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ABSTRACT

Title of Dissertation: Delta-Trigonometric and Spline-Trigonometric Methods using the Single-

Layer Potential Representation.

Raymond Sheng-Chieh Cheng, Doctor of Philosophy, 1987.

Dissertation directed by: Douglas N. Arnold, Associate Professor, Applied Mathematics Depart-

ment

We study several numerical methods for solving the plane Dirichlet problem using a single-
layer potential representation. We introduce the delta-trigonometric Petrov-Galerkin method by
extending Arnold’s spline-trigonometric Petrov-Galerkin method. In other words, we use summa-
tions of delta functions instead of splines as trial functions. For this new method, we extend his
proof of exponential convergence of the approximate potentials on compact sets disjoint from the
boundary and global algebraic convergence in a weighted Sobolev norm. We also show that the
same types of convergence still hold when appropriate quadrature rules are used to compute the
matrices involved. Next, we investigate an analogous method where the single-layer potential is
placed on a fictitious boundary, that is, a closed curve which properly encloses the true domain.
For circular domains, this method achieves exponential convergence of the approximate potentials
on the entire interior domain and the boundary, even if quadrature rules are used. We conjecture
that exponential convergence of the approximate potentials is obtained on general smooth domains
with analytic boundaries. Finally, we discuss our implementation of these methods in the program
SPLTRG which uses the fast Fourier transform to compute the discretization matrices, and using
SPLTRG we compute various cases in order to confirm our theories and conjectures, and to examine

the behaviors of the methods in cases where the theory doesn’t apply due to lack of smoothness.
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1. Introduction

We study the numerical methods for solving the Dirichlet problem,
Au=0 on RRAT, u=g¢g, on T, (1.1)

based on a single-layer potential representation where I' is a simple closed analytic curve, g is an

analytic function, and u is bounded at infinity. The single-layer potential representation is:
u(z) = / ®(y)log |z — y| doy, for ze€ IR?, (1.2)
r

where @ is the density. For any harmonic u, there exists a unique & satisfying the representation
(1.2) if the conformal radius of T' does not equal 1 (see appendix). The density ® solves the

boundary integral equation,

g«(z) = /F<I>(y) log|z —y| doy V z€T. (1.3)

We consider several numerical methods to approximate the potential in equation (1.1) based
on the representation (1.2). In these methods, ® is approximated using equation (1.3) by an
approximate density selected from a finite-dimensional space of trial functions on I'. Then the
potential is approximated by using the approximate density instead of ® in equation (1.2). Such a
method is specified by choosing (1) the spaces of trial functions and (2) the procedures to select
the trial function. These methods usually require integrations over I' and therefore we also study

the effects of numerical integrations.

Two common choices of trial spaces are spline spaces and spaces of trigonometric polynomials.
We also consider approximating the density by a summation of delta functions which we will call a

spline of degree —1. In this case, the approximate potential is:
n
un(z):Zajlog|z—yj| for z € IR (1.4)
j=1

where the y;’s are given points on the boundary and the o;’s are the unknown coefficients. An
advantage of using a summation of delta functions instead of an ordinary spline function is that fewer
numerical integrations are needed. For instance, if we perform the collocation method on equation

(1.3) then we require no numerical integration instead of one numerical integration per matrix
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element. If we perform the Galerkin method on equation (1.3) then we require single numerical
integration instead of double numerical integration per matrix element. Also, the approximate
potential in equation (1.4) does not require any further approximation by quadrature rule after the

trial function is found.

The most common numerical schemes to select the approximate density are collocation meth-
ods, least square methods, and Petrov-Galerkin methods. Spline-collocation methods (splines as
trial functions and collocation of the boundary integral equation (1.3)) are known to give the optimal

asymptotic convergence rates in certain Sobolev spaces, i.e.,
||<I)_<I)n||Ht(F) S Cn_s+t||<1>||Hs(p) (15)

forall -1 <t <s<d+1,t<d+1/2, and d/2 < s where ®, is the approximate density due
to n subintervals and d is the degree of the splines [3, 25 pg. 5, 28]. The approximate potential u,
satisfies:

lu = tnl|Lo (@) < Cn™"7H|®]| ()

for all —d — 1 < s < d+ 1 where Qg is a compact set disjoint from T [25 pg. 18]. The optimal
asymptotic convergence rates are also achieved for elliptic equations of other orders. For more
details, see Arnold and Wendland [3, 4], Saranen and Wendland [28], Prossdorf and Schmidt [23,
24], Prossdorf and Rathsfeld [21, 22], and Schmidt [29].

The spline-spline Galerkin method obtains the same convergence rates as the spline-collocation
method except with a lesser regularity requirement, i.e., equation (1.5) holds for —d —2 <t < s <
d+ 1 and t < d+ 1/2. However, it is more costly to evaluate the double integrals numerically. For

more details, see [14, 15, 25 pg. 5].

