders using degree one Lagrange elements are calculated for r = L0

42



and the results are summarized into the Table 3.7. Based on the orders of convergence, we

find that the minimizer, qh, converges to qr. The behavior of the line field and the uniaxial

order parameter, sh, are plotted in Figure 3.4 for three mesh refinements, i.e. when the

mesh has 2912 cells.

Table 3.7: Convergence with Degree 1 Elements and Radius = L0

Max h Max Error Max Order L2 Error L2 Order H1 Error H1 Order

2.67e− 01 2.88e− 03 1.42e− 03 1.93e− 02
2.04e− 01 2.32e− 03 0.81 1.20e− 03 0.62 4.19e− 02 −2.90
1.02e− 01 9.29e− 04 1.32 2.99e− 04 2.01 2.32e− 02 0.86
5.11e− 02 2.58e− 04 1.85 7.45e− 05 2.01 1.22e− 02 0.93
2.56e− 02 7.08e− 05 1.86 1.85e− 05 2.01 6.24e− 03 0.97
1.28e− 02 1.98e− 05 1.84 4.63e− 06 2.00 3.16e− 03 0.98
6.39e− 03 5.16e− 06 1.94 1.16e− 06 2.00 1.59e− 03 0.99
3.19e− 03 1.31e− 06 1.98 2.92e− 07 1.99 7.97e− 04 1.00

Figure 3.4: Line Field for Disc of Radius L0

For the two-dimensional droplet of radius L0, two mesh refinements are done so that the

mesh has 2912 cells. The image on the left shows the mesh. The middle image shows

the line field for the exact radial hedgehog solution with the corresponding uniaxial order

parameter sh superimposed on the domain. The image on the right contains the line field

and parameter sh for the Landau-de Gennes minimizer found using FEniCS.

Notice in Figure 3.4 that at the center, where there is a defect in the line field, sh takes a

value of zero which implies that the liquid crystal becomes isotropic at the origin. Visually,

the approximate and radial solutions are indistinguishable, which is consistent with the

results in Table 3.7.
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Now, the radius of the droplet is increased by 5L0 to a value of 6L0. The same process

as described above is repeated: qh is found on each mesh and compared to the interpolation

of qr onto the same mesh. The norms for the exact radial hedgehog solution are calculated

and organized into Table 3.8. Errors and orders of convergence using degree one Lagrange

elements are organized into Table 3.9.

Table 3.8: Norms for Exact Radial Hedgehog for Disc with Radius = 6L0

Max Norm L2 Norm H1 Norm

5.00e− 01 2.61e+ 00 3.36e+ 00

Table 3.9: Convergence with Degree 1 Elements for Disc with Radius = 6L0

Max h Max Error Max Order L2 Error L2 Order H1 Error H1 Order

1.82e+ 00 4.77e− 02 1.76e− 01 2.92e− 01
1.45e+ 00 2.56e− 02 2.70 5.07e− 02 5.38 1.96e− 01 1.73
7.24e− 01 1.11e− 02 1.21 1.41e− 02 1.85 1.31e− 01 0.58
3.62e− 01 3.52e− 03 1.66 3.67e− 03 1.94 7.73e− 02 0.77
1.81e− 01 1.13e− 03 1.64 9.32e− 04 1.98 4.17e− 02 0.89
9.05e− 02 3.27e− 04 1.79 2.35e− 04 1.99 2.16e− 02 0.95
4.52e− 02 8.83e− 05 1.89 5.89e− 05 2.00 1.10e− 02 0.98
2.26e− 02 2.30e− 05 1.94 1.48e− 05 2.00 5.53e− 03 0.99

The results organized in Table 3.9 show that the minimizer continues to converge to the

radial hedgehog configuration. For completeness, plots of the line field and sh are shown in

Figure 3.5 and analogous behavior to the r = L0 case is evident.

Figure 3.5: Line Field for Disc of Radius 6L0

The two-dimensional droplet radius is now increased to 6L0. The results for two mesh
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refinements are pictured above, i.e. mesh contains 3040 cells. On the left, the mesh is

pictured. In the middle, the result of interpolating the exact radial hedgehog onto the mesh

and plotting the line field with the sh parameter superimposed over the domain is shown.

The image on the right corresponds to the computed minimizing configuration.

The radius is once again increased by 5L0, to a value of 11L0. The line field associated

with the approximated solution is plotted after two mesh refinements and it shows that the

minimizer of the Landau-de Gennes energy no longer converges to the radial hedgehog

solution, but instead to a new energy minimizing configuration where two −1/2 order

defects occur, as seen in the right-most image in Figure 3.6. This is consistent with the

numerical results in [17] and [18], even though a simplified energy expression was considered

here. Sonnet et al. use the three-dimensional Landau-de Gennes energy expression with a

single elastic constant over a two-dimensional domain and an iterative algorithm to find

the minimizing configurations. They predict the split core will occur for a radii larger than

approximately 5L0 [18]. Mkaddem and Gartland consider the three-dimensional Landau-de

Gennes model with two elastic terms restricted to the plane and use symmetry to minimize

over a quarter circle domain. Using a finite element package, they also predict that for a

radius of 11L0 the minimizing configuration should be given by the split core [17].

Figure 3.6: Line Field for Disc of Radius 11L0: Course Mesh

The two-dimensional droplet radius is now increased to 11L0. The results for two mesh
refinements are pictured above, meaning the mesh contains 3040 cells. On the left, the
mesh is pictured. In the middle, the result of interpolating the exact radial hedgehog onto
the mesh and plotting the line field with the sh parameter superimposed over the domain is
shown. The image on the right shows the line field with sh superimposed for the computed
minimizing configuration. Notice that this right-most image is not physically realistic and
further mesh refinement will prove that this configuration is not the actual minimizer.
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While our calculated minimizing configuration is consistent with their numerical results,

the question is to whether this result is physically realistic. When this domain is considered

to be the cross section of a cylindrical capillary, such a configuration is not reported in the

experimental literature. We note that, unlike our work, in previous numerical studies there

is no convergence analysis included. From our order of convergence calculations, we find

that with further refinement of the mesh, the split configuration is no longer present. This

fact, together with the lack of experimental evidence, leads us to conclude that the split

core is in fact a numerical artifact.

Consider the convergence results summarized into Table 3.10. After the fifth mesh

refinement, the calculated minimizer begins to converge to the radial hedgehog solution.

Note that because of the large nature of the domain, the value of maximal cell diameter is

relatively large in the first few lines of this table. It is not until this diameter approaches

values closer to those seen for the smaller radii that the computed minimizer begins to

converge. Sonnet et al. do not provide details of the mesh they used, but Mkaddem and

Gartland describe some details of their mesh. They used 4, 096 triangles in each mesh with

smaller mesh elements near the origin. Since they use symmetry to minimize over a quarter

of a circle, their elements were ∼ 10−2L0 in diameter. Comparing with the maximal values

of h in Table 3.10, it is reasonable to conclude that the mesh they were using may not have

been fine enough.

Table 3.10: Convergence with Degree 1 Elements for a Disc of Radius 11L0

Max h Max Error Max Order L2 Error L2 Order H1 Error H1 Order

3.14e+ 00 2.17e− 01 3.89e+ 00 4.16e+ 00
2.35e+ 00 2.16e− 01 0.01 2.95e+ 00 0.96 3.19e+ 00 0.92
1.17e+ 00 2.22e− 01 −0.04 2.81e+ 00 0.07 3.05e+ 00 0.07
5.87e− 01 2.09e− 01 0.08 2.80e+ 00 0.01 3.02e+ 00 0.01
2.94e− 01 2.21e− 01 −0.08 2.80e+ 00 0.00 3.01e+ 00 0.00
1.47e− 01 1.48e− 03 7.23 1.40e− 03 10.96 6.92e− 02 5.45
7.34e− 02 4.28e− 04 1.79 3.52e− 04 1.99 3.54e− 02 0.97
3.67e− 02 1.15e− 04 1.89 8.81e− 05 2.00 1.79e− 02 0.99

Table 3.11: Norms for Exact Radial Hedgehog over a Disc of Radius 11L0

Max Norm L2 Norm H1 norm

5.00e− 01 4.68e+ 00 5.39e+ 00

For r = 11L0, the energy per unit area on each mesh is also computed and organized into
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Table 3.12. Interestingly, the exact radial hedgehog has more energy on the very course

mesh, but as the mesh is refined it reduces to nearly a third of the original value and

converges to the same energy value as the numerically computed solution.

Table 3.12: Energy Values per Unit Area for a Disc of Radius = 11L0

NumCells Calculated Energy Minimizer Energy for Radial Hedgehog

190 1.93e− 02 2.61e− 02
760 1.34e− 02 1.60e− 02
3040 9.63e− 03 1.15e− 02
12160 8.21e− 03 9.84e− 03
48640 7.79e− 03 9.31e− 03
194560 9.15e− 03 9.18e− 03
778240 9.13e− 03 9.13e− 03
3112960 9.13e− 03 9.13e− 03

We plot the line field and sh parameter for the final mesh refinement. Note that some

simplification must be done since the mesh is very dense and the details of the line field

could not be seen if all elements were shown. Figure 3.7 shows the exact radial hedgehog

solution and the approximate solution corresponding to only 7, 000 elements.

Figure 3.7: Line Field for Disc of Radius 11L0: Fine Mesh

Using degree one elements and a mesh with 3112960 cells, the line fields with the sh parame-

ter superimposed are plotted for a two-dimensional droplet of radius 11L0. For visualization

purposes, the number of line elements shown is reduced to 7,000. The image on the left is

the result of interpolating the exact radial hedgehog solution onto the mesh. The image on

the right corresponds to the approximate solution.

Clearly, the exact radial hedgehog solution is also the energy minimizing configuration

for r = 11L0. Of course, it is not possible to test every droplet radius, but we found
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that doubling the radius of the droplet resulted in similar behavior. Although, it initially

appeared that the split core solution was the minimizer, further mesh refinements resulted

in convergence to the radial hedgehog solution. This is evidence that there is a strong

correlation between the size of the domain considered and the mesh refinement necessary for

the elements of the mesh to be small enough to resolve the correct minimizing configuration.

Before concluding that a numerically predicted phenomenon, not reported in experimental

literature, is indeed new, further refining of the mesh to increase numerical accuracy should

be performed.

3.7 Single Particle in a Square Box

A main goal of this work is to study liquid crystal configurations of a cylinder enclosing a

particle, as presented in Chapter 4. Everywhere vertical boundary conditions are imposed

on the boundary of the cylinder and homeotropic boundary conditions are prescribed on

the particle surface. Experimental evidence suggests that in such a confining geometry, a

Saturn ring defect will form around the particle [31],[33]. In this chapter, we are interested

in whether using the simplified two-dimensional Landau-de Gennes energy expression over

a two-dimensional domain results in a consistent minimizer, that is with two −1/2 defects

aligned with the equator of the particle. To explore this issue, consider a square box of

sidelengths 4L0 with a circular particle domain of radius .5L0 removed from its center. On

the particle, normal Dirichlet boundary conditions are prescribed, as described by (3.4).

On the square boundary, everywhere vertical boundary conditions are imposed as in (3.5).

We compute the energy minimizing configuration, qh, over the mesh shown in Figure 3.8,

and show the result, in terms of the line field and the uniaxial order parameter sh, over this

domain in the image on the right.

By a comparison with Figure 2.3 and the definition of the degree of the defect, we

conclude that the line field in Figure 3.8 has two −1/2 defects aligned with the equator of

the particle. We also find that, sh approaches a value of zero, which further confirms the

presence of these defects. If this domain is viewed as the cross section of a spherical particle

suspended in a cylinder, this configuration is consistent with the existence of a Saturn ring

in a three-dimensional domains studied in Chapter 4. It is important to note that this

agreement is purely qualitative since in reality the defect cores are not isotropic regions, as

suggested by the behavior of sh here, but instead biaxial regions.

Our computed energy minimizer agrees with previous numerical results. Tasinkevych,

Silvestre, Patŕıcio, and Telo Da Gama use the two-dimensional Landau-de Gennes energy
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Figure 3.8: Line Field for a Square with Disc Removed

The mesh for a single particle suspended in a liquid crystal filled box is shown on the left.
The right image is the result of numerically computing the minimizing configuration and
plotting the associated line field with the uniaxial order parameter sh superimposed.

expression considered here and finite elements to find analogous energy minimizing config-

uration as seen in Figure 3.8 [50]. In [44], Fukuda and Yokoyama use an adaptive grid and

an explicit scheme to show that the configuration resulting from our numerical results is the

only possible minimizer for a single particle in two dimensions. In their article, a variety

of parameter values are considered all of which result in the Saturn ring defect structure.

Even when an initial condition in which a point defect configuration, characterized by a

single −1 order defect, is chosen, the resulting configuration is still characterized by two

−1/2 defects along the equator of the particle.

3.8 Two Particles in a Box

In three dimensions, two spherical particles in a cylindrical domain will also be studied. This

is not a rotationally symmetric domain, but studying the minimizer on a cross section can

give some qualitative understanding of the behavior and allows us to compare our results

with work done previously.

Consider a square of sidelengths 4L0 with two circles of radius .3L0 removed along the x-

axis. The outer boundary will have everywhere vertical Dirichlet boundary conditions, given

by (3.5), and the particle surfaces will both have homeotropic Dirichlet boundary conditions

as defined by (3.4). The energy will be computed and compared as the distance between
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the two particles decreases, similar to the work done by Tasinkevych et al. in [50]. They

also consider a two-dimensional domain and their results show that as the distance between

the two particles decreases, the energy of the system decreases. It has been experimentally

verified that for two colloidal particles with Saturn ring defects, the force between them is

initially attractive, but once they have reached an equilibrium configuration, they will lie

at a nonzero distance from one another. If forced closer together, there is a repulsive force

between the two particles [32]. We consider particle separations in both the repulsive and

the attractive regimes, respectively.

From experimental evidence, we know that defect regions will form relatively close to

the particles. Because of this, after the initial mesh is defined, we take a circle which

encompasses both particles and refine the mesh further in this region ensuring to snap the

boundary elements. For every interparticle distance, the domain will have 15, 850 ± 100

cells in the mesh. In Figure 3.9, an example is presented for d = 2.4L0, where d is the

distance between the particle centers. In this case, the maximal cell diameter is 1.52e−01L0,

the minimal cell diameter is 5.82e−02L0, and the average is 1.08e−01L0. The mesh contains

15, 866 cells.

Figure 3.9: Mesh for a Square with Two Discs Removed

For d = 2.4L0, the distance between the particle centers, the mesh is displayed on the left.
A zoomed in portion of the mesh is shown on the right in order to show the mesh details
more clearly.

We vary d and calculate the energy values. These energy values can be found in a table

seen in Figure 3.10. Further mesh refinements give the same energy values and we are

confident that the energy values converge to those seen in this table.
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Figure 3.10: Energy for Various Disc Separations

The table on the left, summarizes the dimensionless energy values for interparticle distances,
d, in units of L0. The right shows a plot of the results.

Figure 3.11: sh Plots for Various Disc Separations

From left to right in the top row, the sh parameter is plotted for d = 4, 2.4, 1.4, in units of

L0, and on the second row d = 1, .75L0 respectively.

Starting from the value d = 4, as d decreases, the energy also decreases suggesting the

presence of an attractive force. Once d reaches a value of .8L0, decreasing d results in an

increase in the energy value over the domain, which is consistent with a repulsive force

between the two particles. For d = 4, 2.4, 1.4, 1, .75, in units of L0, the sh parameter is

plotted in Figure 3.11. Comparing these results with those is Figure 3.10, the energy of the
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system is decreasing when the defect region between the two particles merges. The minimal

energy occurs for d = L0. In this case, the defect region between the two particles now

has a central region in which s = 1. This is consistent with the equilibrium configurations

seen in experiments with two particles [33]. In these experiments, a third Saturn ring forms

between the two particles normal to the Saturn rings around each particle, which is referred

to as the entangled hyperbolic defect.

It is important to note, that for all the simulations considered in this Chapter, the

reduction of dimension in domain and energy expression allows for illustration of some of

the qualitative behavior of the system, but these are not physically realistic simplifications.

Two-dimensional liquid crystal domains cannot occur. In many instances, defect regions

are regions in which the liquid crystal becomes biaxial, but the restriction of our energy

expression to two dimensions does not allow for such behavior. Otherwise complex defect

regions have been simplified to isotropic as the uniaxial order parameter takes the value

s = 0. In the chapters that follow, a three-dimensional Landau-de Gennes energy expression

will be used and allow us to resolve more robust and accurate results in a variety of domains.
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Chapter 4

Numerical Simulations in Three

Dimensions

In this Chapter, FEniCS will be used to find energy minimizing configurations in three-

dimensional geometries. A variety of domains will be considered. For the concentric cylin-

der domains, significantly different results from the predictions of the Oseen-Frank model

have been uncovered. Previous studies using Oseen-Frank resolved two possible minimizing

configurations, both of which are uniaxial. In our computations, we find three configura-

tions which transition continuously to one another. These domains show some degree of

biaxial behavior, which is impossible to resolve with the Oseen-Frank model. In the case

of the droplet, our results confirm theoretical predictions that the center of the droplet will

have a biaxial region and the resulting configuration will have lower energy than the radial

hedgehog defect. For the single particle domain, the conclusions of Schpohl and Sluckin,

which claim that at the center of the Saturn ring is a region where the parameter s becomes

negative [19], are numerically confirmed for the first time. The final domain considered

consists of a two particle system in a cylinder where the defect region is consistent with

previous experimental and numerical results.

4.1 Three Dimensional Weak Energy Expression

We employ a finite element method over tetrahedra to find the minimizing configurations

in three-dimensional liquid crystal domains. We begin with the dimensionless energy (2.39)

given by:

E(Q) =

∫
Ω

1

2
|∇Q|2 − 1

2
tr Q2 +

B
3

tr Q3 +
C
4

(tr Q2)2 dx (4.1)
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We express the energy in terms of the components of our symmetric traceless tensor Q

where:

Q =


q0 q2 q3

q2 q1 q4

q3 q4 −(q0 + q1)

 . (4.2)

We rewrite the bulk terms as follows:

tr (Q2) = (q0 + q1)2 + q2
0 + q2

1 + 2q2
2 + 2q2

3 + 2q2
4

(tr (Q2))2 = ((q0 + q1)2 + q2
0 + q2

1 + 2q2
2 + 2q2

3 + 2q2
4)2

tr (Q3) = 2q3(q2q4 − q1q3) + 2q4(q2q3 − q0q4) + q0(q2
0 + q2

2 + q2
3)

+ q1(q2
1 + q2

2 + q2
4) + 2q2(q0q2 + q1q2 + q3q4)− (q0 + q1)((q0 + q1)2 + q2

3 + q2
4)

The elastic energy is now expanded in terms of the components of Q leading to the following

expression:

E(q) =

∫
Ω

(
∂q0

∂x

2

+
∂q0

∂y

2

+
∂q0

∂z

2

+
∂q1

∂x

2

+
∂q1

∂y

2

+
∂q1

∂z

2

+
∂q2

∂x

2

+
∂q2

∂y

2

+
∂q2

∂z

2

+
∂q3

∂x

2

+
∂q3

∂y

2

+
∂q3

∂z

2

+
∂q4

∂x

2

+
∂q4

∂y

2

+
∂q4

∂z

2

+
∂q0

∂x

∂q1

∂x
+
∂q0

∂y

∂q1

∂y
+
∂q0

∂z

∂q1

∂z
)

− 1

2
[(q0 + q1)2 + q2

0 + q2
1 + 2q2

2 + 2q2
3 + 2q2

4]

+
1

3
B[2q3(q2q4 − q1q3) + 2q4(q2q3 − q0q4)

+ q0(q2
0 + q2

2 + q2
3) + q1(q2

1 + q2
2 + q2

4)

+ 2q2(q0q2 + q1q2 + q3q4)− (q0 + q1)((q0 + q1)2 + q2
3 + q2

4)]

+
1

4
C[(q0 + q1)2 + q2

0 + q2
1 + 2q2

2 + 2q2
3 + 2q2

4]2 dx

(4.3)

Let q = (q0, q1, q2, q3, q4) and q ∈ W̃ 1,2(Ω) = {p ∈ H1(Ω)|p = g on ∂Ω} where g is

prescribed on the domain boundary ∂Ω. For ν = (ν0, ν1, ν2, ν3, ν4) ∈ W 1,2
0 (Ω) = {p ∈

H1(Ω)| p = 0 on ∂Ω}, the first variation of (4.3) results in the following five expressions:

For q0 :

∫
Ω

(2∇q0 +∇q1) · ∇ν0 + [−(2q0 + q1) + B(−q2
4 + q2

0 + q2
2 − (q0 + q1)2)

+ C((q0 + q1)2 + q2
0 + q2

1 + 2q2
2 + 2q2

3 + 2q2
4)(2q0 + q1)]ν0 dx

For q1 :

∫
Ω

(2∇q1 +∇q0) · ∇ν1 + [−(q0 + 2q1) + B(−q2
3 + q2

1 + q2
2 − (q0 + q1)2)

+ C((q0 + q1)2 + q2
0 + q2

1 + 2q2
2 + 2q2

3 + 2q2
4)(q0 + 2q1)]ν1 dx
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For q2 :

∫
Ω

2∇q2 · ∇ν2 + [−(2q2) + B(2q3q4 + 2q0q2 + 2q1q2)

+ C((q0 + q1)2 + q2
0 + q2

1 + 2q2
2 + 2q2

3 + 2q2
4)(2q2)]ν2 dx

For q3 :

∫
Ω

2∇q3 · ∇ν3 + [−(2q3) + B(−2q1q3 + 2q2q4)

+ C((q0 + q1)2 + q2
0 + q2

1 + 2q2
2 + 2q2

3 + 2q2
4)(2q3)]ν3 dx

For q4 :

∫
Ω

2∇q4 · ∇ν4 + [−(2q4) + B(2q2q3 − 2q0q4)

+ C((q0 + q1)2 + q2
0 + q2

1 + 2q2
2 + 2q2

3 + 2q2
4)(2q4)]ν4 dx

Combining the above, the weak Euler-Lagrange equations are given by:

I(q) =

∫
Ω

(2∇q : ∇ν +∇q1 · ∇ν0 +∇q0 · ∇ν1)− (2q · ν + q1ν0 + q0ν1)

+ B[(−q2
4 + q2

0 + q2
2 − (q0 + q1)2)ν0 + (−q2

3 + q2
1 + q2

2 − (q0 + q1)2)ν1

+ (2q3q4 + 2q0q2 + 2q1q2)ν2 + (−2q1q3 + 2q2q4)ν3 + (2q2q3 − 2q0q4)ν4]

+ C((q0 + q1)2 + q2
0 + q2

1 + 2q2
2 + 2q2

3 + 2q2
4)(2q · ν + q1ν0 + q0ν1) dx = 0

(4.4)

where A : B denotes the Frobenius inner product.

4.2 Visualization of the Minimum Energy Configuration

Visualization of three-dimensional results has added complications, one reason being the

nature of the domain itself. When plotting data over the entire domain, the details in the

interior cannot be seen clearly. Furthermore, the presence of biaxiality does not allow for a

clear representation of the line field since there is no single direction of alignment. Therefore

the line field is only illustrative in domains with highly concentrated defect regions. In

the case where these biaxial regions are not highly concentrated, plotting the biaxiality

parameter seems to be the best way to visualize the minimizing configuration.

In order to assemble the piecewise polynomials over tetrahedron to solve (4.4), we pro-

ceed as follows: First, a mesh composed of disjoint tetrahedron is defined over the domain

using mshr, the mesh generation component of FEniCS. By invoking the ‘NonlinearVaria-

tionalSolver’ class, Newton’s method is used to find an approximate solution, qh. We then

find the tensor Qh with the use of relation (4.2). From Section 2.8 in Chapter 2, we know n

is the eigenvector associated with the dominant eigenvalue of Q and the parameters s and

r are defined in terms of the eigenvalues of Q. Using these facts, we calculate nh, sh, and

rh from Qh, write the results to a pvd file, and process them in Paraview, an application
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for interactive, scientific visualization. These quantities are plotted over the entire domain.

Depending on the domain considered, either a cross section of the data is shown or we re-

move an appropriate portion of the domain and show the remaining partial domain, which

will be referred to as a clip.