Ruotsalainen and Saranen [25] proved that the delta-spline Petrov-Galerkin method (sum-
mations of delta functions as trial functions and splines as test functions) achieves the optimal

asymptotic convergence rates, i.e.,
12 = ®allz ) < Cn™ (| @l|ae )

forall —d* —2 <t <s<0,t<—1/2, and —d*/2 — 1 < s where d* is the degree of the splines [25

pg. 15]. The approximate potential w,, satisfies:

lu = tnllLsar) < Cn7* =T 72|19 | oy



for all —d*/2 —1 < s < 0 where Qg is a compact set disjoint from I' [25 pg. 16]. The advantages
of their method compared to the spline-spline methods or the splines-collocation methods are that
fewer numerical integrations are needed and a lesser regularity is required of the boundary data.

Numerical results were presented by Lusikka, Ruotsalainen, and Saranen [18].

Arnold [2] showed that the approximate potentials produced by the spline-trigonometric method
(splines as trial functions and trigonometric polynomials as test functions) converge (in the L
norm) exponentially on compact sets disjoint from I' and algebraically up to the boundary. He also
showed that the condition numbers of the matrices produced by his method are linearly proportional
to the numbers of subintervals. McLean [20] showed that the approximate potentials produced by the
trigonometric-trigonometric Galerkin method converge exponentially in LOO(]RZ). Neither Arnold

nor McLean took into account the effect of quadrature errors which would occur on the computer.

In this paper, we show that the approximate potentials produced by the delta-trigonometric
Petrov-Galerkin method (summations of delta functions as trial functions and trigonometric polyno-
mials as test functions) converge (in the L norm) exponentially on compact sets disjoint from the
boundary and algebraically in a weighted Sobolev norm. Then we show that the convergence rates
do not change when we use the appropriate quadrature rules. This 1s significant since now we have
a fully discretized method using the single-layer potential representation (1.2) which approximates
the potential exponentially. We also show that the condition numbers of the matrices produced by
the delta-trigonometric method without quadrature rules are bounded proportionally to the num-
bers of subintervals. Finally we present computer results which confirm our theoretical analyses.
We also show results in which the approximate potentials produced by the spline-trigonometric
method with numerical quadrature do not converge exponentially. The reason for this phenomenon
is that the spline-trigonometric method involves numerical integrations of non-analytic splines in

(1.3) while the delta-trigonometric method avoids numerical integrations of (1.3).

We also study the case where the single-layer potential is placed on a fictitious boundary ',
to solve the wnterior Dirichlet problem. Let € and €2, be simple open bounded domains with
boundaries T and T',, respectively, such that Q is strictly contained in ©,. We approximate the

potential as:
u(z) = v(z) ::/ ®(y)log |z — y| doy for z€Q, (1.6)
T,
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where @ is a (fictitious density) function defined on the fictitious boundary. In general, given a
harmonic u there does not exist a ® such that equation (1.6) is exact. However if we set the
condition: T, is such that |y — 2| # 1 for all 2 € Q and y € T,, then we can find a ® such that
||u — v||L2(q) is arbitrary small. Consequently, this condition implies that the set

{v | v(z):/ ®(y)log |z —y| doy, for 2€Q, ®eC™({T,)}

o
1s dense 1n the set

{fue H(Q) | Au=0inQ}

for all s € IR [5, theorem 2.1].

Again we have several choices of (1) the finite-dimensional trial spaces and (2) the procedures
to select the trial function. The most interesting trial space is the span of delta functions. The
resulting method is called the fundamental solution method (e.g. Bogomolny [5], Fairweather and
Johnston [11], Mathon and Johnston [19], Kupradze and Aleksidze [16], Freeden and Kersten [12]),

le.,

un(z) = Zaj log |z —y;| for z€Q, (1.7)
j=1

where the y;’s are points outside of Q and the a;’s are the unknown coefficients.
Kupradze and Aleksidze [16] showed that the functions,

10g|2—y]|, jzla"'ana

are independent and complete in L?(T') and C'(T'). Therefore for any e > 0 there exists N such that

for any n > N there is a u, of the form (1.7) satisfying
| — unl|Le(q) < €

Bogomolny [5] showed that any harmonic polynomial of degree < n can be approximated by a u,
of the form (1.7) with an L> error which decreases exponentially as n increases. Then he showed
that the exact solution can be approximated by a w, of the form (1.7) with an L°° error which

decreases very rapidly as n increases.

Mathon and Johnston [19] showed that there exists a w, of the form (1.7) which minimizes

|| — wnl|L2(q). They used a least square method to find the coefficients of the delta functions and

4



the locations of the singularities. The main drawback of their program is the nonlinear aspect
which arises from allowing the singularities to vary. However, their method works well when u
is of low continuity and for the three-dimensional Dirichlet problem. Bogomolny [5] investigated
where these singularities should be placed and then used a least square method to find only the
coefficients of the delta functions (In this case, the matrices are linear). He obtained theoretical

results which suggest that the singularities should be placed far away from the boundary.