The biaxiality parameter, β, as described in Section 2.8 of Chapter 2 is also used to

visualize the resulting energy minimizing configuration. We calculate the approximate value

βh from Qh using (2.15), export it to a pvd file, and then visualize it in Paraview. Cross

sections and clips are used to see the behavior of βh in the interior of the domain. In

domains with particle interaction, an isovolume for β ∈ (.7, 1) will also be plotted, which

allows us to visualize the entire defect region. Let us recall that an isovolume of β is the

part of the domain where β takes values in a certain interval.

4.3 Boundary Conditions for Three Dimensional Domains

Either by rubbing or by the use of a surfactant, rigid attachment of the liquid crystal

molecules can be prescribed. This is referred to as strong anchoring and is mathematically

realized by defining a Dirichlet boundary condition. Since the alignment is assumed to

be perfect on the boundary, Q will be uniaxial with s = 1, which implies Q = n ⊗ n −
(1/3)I. Radial, planar radial, and everywhere vertical boundary conditions will be used

in simulations. For radial boundary conditions, nr = (x0/|x|, x1/|x|, x2/|x|), where |x| =√
x2

0 + x2
1 + x2

2. Relation (4.2) allows us to express the boundary conditions in terms of the

components of Q. Since

Q =

∣∣∣∣∣∣∣∣
x2

0/|x|2 − 1/3 (x0x1)/|x|2 (x0x2)/|x|2

(x0x1)/|x|2 x2
1/|x|2 − 1/3 x1x2/|x|2

x0x2/|x|2 x1x2/|x|2 x2
2/|x|2 − 1/3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
q0 q2 q3

q2 q1 q4

q3 q4 −(q0 + q1)

∣∣∣∣∣∣∣∣ ,
this implies:

q0 =
x2

0

|x|2
− 1

3
, q1 =

x2
1

|x|2
− 1

3
, q2 =

x0x1

|x|2

q3 =
x0x2

|x|2
, q4 =

x1x2

|x|2
.

(4.5)

For everywhere vertical boundary conditions, nv = (0, 0, 1) and the components of Q have

the following values:

q0 =
−1

3
, q1 =

−1

3
, q2 = 0 = q3 = q4 (4.6)
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When planar radial boundary conditions are assumed, npr = (x0/|x|, x1/|x|, 0), where

|x| =
√
x2

0 + x2
1. Such a Dirichlet boundary condition can be expressed in terms of the

components of Q using relations (4.2):

q0 =
x2

0

|x|2
− 1

3
, q1 =

x2
1

|x|2
− 1

3
, q2 =

x0x1

|x|2

q3 = q4 = 0.

(4.7)

4.4 Manufactured Solution for Concentric Cylinders

We begin our three-dimensional simulations in a similar fashion as Chapter 3 and consider

a manufactured solution. In this case, the liquid crystal domain will be the region bounded

by two concentric cylinders with inner radius .5L0, outer radius of L0, and height 2L0. We

define Dirichlet boundary so that the director is planar radial on the lateral sides of the

cylinders as well as the top and bottom surfaces. Once again, we choose the manufactured

solution based on the minimizing solutions found by Bethuel et al. [20]. Recall that e−π

is the threshold value between the planar radial and escape solution. We choose as our

manufactured solution the planar radial configuration, since this is the minimizer predicted

for our domain parameters. Note, since we are considering the Landau-de Gennes energy,

we do not claim that this is indeed the minimizer for our energy expression. Instead, this

provides an appropriate manufactured solution.

We first need to calculate the forcing term, f , associated to the manufactured solution.

Note that relation (4.7) gives the manufactured solution qm = (x2
0/(x

2
0 +x2

1)−1/3, x2
1/(x

2
0 +

x2
1)− 1/3, (x0x1)/(x2

0 + x2
1), 0, 0). Each component of f is then equal to:

f0 = −∇2(2q0 + q1)− (2q0 + q1) + B(−q2
1 + q2

2 − q2
4 − 2q0q1)+

+ C(2q0 + q1)(2q2
0 + 2q2

1 + 2q0q1 + 2q2
2 + 2q2

3 + 2q2
4)

= 2
(x2

0 − x2
1)

(x2
0 + x2

1)2
−
(

2x2
0 + x2

1

x2
0 + x2

1

− 1

)
+ B

[
−
(

x2
1

x2
0 + x2

1

− 1

3

)2

+

(
x0x1

x2
0 + x2

1

)2

− 2

(
x2

0

x2
0 + x2

1

− 1

3

)(
x2

1

x2
0 + x2

1

− 1

3

)]

+ C
(

2x2
0 + x2

1

x2
0 + x2

1

− 1

)
(2/3)

f1 = −∇2(q0 + 2q1)− (q0 + 2q1) + B(−q2
0 + q2

2 − q2
3 − 2q0q1)+

+ C(q0 + 2q1)(2q2
0 + 2q2

1 + 2q0q1 + 2q2
2 + 2q2

3 + 2q2
4)

= −2
(x2

0 − x2
1)

(x2
0 + x2

1)2
−
(
x2

0 + 2x2
1

x2
0 + x2

1

− 1

)
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+ B

[
−
(

x2
0

x2
0 + x2

1

− 1

3

)2

+

(
x0x1

x2
0 + x2

1

)2

− 2

(
x2

0

x2
0 + x2

1

− 1

3

)(
x2

1

x2
0 + x2

1

− 1

3

)]

+ C
(
x2

0 + 2x2
1

x2
0 + x2

1

− 1

)
(2/3)

f2 = −2∇2(q2)− (2q2) + B(2q0q2 + 2q1q2 + 2q3q4)+

+ C(2q2)(2q2
0 + 2q2

1 + 2q0q1 + 2q2
2 + 2q2

3 + 2q2
4)

=
8x0x1

(x2
0 + x2

1)2
− 2

x0x1

x2
0 + x2

1

+ B
[
2

(
x2

0

x2
0 + x2

1

− 1

3

)(
x0x1

x2
0 + x2

1

)
+ 2

(
x2

1

x2
0 + x2

1

− 1

3

)(
x0x1

x2
0 + x2

1

)]
+ C

(
2
x0x1

x2
0 + x2

1

)
(2/3)

f3 = −2∇2(q3)− (2q3) + B(−2q1q3 + 2q2q4)+

+ C(2q3)(2q2
0 + 2q2

1 + 2q0q1 + 2q2
2 + 2q2

3 + 2q2
4)

= 0

f4 = −2L∇2(q4) +A(2q4) +B(−2q0q4 + 2q2q3)+

+ C(2q4)(2q2
0 + 2q2

1 + 2q0q1 + 2q2
2 + 2q2

3 + 2q2
4)

= 0

The left-hand side of the weak Euler Lagrange equations (4.4) is then set equal to the weak

form of the forcing term:

I(q) =

∫
Ω
f · ν dΩ (4.8)

The approximated solution, qh, to (4.8) is first calculated over the initial mesh shown

in Figure 4.1. We then interpolate the manufactured solution, qm, onto this mesh and

compare it to qh. The mesh is refined several times and this process is repeated on each

mesh. The details of the initial and final mesh are summarized in Table 4.1, where h is the

cell diameter.

Table 4.1: Mesh Details for Concentric Cylinders with ρ = .5

Mesh Max h Min h Average h Number of Triangles

Initial Mesh 5.90e− 01 2.85e− 01 4.57e− 01 8.53e+ 02
Final Mesh 1.33e− 01 3.40e− 02 6.59e− 02 4.07e+ 05

We find the errors between the manufactured solution and the approximate solution on

each mesh. The maximal cell diameter is used to compute the orders of convergence for
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Figure 4.1: Initial Mesh for Concentric Cylinders

The image on the left shows the initial mesh over the entire domain. On the right, half of
the meshed domain is removed in order to better see the mesh details in the interior of the
domain.

the minimization done with both degree one and two Lagrange elements and the results are

summarized in the Tables 4.2 and 4.3.

Table 4.2: Convergence using Degree 1 Elements in Concentric Cylinder Domain

Max h Max Error Max Order L2 Error L2 Order H1 Error H1 Order

5.90e− 01 2.95e− 02 1.11e− 02 1.28e− 01
3.81e− 01 1.60e− 02 1.41 7.64e− 03 0.85 1.87e− 01 −0.87
2.51e− 01 8.80e− 03 1.43 3.18e− 03 2.11 1.44e− 01 0.63
1.33e− 01 2.89e− 03 1.75 8.90e− 04 2.00 8.15e− 02 0.90

Table 4.3: Convergence using Degree 2 Elements in Concentric Cylinder Domain

Max h Max Error Max Order L2 Error L2 Order H1 Error H1 Order

5.90e-01 7.38e-03 5.16e-03 6.77e-02
3.81e-01 2.25e-03 2.73 7.36e-04 4.47 3.27e-02 1.67
2.51e-01 6.99e-04 2.80 1.30e-04 4.16 1.09e-02 2.62
1.33e-01 1.06e-04 2.97 1.69e-05 3.19 2.90e-03 2.08

The values in the tables above show that the approximated solution, qh, is indeed converging

to the manufactured solution, qm. This allows us to continue our numerical computing with

confidence. The concentric cylinder domain will be further studied in the following section

to allow for further comparison with the results obtained from the Oseen-Frank energy

expression discussed in [20].

59



4.5 Concentric Cylinders

The behavior of liquid crystals in concentric cylinder domains, with planar radial strong

anchoring on the lateral boundaries, has been studied by various of authors. As mentioned

in Chapter 3, Bethuel et al. use the Oseen-Frank energy expression to show that energy

minimizing configurations are dependent on ρ, the ratio of the inner radius to the outer

radius. The relevant theorems of this paper were summarized in Section 3.5. If ρ ≥
e−π = .0432, the planar radial solution is the minimizing configuration and if ρ < e−π the

minimizer is given by the escape solution, where this solution is characterized by uniaxial

behavior everywhere and a nonzero z-component which increases as we move away from the

bounding surfaces [20]. These analytical results were later verified numerically by Alouges

and Coleman in [63]. The use of Oseen-Frank in these two articles restricts the possible

minimizing configurations to those which are unaxial everywhere. In [21], Biscari and Virga

consider using the Landau-de Gennes energy over this domain. They find that when the

bulk energy is neglected, the energy minimizer is biaxial everywhere for all ρ, except at

the boundaries where boundary conditions are defined. For ρ = 0, i.e. a solid cylinder,

they show that the minimizer must be the escape solution with uniaxial behavior along the

cylinders axis.

In this Section, the Landau-de Gennes energy is used to show that three configurations,

which depend continuously on ρ, occur for liquid crystal bounded between two cylinders.

For all domains, the outer cylinder will have radius and height L0, and inner radius ρL0.

Planar radial Dirichlet boundary conditions will be defined on the lateral sides of both

cylinders. Under these assumptions, every domain shows some biaxial behavior, but it will

not occur everywhere away from the boundaries as hypothesized by Biscari and Virga. Note

that since no boundary conditions are explicitly defined on the top and bottom boundaries,

this implies that the our strong form of the energy now has a homogeneous Neumann

boundary condition. FEniCS has the advantage that natural boundary conditions can be

treated without a need to change the code.

In order to illustrate the transitions between the minimizing configurations, we consider

nine values of ρ and plot βh over each domain. Before delving into the results, the mesh

details are presented for the domain with inner radius ρ = .2 in Figure 4.2 and Table 4.4.

This is taken as a representative example of the mesh used for each ρ.

Using FEniCS, we compute qh on each mesh and subsequently calculate βh. In Figure

4.3, βh is plotted over the entire domain and a clip is shown for ρ = .8, .5, .3 in order to

illustrate how the biaxial region develops away from the lateral boundaries. For ρ large,
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Table 4.4: Mesh Details for Concentric Cylinders with ρ = .2

Max h Min h Average h Number of Triangles

4.92e− 02 1.39e− 02 3.09e− 02 3.31e+ 06

Figure 4.2: Example Mesh for Concentric Cylinders

A clip of the mesh for ρ = .2 is shown in the image on the left. On the right, a zoomed in
portion of the mesh illustrates some of the finer details.

a fully uniaxial configuration appears to be present, but when studied more carefully, the

biaxiality parameter is never zero in the entire domain. Although their plots will not be

shown here, values of ρ as large as .95 were considered and no fully uniaxial domain was

found. As the radius of the inner cylinder decreases, the biaxial region between the two

cylinders becomes more prominant.

Figure 4.3: βh for Concentric Cylinders with Large ρ

A clip of the biaxiality parameter βh is shown for ρ = .8, .5, .3 moving from left to right.

In Figure 4.4, βh is plotted over the concentric cylinder domains with ρ = .2, .15, .1.

As ρ decreases, the size of the biaxial region continues to increase and its value starts to

approach its maximal value of one. As ρ is decreased even further, this maximally biaxial

region splits and a region with a lower biaxiality begins to form in its interior.
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Figure 4.4: βh for Concentric Cylinders with Mid-Range ρ

A clip of the biaxiality parameter βh is shown for ρ = .2, .15, .1 moving from left to right.

Figure 4.5 shows the plots of βh for ρ = .05, .02, 0. The region in which the biaxiality

parameter is not maximal, but located in the interior of a maximally biaxial region, continues

to take smaller values as ρ is decreased. For an inner radius of .02L0, a value of zero will

be reached by the biaxiality parameter, meaning the liquid crystal has once again become

uniaxial. This final transition corresponds to the escape solution.

Figure 4.5: βh for Concentric Cylinders with Small ρ

A clip of the biaxiality parameter βh is shown for ρ = .05, .02, 0 moving from left to right.

Careful analysis of the β parameter gives us a good understanding of the liquid crystal

alignment. Consider the plot for ρ = .02 in Figure 4.5. On the lateral cylindrical boundaries,

the biaxiality parameter is equal to zero. This is due to the fact that on these boundaries,

Dirichlet boundary conditions were defined and the behavior was therefore assumed uni-

axial. Moving away from both the inner and outer lateral boundaries, the liquid crystal

transitions into a highly biaxial behavior and the line field no longer has one preferred

direction of alignment. This transition occurs quickly away from the inner boundary and

gradually away from the outer boundary. Between these two cylindrical regions, which are

maximally biaxial, there is again a uniaxial region. Here, the uniaxial alignment is no longer

planar, but instead has a nonzero z-component, which implies that the configuration is the

escape solution. Using the Oseen-Frank energy expression, Bethuel et al. predicted that
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the transition to the escape solution occurs at ρ = e−π ≈ .0432. Although ρ = .03 is not

shown above, we found from our simulations that the full escape solution occurs between

ρ = .02− .03, which is in close agreement with the threshold they predicted.

While this aspect of our results has qualitative agreement with the work in Bethuel et

al. there are many marked difference between their results and our numerical computations.

Above the threshold ρ = e−π, they predict a purely uniaxial planar radial solution which

we never find. Also, unlike their results, we find that the transition between different

minimizing configurations is a continuous one. Additionally, the escape solution described

in [20] is a configuration which is uniaxial everywhere and whose z-component increases

from a value of zero on the boundaries to a value of one in the interior of the domain, while

our escape solution has large biaxial regions.

When the inner radius is equal to zero, the escape region occurs along the central axis.

If the radius of the solid cylinder is allowed to vary, this escape solution is always present

which is consistent with the results presented by Biscari and Virga when the bulk term is

ignored [21]. There are a number of theoretical works which predict that as the radius of

the cylinder approaches zero, the purely planar radial solution should be the minimizer.

In experiments testing this hypothesis, the planar radial solution was never found and

they conclude that the curvature of the confining walls creates a high elastic energy that

competes with the anchoring energy and results in the directors tilting away from their

prefered anchoring direction preventing the transition to the planar radial configuration

[64]. In [7], Cladis and Kleman show, using Oseen-Frank, that when molecules are allowed

to relax out of the plane, the energy is always lower then the purely radial solution except

when the radius is on the order of molecular lengths in which case the continuum theory

breaks down.

4.6 Spherical Droplet

As discussed in the previous Chapter, the radial hedgehog is a rare example of an explicit

solution of the Landau-de Gennes Euler-Lagrange equations. Such a configuration is hy-

pothesized to exist for droplets with radial anchoring on the surface. For this reason, two

spherical liquid crystal droplet domains with homeotropic Dirichlet boundary conditions

are considered. The energy value over the domain of the computed minimizing configura-

tion is compared with the energy given by the radial hedgehog. It will be evident that the

biaxial region which forms in the center of the droplet of the approximate solution causes

a departure from this explicit solution.
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The radial hedgehog is given by Qr = h(r)(nr ⊗ nr − (1/3)I) where nr is the radial

vector and h(r) is the minimizer of the following energy expression:

I[h] =

∫ R

0
4π

[
1

3
h′2 − 1

3ρ
hh′ + (

2

ρ2
− 2

3
)h2 +

2B
27
h3 +

C
9
h4

]
ρ2 dρ (4.9)

This expression develops from the formulation of the Landau-de Gennes energy in terms of

h and the derivation can be found in Section A.2 of the Appendix. The results developed by

Majumdar, as discussed in Section 3.6, extend to the radial hedgehog in three dimensions.

Therefore, we know that a unique global minimizer, h∗, of (4.9) exists and is unique and,

furthermore, the radial hedgehog solution Q∗r(r) = h∗(r)(nr ⊗ nr − (1/3)I) is a stationary

point of the Landau-de Gennes energy functional.

The radial hedgehog is, therefore, a reasonable candidate for the energy minimizer and

we are interested in how it compares to the configuration found by minimizing that Landau-

de Gennes energy. As stated, two liquid crystal droplet domains with strong homeotropic

surface anchoring and with radii L0 and 3L0 will be considered. First consider a droplet

with radius L0. After an initial mesh is defined for the domain, further refinement is done

in the center of the droplet, in order to resolve the defect region more clearly. In Figure 4.6

the mesh used for the numerical computations is shown. In Table 4.5 infomation about the

cell diameters, h, is summarized.

Table 4.5: Mesh Details for Droplet of Radius L0

Max h Min h Average h Number of Cells

1.46e− 01 1.34e− 02 7.70e− 02 2.09e+ 05

In most of the domain, except for a very small region at the center of the droplet, βh

equals 0. This implies that the liquid cystal is uniaxial nearly everywhere and the line field

is an informative way to visualize the behavior of the liquid cystal. In Figure 4.7, a plot of

the line field and the values of βh are shown for the droplet of radius L0.

The line field associated with the approximate solution, qh, appears to be that of the

exact radial hedgehog, but the plot of the biaxiality parameter illustrates that this is not

the case. In the radial hedgehog configuration, the line field is uniaxial everywhere and

the defect is represented by the behavior s = 0. Isotropic melt is not energetically favor-

able, since we are considering a parameter regime for the deep nematic, and therefore the

formation of a biaxial region at the center of the droplet is reasonable. Additionally, an

isotropic defect core is not physically realistic. When comparing the energy of the computed

minmizer for Landau-de Gennes energy expression and the radial hedeghog, their values are
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Figure 4.6: Mesh for Droplet with Radius L0

A clip of the mesh for a droplet of radius one is shown on the left. On the right, a zoomed
in portion of the mesh shows the refinement in the center of the droplet.

Figure 4.7: Line Field and βh Plots for Droplet with Radius L0

A cross section of the line field and biaxiality parameter for a liquid crystal droplet of radius
L0 are plotted on the left and right, respectively.

nearly identical for a droplet of this size as can be seen in Table 4.6. This is due to the fact

that the biaxial region is extremely small, and so the effect of the energy increase at the

defect is marginal in comparison to the energy over the whole domain

Table 4.6: Energies for a Droplet of Radius L0

Number of Cells Computed Minimizer Radial Hedgehog

1247 7.72 7.78

12032 7.71 7.73

94822 7.76 7.77

748986 7.77 7.77
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As the radius of the particle is increased, the line field and βh parameter plots look

identical to the smaller droplet, but the energy of the approximate solution of the Landau-de

Gennes energy functional will have markedly smaller energy. To illustrate this, now consider

a droplet with radius 3L0. As in the case of the smaller droplet, after an initial mesh is

defined, further refinement is done in the center where experimental evidence suggests a

biaxial region forms. The mesh looks similar to that of radius L0, and the details of this

mesh are summarized in Table 4.7

Table 4.7: Mesh Details for Droplet of Radius 3L0

Max h Min h Average h Number of Cells

4.46e− 01 3.92e− 02 2.18e− 01 2.26e+ 05

Once again, the biaxial region is highly concentrated in the center of the droplet and the

line field is clearly represented away from this region. A cross section of the βh parameter

and the line field are shown in Figure 4.8.

Figure 4.8: Line Field and βh Plots for Droplet with Radius 3L0

A cross section of the line field and βh for a liquid crystal droplet of radius 3L0 are plotted
on the left and right respectively.

This line field and biaxiality parameter plot are strikingly similar to that of the droplet

with radius L0, but the effects of increasing the radius are evident when comparing the

energy values of the computed minimizer with those of the radial hedgehog. As we see in

Table 4.8, the minimizer found for the Landau-de Gennes energy expression, qh, has a lower

energy value.
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Table 4.8: Energies for a Droplet of Radius 3L0

Number of Cells Computed Minimizer Radial Hedgehog

1230 7.59 8.95
11222 7.60 9.35
91107 7.53 9.35
725106 7.50 9.34

These results are not unexpected. In [65], Penzenstadler and Trebin use analytic argu-

ments and the Landau-de Gennes energy expression to conclude that a radial configuration

with a biaxial core has a lower energy and is therefore more stable than a totally uniaxial

configuration. Furthermore, Schopohl and Sluckin conclude that the defect cores are always

biaxial [19], which supports the behavior we find for both liquid crystal droplets considered.

4.7 Single Particle

We now consider a spherical colloidal particle of radius .5L0 suspended in a cylinder of

radius 2L0 and height 4L0 filled with 5CB. On the surface of the particle, homeotropic

Dirichlet boundary conditions are prescribed. On the cylinder surface, we enforced every-

where vertical Dirichlet boundary conditions. Minimizing the Landau-de Gennes energy,

the behavior of the line field and the biaxiality parameter allow us to conclude that a Saturn

ring defect forms around the equator of the particle, which is consistent with the behavior

of liquid crystal colloids in confined domains.

The minimization is done on a mesh in which smaller elements are used near the particle

surface, since the defect region is known to occur in this region. Moving away from the

particle, larger elements are used due to the fact that theoretical and experimental evidence

suggests that the liquid crystal is uniaxial away from these concentrated defect regions. The

details of the mesh are organized into Table 4.9 and the mesh is shown in Figure 4.9.

Table 4.9: Mesh Details for Single Particle

Max h Min h Average h Number of Cells

4.29e− 01 5.67e− 03 2.48e− 02 8.73e+ 06

Since the defect region is highly concentrated, there is a single preferred direction of

alignment in a majority of the domain and the line field has a good representation. Because

of the three-dimensional nature of the domain, a cross section of the line field is needed in
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Figure 4.9: Mesh for Single Particle in Cylinder

On the far left, the entire meshed domain is shown. In the center, a crinkle clip along
the yz-plane shows the relative size of the mesh elements. The high concentration of small
elements near the particle surface make it difficult to see the details around the particle
surface, so the right-most image shows a zoomed in portion around the particle.

order to see the details in the interior. This cross section is taken along the yz-plane and

shown on the left in Figure 4.10. On the right of this Figure, the zoomed in portion of the

line field clearly shows two −1/2 defects as described in Figure 2.3 of Chapter 2.

Figure 4.10: Line Field for a Single Particle in Cylinder

The left image shows a cross section along the yz-plane of the line field over the entire

domain. On the right, a zoomed in portion of this cross section is shown. The two ellipses

aligned with the equator of the particle denote the defect regions. From the behavior of the

surrounding line field, it is clear that these defects both have order −1/2.

The presence of these two −1/2 defects is further confirmed by the behavior of the

biaxiality parameter. βh is plotted over the entire domain and a cross section is taken along
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the yz-plane and shown in the image on the right in Figure 4.11. The entire Saturn ring

defect can be seen by plotting the isovolume for β ∈ (.7, 1) and as shown on the left in

Figure 4.11.

Figure 4.11: βh Plot for Single Particle in Cylinder

The image on the left shows the isovolume for β ∈ (.7, 1). A cross section of the biaxiality
parameter is shown on the right.

As seen in the cross section of the βh, the Saturn ring defect has a uniaxial core. As

mentioned in the Chapter 2, Schopohl and Sluckin study the core of −1/2 disclinations

in the plane using Landau-de Gennes and explain that while the tensor attains a uniaxial

structure at the core of the defect, the order parameter becomes negative which results in

the director field restricted to the plane perpendicular to the dominant eigenvalue direction

[19]. Based on Figure 4.10, we hypothesize that the core of the Saturn ring defect also

has negative scalar order parameter. To confirm this is indeed the case, the parameters

sh and rh are plotted over the domain. In Figure 4.12, a cross section of the plots for

the parameters rh and sh are shown in the second row. The cross section of the biaxiality

parameter is shown again in the first row in order to provide a side-by-side comparison.