In this paper, we examine the delta-trigonometric and spline-trigonometric method using a
fictitious boundary. In the special case where I' and I', are concentric circles, we show that the
approximate potentials produced by the delta-trigonometric method converge exponentially, even
if quadrature rules are used. We note that the trial functions may not converge even though the

assoclated approximate potentials do.

We also note that the delta-trigonometric and spline-trigonometric methods with trapezoidal
quadrature produce the same results as the delta-collocation method (summation of delta func-
tions as trial functions and collocation of the boundary integral equation). Hence, we prove that
the approximate potentials produced by the delta-collocation method converge exponentially in
circular domains. Since the spline-trigonometric method with trapezoidal quadrature and delta-
trigonometric method with trapezoidal quadrature are exactly the same we will provide conver-
gence analysis for the delta-trigonometric method only. However, we present numerical results for
both methods. We conjecture that both methods with and without numerical quadrature obtain
exponential convergence for the approximate potentials on general smooth domains with analytic

boundaries and present computer results which support this conjecture.

The delta-trigonometric and spline-trigonometric methods (with and without numerical quad-
rature) work quite well if we are seeking the potential on compact sets disjoint from the boundary.
To compute the potential on the boundary, better results are obtained using a fictitious boundary.
However, note that we have assumed that the boundary and the boundary data are analytic. Ob-
viously this is not true in the real world. G. DeMey [10] investigated the delta-collocation method
on a rectangular domain with mixed data (Dirichlet and Neumann data) using a fictitious circular
boundary. Using n = 40, he obtained relative error of about 1 percent. He did not examine the

errors for different n’s, but for different circle radii. He found that it was best not to let the fictitious



circle be near the corners of the rectangle or to be too far away from the rectangle. No theoretical

proof was given.



2. Preliminaries

In this section, we define some of the norms and spaces that are used throughout this paper.

First, we define Z% to be the set of positive integers and Z* to be the set of integers except zero.

[Jv]| := A /v? + ...+ 02

Next, we define the vector norm

and the matrix norm

[|A|| ;= sup :
vern |7
Then we define the space of trigonometric polynomials with complex coefficients,
T := span{exp(2wikt), k € Z}.
Any function f in this space can be represented as
£ty = 3 Fik) exp(2rikt)
keZ
where
N 1
fk) = / f(t) exp(—2mikt) dt
0

are arbitrary complex numbers, all but finitely many zero.

For f €T, s € IR, and ¢ > 0, we define the Fourier norm [2, section 3]
1Flls,e = D 1F(R)PeVIR?
keZ

where

o 1, if k=0,

= 2nmk|, ifk#£0,
and the corresponding space X . to be the completion of the closure of T" with respect to this norm.
For further discussions about the properties of this Fourier norm and space see [2, section 3]. We

also define the functional space L(X,Y) as the set of bounded linear functions which map from X

to Y. Finally, we say f, is O(n™) if for all n there exists a constant C such that |f,| < Cn™.



3. Delta-Trigonometric and Spline-Trigonometric Methods

In this section, we define several operators, the trial spaces, and the test spaces. Next, we
define the delta-trigonometric and spline-trigonometric Petrov-Galerkin methods without numer-
ical quadratures. Then for the delta-trigonometric method, we derive the matrix equations with
and without numerical quadratures. In section 3.1, we show exponential error bounds for the ap-
proximate potentials (away from the boundary) for both methods without numerical quadrature.
In section 3.2, we show that the matrix condition numbers for both methods without numerical
quadrature are proportionally bounded by the numbers of subintervals. Then in section 3.3, we
derive exponential errors bounds for the approximate potentials (away from the boundary) for the
delta-trigonometric method with numerical quadrature. Finally, we present numerical results for

both methods 1n section 3.4.

First we define the transformation,

()| S (0)| = 6(0) and g (el S (0)] = 9(0),

where = : IR — [ is a 1-periodic analytic function which parametrizes I' and has nonvanishing
derivatives. We continue to assume that the conformal radius of I' is not equal to 1. Next, we

define three integral operators in L(X, ., Xs41.). Let

Ao = [ olt)logle(s) (0] (3.1)

Vé(s) = /0 é(t) log |2sin(n(s — t))| dt, (3.2)
and
Bols) 1= 46(s) = Vols) = [ 6K (s.0) at

where K : IR*> = IR is a smooth kernel defined by

PO - = T R 4
Hlet) = o'(s) : (3.3)
log | ==, ifs—teZ.