It is clear that the region which appears to be uniaxial, when considering the biaxiality

parameter, is indeed a region in which sh = rh = −s0, where s0 is the uniaxial scalar order

parameter as decribed in (2.14). This is the first time that the defect core has numerically

been shown to reflect the analytic conclusions developed by Schopohl and Sluckin [19].

Defect cores were originally believed to be regions where isotropic melt occurred. This

hypothesis can be partially attributed to use of vector field dependent models in which this

was the only way that defect regions could be described. Later, experimentalist suggested

that defect cores were actually regions of biaxiality. Schopohl and Sluckin use an analytic
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Figure 4.12: βh, sh, and rh Plots for Single Particle in Cylinder

Cross sections of the plots for βh, rh and sh for a single particle with normal Dirichlet
boundary conditions are shown. The top-most image shows a cross section of the biaxiality
parameter. In the second row, cross sections of the rh and sh parameter are shown on the
left and right, respectively.

argument to argue that the defect cores are not purely biaxial, but instead, transition from

a biaxial region to a uniaxial region with negative order parameter at the center. We note,

that this is not inconsistent with purely biaxial defects believed to be seen in experiments.

When Q is uniaxial with scalar order parameter, the alignment of the molecules is confined

to the plane normal to the dominant eigenvector, but the ordering in the plane is completely

random which can give the appearance of isotropic or biaxial orientation when studied under

cross polarizers.

Some additional numerical work was done for single particle domains, but we do not

include a detailed description and instead summarize the results briefly. We studied various

domains with the particle radius fixed at a value L0 and varied the outer radius. The goal of

these computations is to show that a relatively large particle would result in a point defect as

discussed in [66], [67], [68], and experimentally verified in [69]. However, a point defect was

never resolved for the domains we considered, but this is not in contradiction to previous
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results. First note that earlier numerical works considered unbounded domains, while our

calculations were all done in bounded domains [67] [68]. Also, experiments where hedgehog

defects were present were done in relatively large containers, where the bounding domain was

approximately 100 times larger than the particle radius. Later experiments suggested that

defect formation is strongly dependent on the size of the confining domain. Gu and Abbot in

[31], perform experiments with particles of diameter 40µm and 100µm in a cell of diameter

120µm and conclude that in a bounded domain the preferred defect will be the Saturn ring.

This was further confirmed experimentally in [33]. In this case, Musevic et al. consider

many particles in a cell. In thinner parts of the cell, the colloidal particles were surrounded

by Saturn rings, while in thicker regions, the accompanying defects were hedgehogs. The

effects of confinement using the Oseen-Frank model gave similar conclusions. Stark in [37],

using the Oseen-Frank energy expression, shows that in the presense of a magnetic field

the resulting defect will always be a Saturn ring and in [70] concludes that magnetic fields

generate a similar behavior as confinement. In other words, a confining geometry also results

in a Saturn ring defect when the energy minimization is done using a vector-field dependent

model.

Note the difference in the results of this section with those using a two-dimensional

energy expression. In Chapter 3, the line field also reflected the presence of two −1/2

defects along the equator of the particle, but in that case the defect region was much smaller.

Additionally, the s parameter had a completely different behavior. In two-dimensions, it

approached a value of zero in the defect core, implying isotropic melt. In the case considered

in this section, the core has a zero-valued outer region and it becomes negative at the center.

Clearly, the simplication of the tensor Q can only give a qualitative understanding in this

domain and only under the assumption that the defects will be understood as regions where

s = 0, when in fact they are biaxial.

4.8 Two Particles

When multiple particles with Saturn ring defects are allowed to move freely in a liquid

crystal medium, the defects join to form chain-like systems [33], [60]. To better understand

these large systems, the mechanism of defect joining must be studied for a smaller number of

particles. We consider a domain in which two colloidal particles are suspended in a cylinder

filled with nematic liquid crystal. Let the cylinder have height 4L0 and radius 2L0 with

everywhere vertical Dirichlet boundary conditions defined on the lateral surfaces as well

and on the top and bottom. The particles have radius .3L0 and are placed along the y-axis
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equidistant from the central axis of the cylinder. On both particles, homeotropic Dirichlet

boundary conditions are defined. We find that when the distance between the two particles

is large enough, two independent Saturn ring defects form around each particle. As they

are brought closer to one another, the defect region that lies between them connects. As

they continue to move closer together, the connected region opens up to form a third ring

which is perpendicular to the two rings surrounding each particle, and referred to as the

entangled hyperbolic defect [33].

From experiments, it is known that this defect region occurs relatively close to the

particles. Therefore, we define a mesh with smaller elements around the particles so that

the defect structures are well represented. We analyze many different particle separations

and compute the energy of the system. First, a representative mesh is considered. Let the

distance between the center of the particles be 1.2L0. The mesh is shown in Figure 4.13

and its details are summarized in Table 4.10.

Table 4.10: Mesh Details for Two Particles in a Cylinder

Max h Min h Average h Number of Triangles

3.17e− 01 9.22e− 03 4.87e− 02 4.05e+ 06

Figure 4.13: Example Mesh for Two Particles in Cylinder

The mesh for a particle separation of 1.2L0 is shown. The middle image shows a clip in
order to see the mesh in the interior of the domain. The right-most image is a zoomed in
portion around the two particles.

To illustrate the formation of the entangled hyperbolic defect structure, we plot the

biaxiality parameter for various particle separations. Let d denote the distance between the

centers of the particles and consider d = 1.6, 1.2, 1, .8, .7, .625 in units of L0. We calculate

βh over the entire domain and show a cross section in Figure 4.14. In Figure 4.15, the
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isovolumes for β ∈ (.7, 1) are plotted for all values of d. In these plots, the domains are

shown from a top down view of the cylinders in order to better see the details of the defect

regions.

Figure 4.14: βh for Various Particle Separations

In the first row, the cross section for βh for d = 1.6, 1.2, 1, in units L0, are shown. In the
second row, the cross sections correspond to d = .8, .7, .625 from left to right.

At an initial separation of 1.6L0, the particles have two completely separate Saturn ring

defects. For d = 1.2L0, we see that the defect region which lies between the two particles

has now joined. Figure 4.14 shows that the interior defect region opens into a ring to form

the entangled hyperbolic defect for d between .8L0 and L0. In [48], Guzman, Kim, Grollau,

Abbott, and de Pablo claim that this transition occurs when d is less than .9L0, which is

consistent with our results. Later in [49], they predict that this transition occurs at a value

of d = .95L0, which continues to be consistent with our results. Note that neither of these

articles include a study of the intermediate defect structure as we have shown here.

As previously mentioned in Chapter 3, two particles with Saturn ring defects begin to

attract one another at a certain separation and repel each other if the separations becomes

too small. For various values of d, the energy of the system was calculated and organized

into the table seen if Figure 4.16. The plot on the right of this figure clearly shows that the

computed energy minimizers also reflect this attractive and repulsive behavior. In experi-

ments [33] and numerical calculations [49], strong attraction first appears over separations,
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Figure 4.15: βh Isovolumes for Various Particle Separations

The isovolumes for β ∈ (.7, 1) are shown from a top down view of the cylinders. These
isovolume correspond to the cross sections in Figure 4.14. In the first row, we have d =
1.6, 1.2, 1 from left to right and in the second row d = .8, .7, .625 respectively, where d is
measured in units of L0.

measured from particle surfaces, which are two times the diameter of the particle. In terms

of d, strong attaction appears for d = 1.8L0 in our simulations and explains why there is

an immediate reduction in energy when d is decreased. From Figures 4.14 and 4.15, it is

clear that this reduction corresponds to the two Saturn ring defects interacting and then

joining in the region between the two particles. In experiments, the system reaches equilib-

rium at a nonzero separation and the defect structure is that of the entangled hyperbolic

defect. This defect structure and energy minimum appear to occur for d = .7 − .75L0 for

our computations. Once d becomes less than .7L0, the energy begins to increase as the

separation decreases. This is consistent with the presence of a repulsive force between the

two particles. In [49], Kim et al. use Monte Carlo simulations and dynamic field theory to

study the same system. They find that for a separation less than .7L0, the spheres strongly

repel, and the minimum energy will occur for d = .7, which is consistent with the results

in Figure 4.16. Using local thermal quenching, Ravnik et al. calculate that the equilibrium

separation, measured from the particles surfaces, is fifty percent of the particle radius [60].

This corresponds to a value of d = .75 and is in close agreement with the energy values in

Figure 4.16 as well.

In some experimental systems, the colloids seem to attract not in a linear chain but at
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Figure 4.16: Energy Values for Various Particle Separations

The energy for the two particle system and various values of d is computed and organized
into a table. The values are also plotted to better visualize the results.

an angle to one another [33]. As is the case for a single particle, confinement plays a major

role in defect structure for two particles. The extent of this confinement needs further study.

In experiments done by Musevic et al. they considered a cell which was twice the diameter

of the particles and the angle between the particles was nonzero [33]. In [60], Ravnik et al.

consider a cell which is only ten percent larger than the cell diameter, and in this case the

particles lie on the same axis. This potential confinement interaction was briefly mentioned

by Araki and Tanaka [41]. In their numerical work, they consider two particles in a weak

external field, which, as discussed in the previous section, is equivalent to relaxing the

confining geometry. In this case, their final defect structure is completely different than

what was seen previously and acknowlege that confinement may be a determining factor.
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Chapter 5

Numerical Simulations using

Symmetry

Numerical simulations in three-dimensional domains are computationally intensive and us-

ing symmetry to simplify the domains can greatly reduce the computational cost. Whereas

two-dimensional domains can accommodate finer meshes, these domains may alter the prop-

erties of approximate solutions. For instance, if two distinct uniaxial directions cross in

space, their projections onto the plane will intersect, creating a discontinuity.

In this Chapter, we will consider cross sections of some of the domains in Chapter 4

and study when the results are consistent with those found over the full three-dimensional

domain. The energy expression used for the minimization is the dimensionless Landau-

de Gennes energy described in (4.1). The cross sections for three types of domains are

considered. First, the energy is minimized over various annular regions which correspond to

the cross sections of the concentric cylinder domains of Chapter 4. In this case, we find the

results to be consistent with the fully three-dimensional. Next, the minimizer corresponding

to the cross section of a single particle suspended in a cylinder is computed. The behavior

of the line field and β is similar to that seen in three dimensions, but the defect regions are

larger. Finally, two particles in a box are considered. Since the system is not rotationally

symmetric, we will only find qualitative agreement because the details of the defect structure

cannot be fully described in two dimensions. Additionally, larger particle separations are

needed in order to resolve the transitions of the defect regions seen in the three-dimensional

case due to the larger nature of the Saturn ring defect in the cross sections.
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5.1 Specifying Boundary Conditions

As in Chapter 4, we are looking for an approximate solution, qh, to the weak Euler-Lagrange

equations (4.4). The boundary conditions must once again be expressed in terms of q =

(q0, q1, q2, q3, q4) where Q and q are related be expression (4.2). Two boundary conditions

are used in the numerical simulations: planar radial and planar vertical. For the planar

radial boundary condition, assume that

Q = (npr ⊗ npr − (1/3)I) where npr = (x0/|x|, x1/|x|, 0) (5.1)

and |x| =
√
x2

0 + x2
1. In terms of the components of Q, this implies

q0 =
x2

0

|x|2
− 1

3
, q1 =

x2
1

|x|2
− 1

3
, q2 =

x0x1

|x|2
, q3 = 0 = q4. (5.2)

For planar vertical boundary conditions,

Q = (npv ⊗ npv − (1/3)I) where npv = (0, 1, 0) (5.3)

and so

q0 = −1

3
, q2 =

2

3
, and q2 = 0 = q3 = q4 (5.4)

5.2 Annulus as a Cross Section

We begin by considering an annular domains with outer radius L0 and inner radius ρL0.

On the domain boundaries, homeotropic Dirichlet boundary conditions are defined as in

(5.2). Let ρ = .8, .5, .3, .2, .15, .1, .05, .02, 0 so that the annular regions are exactly the cross

sections of the concentric cylinder domains considered in Chapter 4. Note that even though

the domains are two-dimensional, the use of the three-dimensional Landau-de Gennes model,

(4.1), allows for biaxiality to develop. Because of this, the cross sections will exactly reflect

the behavior seen in the concentric cylinder domains.

As a representative example of the mesh used in each case, we show the mesh for ρ = .2

in Figure 5.1 and its details are summarized into Table 5.1.

Table 5.1: Mesh Details for Annulus with ρ = .2

Max h Min h Average h Number of Cells

7.45e− 02 1.07e− 02 4.07e− 02 7.22e+ 03
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Figure 5.1: Mesh Details for Annulus with ρ = .2

On the left, the mesh for the entire domain is shown. The right shows a zoomed in portion
in order to see the mesh details around the inner boundary.

Using FEniCS, degree one Lagrange elements are used to find an approximate solution,

qh, of the weak Euler-Lagrange equations (4.4) on each domain. We calculate βh over the

mesh and the results are plotted in Figure 5.2.

The biaxiality parameter βh over these cross section reflects the exact behavior seen

in the three-dimensional concentric cylinder domain. As ρ decreases, the biaxial region

increases as does the maximal value of βh over the domain, until it reaches a maximal

value of one. As shown in the second row of Figure 5.2, this biaxial region then develops

an interior region in which βh is no longer maximal. Decreasing ρ further results in this

lower β-valued region attaining a value of zero, which corresponds to the presence of the

escape solution. Clearly, in this case the liquid crystal behavior in the entire domain can

be captured from minimizing the Landau-de Gennes energy over a cross section.

Since there is an exact agreement with the three-dimensional domain and there is less

numerical error introduced when interpolating over a two-dimensional domain, it is of in-

terest to compare the results of the Landau-de Gennes minimization with the planar radial

line field. The planar radial line field has an associated Qr = h(r)(nr ⊗ nr − (1/3)I where

nr = (x/
√
x2 + y2, y/

√
x2 + y2, 0) and h(r) is the solution to the integral energy expression:

I[h] = 2πK

∫ R

0

[
1

3
h′2 − hh′

3r
+ (

1

r2
− 2

3
)h2 +

2B
27
h3 +

C
9
h4

]
r dr (5.5)

whose derivation can be found in Section A.3 of the Appendix. For each ρ, the energy

value is computed on the mesh for the approximate solution. The radial solution is also

interpolated onto this mesh and its energy per unit area is calculated. Mesh refinements are

done until the energy repeats in value. The final mesh contains between 10, 000− 525, 000
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Figure 5.2: βh Plots for Various Annular Domains

βh, the biaxiality parameter, is plotted over the annulus for a range of values ρ. On the top
row, left to right ρ = .8, .5, .3, middle row ρ = .2, .15, 1 and bottom row ρ = .05, .02, 0

elements depending on the size of the domain. The energy values on the final meshes are

organized into Table 5.2.

Notice that for ρ = .8, it appears as though the energy values are equal. As stated,

every domain, regardless the value of ρ, has some degree of biaxiality. Since the domain is

very thin and the boundary conditions are exactly given by the radial line field, βh remains

small. If we consider more decimal places, the energy per unit area of the approximate

solution is 1.076 while the energy for the planar radial solutions is 1.082, showing that the

approximate solution continues to give a lower energy.

For every ρ, the minimizer of the Landau-de Gennes model has a lower energy than
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Table 5.2: Energies per Unit Area for Varying ρ

Number of Cells Computed Minimizer Radial Hedgehog

.8 1.08 1.08

.5 1.41 1.46

.3 1.67 1.78

.2 1.79 1.96
.15 1.84 2.04
.1 1.88 2.11
.05 1.90 2.16
.02 1.91 2.18
0 0.91 1.03

the radial hedgehog. Notice that this is inconsistent with the results using the Oseen-

Frank energy presented in [20]. As discussed in Chapters 3 and 4, they predict that for

ρ ≥ e−π ≈ .0432, the minimizing configuration is the planar radial solution. Our energy

calculations show that there is no radius in which the planar radial solution will have a

lower energy and further proves that the planar radial solution is an artifact of using a

vector field dependent model and not a true minimizing configuration in such a domain.

Consider ρ = 0, where the domain corresponds to a unit disc. It has been hypothesized

for nearly fifty years that the minimizer for this domain is given by a configuration that is

allowed to relax out of the plane. Cladis and Kleman find, using the Oseen-Frank energy,

that such a configuration occurs for radii larger than a few molecular lengths [7]. We do

not include a detailed discussion here, but when the radius of the solid disc is allowed to

vary, the escape solution is always found to be the minimizing configuration. In radii where

this does not appear to be the case, such as for very small radii, further refinement of the

domain, once again, resulted in an escape solution.

5.3 Single Particle

For the three-dimensional cross section, let us consider a box of sidelengths 4L0 with a

circle of radius .5L0 removed from the center. As done for the three-dimensional case,

homeotropic Dirichlet boundary conditions are defined on the surface of the particle and

everywhere vertical Dirichlet boundary conditions are defined on the boundary of the box.

Using degree one Lagrange elements, the energy is minimized using FEniCS. The number

of cells as well as the maximum, minimum, and average cell diameter, h, of this mesh are

organized into Table 5.3. As in the three-dimensional domain, the mesh is further refined

80



around the particle surface so that the defect regions are properly resolved. A plot of the

mesh is not included since the mesh is too dense to see the details.

Table 5.3: Mesh Details Single Particle in Two Dimensions

Max h Min h Average h Number of Triangles

5.26e− 02 3.28e− 03 1.61e− 02 1.63e+ 05

Notice that the number of cells used is approximatedly ten times fewer than in the

three-dimensional domain. While this does not seem like a vast simplification, we must

keep in mind that the mesh is now composed of two-dimensional triangles as opposed to

three-dimensional tetrahedron. This results in a considerable reduction in computing time

and allows for a much finer mesh everywhere in the domain and ultimately a higher level

of accuracy. Since a very fine mesh is used, 3, 000 elements of the line field are plotted in

Figure 5.3. Two ellipses denote the defect regions and the behavior of the surrounding line

field implies that these two defects are of order −1/2.

Figure 5.3: Line Field Plots for Single Particle Cross Section

The ellipses along the equator of the particle denote defect regions. Around these defects, the
line field clearly implies that the defects are both of order −1/2. Note that 3, 000 elements
of the line field are shown because of the high density of elements in the mesh.

The location of the defects is further confirmed by the behavior of the biaxiality param-

eter. For comparison with the results in the previous chapter, βh as well as rh and sh are

calculated from the approximate solution. qh, and plotted over the domain in Figure 5.4.

In terms of βh, rh, and sh, the behavior of the defect region is qualitatively equivalent to

minimizing this energy expression over the entire three-dimensional domain, but we notice

that the value at which rh = sh has increase from .35 to a value of .4. Away from the
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Figure 5.4: βh, sh, and rh Plots for Single Particle Cross Section

βh, the biaxiality parameter, is plotted in the first row. In the second row the plot of rh is
on the left and plot of sh on the right.

defects, the line field, βh, sh, and rh agree with the three-dimensional results. Through

careful comparison with the cross sections plotted in Chapter 4, we see that the defect

region is larger in this two-dimensional cross-sectional domain. The large defect region is

reflected in the line field as well.

It is important to understand why these results diverge slightly from the minimization

done in the three-dimensional domain. It is due to the nature of the behavior of semi-rigid

elongated molecules in these two types of domains. In three dimension, the molecules do

not have to lie completely in a single plane and can relax into different directions while

retaining their uniaxial nature. In two dimensions, forcing the molecules to lie on a plane

suppressed their ability to come out of the plane and causes the defect regions to be larger.

5.4 Two Particles

For the two particle system considered in Chapter 4, it is clear that a two-dimensional

simplification will not illustrate the behavior of the full system, but it can give qualitative

agreement. We consider a box of sidelengths 5L0 with two particles of radius .3L0 removed.

These particles will be aligned along the x-axis and separated by a distance d, measured
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from the center of the particles. The particles have hometropic Dirichlet planar boundary

conditions as defined by (5.2) and the boundaries of the box have planar vertical Dirichlet

boundaries conditions as in (5.4). For several values of d, the energy is minimized using

degree one Lagrange element over the domain and the energy values are calculated.

Before presenting the results, we give the mesh details for d = 1.2L0 since all the meshes

are generated in a similar fashion. As was done in previous computations over particle

domains, the mesh is further refined around the surface of the particles. The maximum,

minimum, and average cell diameter, h, as well as the number of cells in the mesh are

organized into Table 5.4. An image of the mesh is not included since it is so fine that the

mesh details are difficult to see.

Table 5.4: Mesh Details Two Particles in Two Dimensions

Max h Min h Average h Number of Triangles

4.93e− 02 6.93e− 03 1.82e− 02 2.70e+ 05

For five different values of d, the approximated energy minimizer, qh, is computed using

FEniCS, from which Qh is found and βh is calculated. The plots of βh over each domain

are shown in Figure 5.5.

Similar to the results in Chapters 3 and 4, the particles present separate Saturn ring

defects for a large enough separation. In order to resolve to separate Saturn ring defects, a

larger initial separation, than that needed in the three-dimensional domain, was needed due

to the the larger size of the defect regions. The initial separation considered is d = 2.4L0,

which is 1/3 larger than the separation needed in Chapter 4. Analogous to the three-

dimensional domain, as the particles are brought closer together, the defect region between

them fuzes. Further decreasing d results in the region splitting at the center as shown

for d = .8L0 in Figure 5.5. This corresponds to the formation of the third ring seen in

the entangled hyperbolic defect. In terms of the biaxiality parameter the agreement is

again qualitative, but the restriction to the plane causes larger defect regions and therefore

the defect transitions occured at much larger separations. For d = 1.6L0, 1.2L0, these

separations were considered in the previous Chapter as well and the difference in the defect

region is clear.

We also study whether energy of the system reflects the fact that there is first an

attraction between the two particles and later a repulsion if d becomes too small. For

various values of d, the energy is found and organized into a table shown in Figure 5.6.
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Figure 5.5: βh Plots for Various Circle Separations

On the first row from left to right, d = 2.4, 1.8, 1.6. Second row left to right d = 1.2, .8, .65,
where d is measured in units of L0.

Figure 5.6: Energy Values for Various Circle Separations

On the left, the energy of the system is found for various values of d. On the right, a plot

is shown of these results.

Similar to the results in Chapters 3 and 4, the energy first decreases with decreasing

d, and then after d = .8L0, further reductions result in an increase in energy implying

a repulsive force between the particles. In the previous Chapter, this minimum occurred
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for d = .7 − .75L0, which is in close agreement despite the fact that the defect structure

was much larger in this cross-sectional domain and a large initial separation was needed

to resolve two separate Saturn ring defects. Of course, the full defect structure will not

be captured with this simplification, but there is a clear qualitative agreement in both the

behavior of the energy and the defect structure.

When using symmetry to reduce computational cost in a liquid crystal domain, it cannot

be assumed that the result is in exact agreement with the full three-dimensional domain.

Forcing the liquid crystal molecules to lie in a plane can give rise to larger defect structures,

as we have seen in the domains with particle interactions. Therefore, many quantities

calculated in the literature such as particle separation or Saturn ring size and radius will not

be accurate if done in a cross-sectional domain. However, if one is looking for a qualitative

agreement only, minimization over a cross section can be a powerful and less computationally

expensive tool.
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Chapter 6

Conclusion

In Chapter 2, we introduced the Oseen-Frank model, and used it to present some of the

subtle issues that must be addressed when modeling liquid crystal behavior. The inability

to describe biaxiality and its infinite energy for +1 ordered line defects illustrated the

models deficiency and motivated the introduction of the Landau-de Gennes energy, in which

molecular alignment is now described by a symmetric, traceless tensor Q. We proved that

under certain assumptions, the two models are equivalent and the issue of orientability was

critical. When orientability of the line field is not required, more minimizing configurations

can be described using the tensor Q, a fact which further supported our choice of model.

We ended the chapter by proving the existence of minimizers for the Landau-de Gennes

energy and introduced the dimensionless form of the energy. This dimensionless form was

used for all the numerical calculations presented in this thesis.

For simulations done using both the two-by-two and three-by-three forms of Q, the

method of manufactured solutions was used to establish a rigorous foundation for the nu-

merical computations that followed. This is an essential part of the work in this thesis

and a point of distinction from previous numerical results since it is the first time such

methods were used to validate numerical computing involving the Landau-de Gennes en-

ergy expression. In Chapter 3, the manufactured solution was assumed to be the planar

radial configuration and the domain considered was an annulus. Our convergence study

with degree one and two Lagrange elements provided confidence that the remainder of the

computations in the chapter were accurate. In Chapter 4, the planar radial configuration

was again chosen as the manufactured solution, but its description was three-dimensional in

this case and the domain was the region confined between two concentric cylinder of finite

height. The minimization was done using degree one and two Lagrange elements and the
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orders of convergence once again provided the reader with confidence that our numerical

computations were accurate.

In Chapter 3, our results showed both agreement and departure from previous results.

The domains with particle interactions had minimizing configurations which were consistent

with those found by Tasinkevych et al. in [50]. However, for annular domains, we showed

that the restriction of Q to a two-by-two matrix resulted in a single possible solution struc-

ture. This was inconsistent with the predicted configurations described by Bethuel et al,

but not unexpected since our assumptions forced Q to be uniaxial and lie in the plane.

A consequential contribution was presented for disc domains. For the disc of radius

11L0, we proved that the minimizing configuration is the radial hedgehog. This contradicts

the minimizers found by Sonnet et al. in 1995, and Mkaddem and Gartland in 2000, which

predict a split core defect for this radius. Through convergence studies and comparing the

energy of the hedgehog and split core configurations we were able to conclude that the split

core defect is an artifact of improper mesh refinement [17], [18]. This result emphasizes the

need to compare experimental data with those found through numerical minimization of

the energy expression. Before concluding that a new defect structure may have been found,

the mesh should be refined further to ensure that the configuration is not instead due to a

numerical error.

In Chapter 4, we used a three-by-three Q tensor and minimized the energy over three-

dimensional domains in order to find minimizing configurations and defect core structures

not previously numerically verified. In the droplet domain with homeotropic alignment, we

proved through minimization of the energy and comparison with the uniaxial hedgehog, an

exact solution to the Landau-de Gennes Euler-Lagrange equations, that a droplet with biax-

ial core has a smaller energy. Our numerical results verify the conclusions by Schopohl and

Sluckin, and later Penzenstadler and Trebin, that the droplet with such boundary conditions

always has a biaxial core [19], [65]. For two particles in a cylindrical domain, we resolved

the entangled hyperbolic defect and studied the formation of this defect configuration. The

particle separation where this defect structure occurs in our numerical calculations matched

the predictions of Guzman et al. and the experimental evidence presented by Musevic et.

al. [48], [33].

One of the most important results of this thesis arose in the concentric cylinder domains.

We found three minimizing configurations which transform continuously to one another as

we vary ρ, the ratio of the inner to the outer radius. Every configuration has some level of

biaxiality, which is in contrast to the purely unaxial configuration predicted by Bethuel et al.

using the Oseen-Frank energy expression, and more accurately reflects the behavior seen
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in experiments [20]. This result illuminates the fact that the restriction of vector-based

models to purely uniaxial configurations can cause a deviation from physically realistic

configurations. Another significant development involved the single particle domain, our

numerical results confirmed for the first time that the core of a Saturn ring defect is uniaxial

with negative scalar order parameter, as predicted by Schopohl and Sluckin [19].

In Chapter 5, we used symmetry to show that minimization over a cross section can

always guarantee qualitative agreement, but the results deviate slightly when particle in-

teraction is present. For the cross sections of the concentric cylinder domains of Chapter

4, we showed that the minimization gave analogous results. For the domains with particle

interactions, the restriction of the liquid crystal to the plane gave larger defect structures

than those seen in the three-dimensional domains. These computations illustrate that many

previous work in which symmetry is used to simplify the model can only, at best, give a

qualitative understanding of the three-dimensional behavior when particle interaction is

involved.

From a numerically rigorous perspective, we studied the Landau-de Gennes energy and

illustrated some deficiencies with previous numerical and theoretical results in nematic liquid

crystal domains. Our hope is that this work will serve as an example for future numerical

computations involving the Landau-de Gennes energy expression, and subsequent authors

will include proper convergence studies before presenting their resulting energy minimizing

configurations.

88



References

[1] Ian W Hamley. Introduction to soft matter: synthetic and biological self-assembling

materials. John Wiley & Sons, 2013.

[2] Epifanio G Virga. Variational theories for liquid crystals, volume 8. CRC Press, 1995.

[3] Birendra Bahadur. Liquid crystals: applications and uses, volume 1. World Scientific,

1990.

[4] Otto Lehmann. Flüssige Kristalle. Urban u. Schwarzenberg, 1904.

[5] MG Friedel. Les Etats Mesamorphes de la matiere. 1922.

[6] LJ Yu and Alfred Saupe. Observation of a biaxial nematic phase in potassium laurate-

1-decanol-water mixtures. Physical Review Letters, 45(12):1000, 1980.

[7] PE Cladis and M Kleman. Non-singular disclinations of strength s=+ 1 in nematics.

Journal de Physique, 33(5-6):591–598, 1972.

[8] CE Williams, PE Cladis, and M Kleman. Screw disclinations in nematic samples with

cylindrical symmetry. Molecular Crystals and Liquid Crystals, 21(3-4):355–373, 1973.

[9] G Toulouse and M Kléman. Principles of a classification of defects in ordered media.

Journal de Physique Lettres, 37(6):149–151, 1976.

[10] GE Volovik and VP Mineev. Line and point singularities in superfluid he 3. JETP

Letters, 24(11), 1976.

[11] W. F. Brinkman and P. E. Cladis. Defects in liquid crystals. Physics Today, 35:48–56,

May 1982.

[12] Frederick C Frank. Liquid crystals on the theory of liquid crystals. In Crystals That

Flow: Classic Papers from the History of Liquid Crystals, pages 389–399. CRC Press,

2004.

89



[13] Wilhelm Maier and Alfred Saupe. Eine einfache molekulare theorie des nematischen

kristallinflüssigen zustandes. Zeitschrift für Naturforschung A, 13(7):564–566, 1958.

[14] John M Ball and Apala Majumdar. Nematic liquid crystals: from maier-saupe to a

continuum theory. Molecular Crystals and Liquid Crystals, 525(1):1–11, 2010.

[15] William F Brinkman and Patricia E Cladis. Defects in liquid crystals. Physics Today,

35(5):48–54, 1982.

[16] Samo Kralj, Epifanio G Virga, and Slobodan Žumer. Biaxial torus around nematic
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Appendix A

Calculations

A.1 Derivation of h(r) in Polar Coordinates

In this case, we assume Q is the two-by-two tensor defined in (3.1) and Q = h(nr ⊗ nr −
(1/2)I) where nr = er is the planar radial basis vector and h is dependent only on r, the

radial distance from the origin. We want to express the Landau-de Gennes energy in terms

of h, and therefore need to expand 1
2 |∇Q|

2 − 1
2tr Q2 + C

4 (tr Q2)2. We begin by finding ∇Q
in terms of nr and h:

∇Q = ∇[h(er ⊗ er −
1

2
I)] = (er ⊗ er −

1

2
I)⊗∇h+ h∇(er ⊗ er)

= er ⊗ er ⊗∇h−
1

2
I ⊗∇h+ h∇(er ⊗ er)

(A.1)

Using the fact that the Frobenius inner product is commutative |∇Q|2 can be expressed in

the following way:

|∇Q|2 = ∇Q : ∇Q

= (er ⊗ er ⊗∇h : er ⊗ er ⊗∇h)− (er ⊗ er ⊗∇h : I ⊗∇h)

+ (2er ⊗ er ⊗∇h : h∇(er ⊗ er)) +
1

4
(I ⊗∇h : I ⊗∇h)

− (I ⊗∇h : h∇(er ⊗ er)) + (h∇(er ⊗ er) : h∇(er ⊗ er))

(A.2)

For readability, we will expand each of the six terms separately. Before doing so, it will be

useful to rewrite ∇(er ⊗ er):

∇(er ⊗ er) =

(
er
∂

∂r
+

1

r
eθ
∂

∂θ

)
⊗ (er ⊗ er)

= er ⊗
(
∂

∂r
er ⊗ er + er ⊗

∂

∂r
er

)
+

1

r
eθ ⊗

(
∂

∂θ
er ⊗ er + er ⊗

∂

∂θ
er

)
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=
1

r
(eθ ⊗ eθ ⊗ er + eθ ⊗ er ⊗ eθ)

Expanding the six terms of |∇Q|2 gives:

er ⊗ er ⊗∇h : er ⊗ er ⊗∇h = |er|2|er|2|∇h|2

= |∇h|2

−er ⊗ er ⊗∇h : I ⊗∇h = −(er)i(er)j∇hkδij∇hk

= −|∇h|2

2er ⊗ er ⊗∇h : h∇(er ⊗ er) = 2er ⊗ er ⊗∇h :
h

r
(eθ ⊗ eθ ⊗ er + eθ ⊗ er ⊗ eθ)

= 2
h

r
[(er)i(er)j∇hk(eθ)i(eθ)j(er)k + (er)i(er)j∇hk(eθ)i(er)j(eθ)k]

= 0

1

4
I ⊗∇h : I ⊗∇h =

1

4
δij∇hkδij∇hk

=
1

2
|∇h|2

−I ⊗∇h : h∇(er ⊗ er) = −I ⊗∇h :
h

r
(eθ ⊗ eθ ⊗ er + eθ ⊗ er ⊗ eθ)

= −h
r
δij∇hk(eθ)i(eθ)j(er)k −

h

r
δij∇hk(eθ)i(er)j(eθ)k

=
−h
r
∇h · er

h∇(er ⊗ er) : h∇(er ⊗ er) =
h2

r2
(eθ ⊗ eθ ⊗ er + eθ ⊗ er ⊗ eθ) : (eθ ⊗ eθ ⊗ er + eθ ⊗ er ⊗ eθ)

=
h2

r2
(|eθ|2|eθ|2|er|2 + 0 + 0 + |eθ|2|er|2|eθ|2)

=
2h2

r2

Combining the above, (A.2) becomes:

|∇Q|2 = ∇Q : ∇Q = |∇h|2 − |∇h|2 +
1

2
|∇h|2 − h

r
∇h · er +

2

r2
h2

=
1

2
|∇h|2 − h

r
∇h · er +

2

r2
h2

=
1

2
|∇h|2 − (er

∂

∂r
+
eθ
r

∂

∂θ
)h · er +

2

r2
h2

(A.3)

Since h is only dependent on r, (A.3) can be simplified further:

|∇Q|2 =
h′2

2
− h

r
h′ +

2h2

r2
(A.4)

96



We also rewrite the bulk terms in terms of h and er:

tr (Q2) = |Q|2 = Q : Q = h2(er ⊗ er −
1

2
I) : (er ⊗ er −

1

2
I)

= h2(er ⊗ er : er ⊗ er − er ⊗ er : I +
1

4
I : I)

= h2[|er|2|er|2 − (er)i(er)jδij +
1

4
δijδij ]

= h2(1− 1 +
1

2
) =

h2

2

tr (Q2)2 = (|Q|2)2 =
h4

4

(A.5)

Combining (A.4) and (A.5), the liquid crystal energy over a disc of radius R is rewritten in

the following way:

I[h] =

∫ 2π

0

∫ R

0

[
1

2
(
h′2

2
− h

r
h′ +

2h2

r2
)− 1

2

h2

2
+

1

4
Ch

4

4

]
r dr dθ

= π

∫ R

0
r

[
h′2

2
− h

r
h′ + (

2

r2
− 1

2
)h2 + Ch

4

8

]
dr

A.2 Derivation of h(ρ) in Spherical Coordinates

Assume that Q is the three-by-three matrix given by (4.2) and take as our energy density
1
2 |∇Q|

2 − tr Q2 + B
3 tr Q3 + C

4 (tr Q2)2. Let Q = h(nρ ⊗nρ − (1/3)I), where h is a function

dependent on ρ and nρ is the radial basis vector in spherical coordinates, eρ. We want to

express the Landau-de Gennes energy in terms of h and we begin by rewriting ∇Q:

∇Q = ∇[h(eρ ⊗ eρ −
1

3
I)] = eρ ⊗ eρ ⊗∇h−

1

3
I ⊗∇h+ h∇(eρ ⊗ eρ) (A.6)

Therefore |∇Q|2 = ∇Q : ∇Q is:

∇Q : ∇Q = (eρ ⊗ eρ ⊗∇h : eρ ⊗ eρ ⊗∇h)− (
2

3
eρ ⊗ eρ ⊗∇h : I ⊗∇h)

+ (2eρ ⊗ eρ ⊗∇h : h∇(eρ ⊗ eρ)) + (
1

9
I ⊗∇h : I ⊗∇h)

− (
2

3
h∇(eρ ⊗ eρ) : I ⊗∇h) + (h∇(eρ ⊗ eρ) : h∇(eρ ⊗ eρ))

(A.7)

Before expanding each term separately, we expand ∇(eρ ⊗ eρ) in spherical coordinates:

∇(eρ ⊗ eρ) = (eρ
∂

∂ρ
+

1

ρ
eφ

∂

∂φ
+

1

ρ sinφ
eθ
∂

∂θ
)⊗ (eρ ⊗ eρ)

= eρ ⊗
∂

∂ρ
(eρ ⊗ eρ) +

1

ρ
eφ ⊗

∂

∂φ
(eρ ⊗ eρ) +

1

ρ sinφ
eθ ⊗

∂

∂θ
(eρ ⊗ eρ)
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=
1

ρ
eφ ⊗ (

∂

∂φ
eρ ⊗ eρ + eρ ⊗

∂

∂φ
eρ) +

1

ρ sinφ
eθ ⊗ (

∂

∂θ
eρ ⊗ eρ + eρ ⊗

∂

∂θ
eρ)

=
1

ρ
eφ ⊗ (eφ ⊗ eρ + eρ ⊗ eφ) +

1

ρ sinφ
eθ ⊗ (sinφ)(eθ ⊗ eρ + eρ ⊗ eθ)

=
1

ρ
(eφ ⊗ eφ ⊗ eρ + eφ ⊗ eρ ⊗ eφ) +

1

ρ
(eθ ⊗ eθ ⊗ eρ + eθ ⊗ eρ ⊗ eθ)

=
1

ρ
(eφ ⊗ eφ ⊗ eρ + eφ ⊗ eρ ⊗ eφ + eθ ⊗ eθ ⊗ eρ + eθ ⊗ eρ ⊗ eθ)

Now, we rewrite the six terms of ∇Q : ∇Q.

eρ ⊗ eρ ⊗∇h : eρ ⊗ eρ ⊗∇h = |∇h|2

−2

3
eρ ⊗ eρ ⊗∇h : I ⊗∇h =

−2

3
(eρ)i(eρ)j∇hkδij∇hk =

−2

3
|∇h|2

2eρ ⊗ eρ ⊗∇h : h∇(eρ ⊗ eρ) = 2h(eρ ⊗ eρ ⊗∇h) : [
1

ρ
(eφ ⊗ eφ ⊗ eρ + eφ ⊗ eρ ⊗ eφ

+ eθ ⊗ eθ ⊗ eρ + eθ ⊗ eρ ⊗ eθ)]

= 2h(eρ ⊗ eρ ⊗∇h) : 0 = 0

1

9
I ⊗∇h : I ⊗∇h =

1

9
δij∇hkδij∇hk =

1

3
|∇h|2

−2

3
h∇(eρ ⊗ eρ) : I ⊗∇h =

−2

3
hI ⊗∇h : ∇(eρ ⊗ eρ)

=
−2

3
hI ⊗∇h : [

1

ρ
(eφ ⊗ eφ ⊗ eρ + eφ ⊗ eρ ⊗ eφ

+ eθ ⊗ eθ ⊗ eρ + eθ ⊗ eρ ⊗ eθ)]

=
−2

3
hI ⊗∇h : [

1

ρ
(eφ ⊗ eφ ⊗ eρ + eθ ⊗ eθ ⊗ eρ)]

=
−2

3ρ
h(δij∇hk(eφ)i(eφ)j(eρ)k + δij∇hk(eθ)i(eθ)j(eρ)k)

=
−2

3ρ
h∇h · eρ

h2∇(eρ ⊗ eρ) : ∇(eρ ⊗ eρ) = h2[
1

ρ
(eφ ⊗ eφ ⊗ eρ + eφ ⊗ eρ ⊗ eφ + eθ ⊗ eθ ⊗ eρ

+ eθ ⊗ eρ ⊗ eθ)] : [
1

ρ
(eφ ⊗ eφ ⊗ eρ + eφ ⊗ eρ ⊗ eφ

+ eθ ⊗ eθ ⊗ eρ + eθ ⊗ eρ ⊗ eθ)]

=
h2

ρ2
(eφ ⊗ eφ ⊗ eρ : eφ ⊗ eφ ⊗ eρ + eφ ⊗ eρ ⊗ eφ : eφ ⊗ eρ ⊗ eφ+

eθ ⊗ eθ ⊗ eρ : eθ ⊗ eθ ⊗ eρ + eθ ⊗ eρ ⊗ eθ : eθ ⊗ eρ ⊗ eθ)
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=
h2

ρ2
(1 + 1 + 1 + 1) =

4

ρ2
h2

Since h is just a function of ρ, ∇h = [eρ(∂/∂ρ) + eφ(1/ρ)(∂/∂φ) + eθ(1/ρ sin θ)(∂/∂θ)]h =

h′eρ. This simplifies (A.7):

|∇Q|2 = ∇Q : ∇Q

= |∇h|2 − 2

3
|∇h|2 +

1

3
|∇h|2 − 2

3ρ
h∇h · eρ +

4h2

ρ2

=
2

3
|∇h|2 − 2

3ρ
h(eρ

∂

∂ρ
+

1

ρ
eφ

∂

∂φ
h+

1

ρ sin θ

∂

∂θ
)h · eρ +

4h2

ρ2

=
2

3
h′2 − 2

3ρ
hh′ +

4h2

ρ2

(A.8)

We also expand the bulk terms and express them in terms of h:

tr Q2 = |Q|2 = Q : Q = h2(eρ ⊗ eρ −
1

3
I) : (eρ ⊗ eρ −

1

3
I)

= h2(eρ ⊗ eρ : eρ ⊗ eρ −
2

3
I : eρ ⊗ eρ +

1

9
I : I)

= h2(1− 2

3
δij(eρ)i(eρ)j +

1

3
)

= h2(1− 2

3
+

1

3
) =

2

3
h2

tr (Q2)2 = (
2

3
h2)2 =

4

9
h4

(A.9)

For tr Q3, we begin by expanding Q3:

Q3 = h(eρ ⊗ eρ −
1

3
I)ijh(eρ ⊗ eρ −

1

3
I)jkh(eρ ⊗ eρ −

1

3
I)kl

= h3[(eρ ⊗ eρ)ij(eρ ⊗ eρ)jk −
2

3
(eρ ⊗ eρ)ik +

1

9
δik](eρ ⊗ eρ −

1

3
I)kl

= h3(
1

3
eρ ⊗ eρ +

1

9
I)ik(eρ ⊗ eρ −

1

3
I)kl

= h3[
1

3
(eρ ⊗ eρ)ik(eρ ⊗ eρ)kl −

1

9
(eρ ⊗ eρ)il +

1

9
(eρ ⊗ eρ)il −

1

27
Iil]

= h3[
1

3
(eρ ⊗ eρ)−

1

27
I]
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Taking the trace gives:

tr Q3 = tr (h3(
1

3
(eρ ⊗ eρ)−

1

27
I))

=
h3

3
(eρ ⊗ eρ −

1

9
I)ii

=
h3

3
[(eρ ⊗ eρ)ii − 1/3]

=
h3

3
[(cos θ sinφ)2 + (sin θ sinφ)2 + (cosφ)2 − 1/3]

=
h3

3
(sin2 φ+ cos2 φ− 1/3)

=
h3

3
(1− 1/3) =

2

9
h3

(A.10)

From (A.8), (A.9), and (A.10), we can express the Landau-de Gennes integral energy ex-

pression over a sphere of radius R as:

I[h] =

∫ R

0

∫ π

0

∫ 2π

0

[
1

2
(
2

3
h′2 − 2

3ρ
hh′ +

4h2

ρ2
)− 2

3
h2 +

B
3

2

9
h3 +

C
4

4

9
h4

]
ρ2 sinφ dθdφdρ

=

∫ R

0

∫ π

0

∫ 2π

0

[
1

3
h′2 − 1

3ρ
hh′ + (

2

ρ2
− 2

3
)h2 +

2B
27
h3 +

C
9
h4

]
ρ2 sinφ dθdφdρ

=

∫ R

0

∫ π

0
2π

[
1

3
h′2 − 1

3ρ
hh′ + (

2

ρ2
− 2

3
)h2 +

2B
27
h3 +

C
9
h4

]
ρ2 sinφ dφdρ

=

∫ R

0
4π

[
1

3
h′2 − 1

3ρ
hh′ + (

2

ρ2
− 2

3
)h2 +

2B
27
h3 +

C
9
h4

]
ρ2 dρ

A.3 Derivation of h(r) in Cylindrical Coordinates

We assume that Q is the three-by-three matrix given by (4.2) and consider the energy

density 1
2 |∇Q|

2 − tr Q2 + B
3 tr Q3 + C

4 (tr Q2)2. This derivation will be similar to that done

for spherical coordinates in Section A.2 and the general expression for ∇Q : ∇Q will look

identical with r replacing ρ:

∇Q : ∇Q = (er ⊗ er ⊗∇h : er ⊗ er ⊗∇h)− (
2

3
er ⊗ er ⊗∇h : I ⊗∇h)

+ (2er ⊗ er ⊗∇h : h∇(er ⊗ er)) + (
1

9
I ⊗∇h : I ⊗∇h)

− (
2

3
h∇(er ⊗ er) : I ⊗∇h) + (h∇(er ⊗ er) : h∇(er ⊗ er)),

where er is the radial basis vector for cylindrical coordinates. When we expand these terms,

many will be similar to the spherical case, but care must be taken when the terms involve
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∇(er ⊗ er). Using the fact that in cylindrical coordinates, ∇ = er∂/∂r + eθ(1/r)∂/∂θ +

ez∂/∂z, we have

(er
∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z
)⊗ (er ⊗ er) = eθ ⊗

1

r
(
∂

∂θ
er ⊗ er + er ⊗

∂

∂θ
er)

=
1

r
(eθ ⊗ eθ ⊗ er + eθ ⊗ er ⊗ eθ).

Any term in |∇Q|2, which do not involve ∇(er ⊗ er) will be equal to those the spherical

case with r replacing ρ, and therefore we only need to expand the 3rd, 5th and 6th terms:

2er ⊗ er ⊗∇h : h∇(er ⊗ er) = 2her ⊗ er ⊗∇h :
1

r
(eθ ⊗ eθ ⊗ er + eθ ⊗ er ⊗ eθ)

= 0

−2

3
h∇(er ⊗ er) : I ⊗∇h =

−2

3
hI ⊗∇h : ∇(er ⊗ er)

=
−2

3
hI ⊗∇h :

1

r
(eθ ⊗ eθ ⊗ er + eθ ⊗ er ⊗ eθ)

=
−2h

3r
δij∇hk((eθ)i(eθ)j(er)k + (eθ)i(er)j(eθ)k)

=
−2h

3r
|eθ|2∇h · er

=
−2h

3r
∇h · er

h2∇(er ⊗ er) : ∇(er ⊗ er) =
h2

r2
(eθ ⊗ eθ ⊗ er + eθ ⊗ er ⊗ eθ) : (eθ ⊗ eθ ⊗ er + eθ ⊗ er ⊗ eθ)

=
h2

r2
(eθ ⊗ eθ ⊗ er : eθ ⊗ eθ ⊗ er + eθ ⊗ er ⊗ eθ : eθ ⊗ er ⊗ eθ)

=
2h2

r2

Since h depends only on r, ∇h = (er
∂
∂r + eθ

1
r
∂
∂θ + ez

∂
∂z )h = h′er and

|∇Q|2 = ∇Q : ∇Q

=
2

3
|∇h|2 − 2h

3r
h′ +

2h2

r2

The expansion of the bulk terms will not vary from Section A.2 and the integral energy

expression over a cylinder of radius R and height K can be expressed in the following way:

I[h] =

∫ K

0

∫ 2π

0

∫ R

0

[
1

3
h′2 − hh′

3r
+ (

1

r2
− 2

3
)h2 +

2B
27
h3 +

C
9
h4

]
r dr dθ dz

= 2πK

∫ R

0

[
1

3
h′2 − hh′

3r
+ (

1

r2
− 2

3
)h2 +

2B
27
h3 +

C
9
h4

]
r dr
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