Then the single-layer potential representation (1.2) becomes

u(z2) ::/0 é(t)loglz —x(t)] dt ¥ z€ TR
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and our boundary integral equation (1.3) becomes

Ap(s) = g(s) ¥ s€]0,1].

Note that A9 = B¢ + V¢ where V is the principal part of A and the remainder B has
a smooth kernel. The advantage of the splitting is that the Fourier transforms of V¢ can be
calculated analytically. This fact will be useful for proving the inf-sup condition for A in the

finite-dimensional spaces and for numerical implementations.

REMARK: Christiansen [7] described our formulation as the scaling formulation. The limitation
of the scaling formulation is that a unique solution does not necessarily exist when I' has a con-
formal radius of 1 (see appendix). Another formulation, which Christiansen called the restriction

formulation, works on domains of arbitrary conformal radii.

For the restriction formulation, we define three operators in L(X, ¢, Xs41,¢):
1 o~ o~
Aro(s) = [ 16(0) = (0)logla(s) = 2(0)] dt ~ 3(0), (3.4)
0

Vid(s) = /01 ¢(t)(log|251n(ﬂ'(t —8)| - 71') dt, (3.5)
and

1
Bro(s) i= Aro = Vioi= [ 60~ G0N (s, 1) (3.6)
0
where
N 1
50 = [ o0 ar
0
The corresponding single-layer potential representation is

u(z) = [ 19(0) ~ 60} log s — a(0)] dt = 73(0) ¥ z €

and the boundary integral equation is

/OlAlf/’(S) dS:/Olg(s) ds ¥ s€l0,1].

The theoretical results in the sections 3.1 to 3.3 hold using A;, By, and V; instead of A, B, and

V' with minor modifications. Note that the restriction formulation allows the conformal radius of
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T to be equal to 1 but requires more terms. Christiansen [7] compared the two formulations using
a least square method and preferred the restriction formulation because the condition numbers of
the matrices were better. We chose the scaling formulation because of its simplicity and because

this formulation relates better to the case where a fictitious boundary is used (We will discuss this

later). ¢

Let n be a positive odd number, d be an integer > —1, and

n—1
An._{ke% ‘ [k < 25 }
For d > —1, we define the trial space
SEe= {p € 190, 1]) | Amim® = G0m +m)(—m —m Y m e 7).

Note that S; 1 is the span of the 1-periodic extension of the delta functions at the points j/n,
j=1,...,n. Ford >0, S% is the space of 1-periodic splines of degree d subordinate to the mesh
{j/n | j € Z} for d = 1,3,5,... and to the mesh {(j + 1/2)/n ‘ JE XL} ford=0,2/4,...[2,
section 2]. We also define

T, := span{exp(2mikt) ‘ ke Ay}

to be the space of trigonometric polynomials with degree < n.

REMARK: Let d = —1 and ¢, () = Z;zl a;é(t — j/n). We wish to confirm (1) ¢, is in S;! and

(2) all functions in S; ! are of this form.

Note that Cn
(gn(m) = / Zajé(t —j/n)exp(2mimt) dt
j=1
= Z a; exp(2mimyj/n).
j=1

for all m € Z. Also note that

$n(m +gn) = Z a; exp(2mi(m + qn)j/n)

j=1

= Z a; exp(2mimj/n)

j=1

= 6n(m)

10



for all m, ¢ € Z. This proves (1).

For (2), note that dim S¢ = n and that ¢,, has n degrees of freedom. Therefore, all functions

n Sff are of the form of ¢,. ¢
We now define our methods without numerical quadratures. We seek ¢,, € S¢ such that
1 1
/ Agn(s)(s) ds = / g(s)(s) ds Y ¢ €T,. (3.7)
0 0
Then our approximate potential is
1
un (2) ::/ én(t)log|z — z(t)] dt V z € 1R. (3.8)
0

We call the above procedure the delta-trigonometric Petrov-Galerkin method for d = —1 and the

spline-trigonometric Petrov-Galerkin method for d > 0.
REMARK: For the restriction formulation, we seek ¢, € S¢ such that

/0 Ar1¢n(s)¥(s) ds:/o g(s)y(s) ds Y ¢ e€T,.

Then the approximate potential 1s

un(2) = / (60 (1) = Gu(O)]log|z — 2(1)] di — 76,(0) ¥ =€ IR.

We now define the matrix equations with and without numerical quadratures for the delta-

trigonometric method only. For the remaining part of this section, we assume that d = —1.
We represent the approximate density (trial function) as
n
6nt) = 3 ad(t - j/n) (3.9)
j=1
where o;’s are the unknown coefficients.
We also define the basis for test space T, as

Y (s) := exp(2miks) for k€ A,.

11



Let

o= (ay,...,an)7, (3.10)

Ay ::/0 log|x(5)—x(j/n)|1/)k(s) ds, (3.11)
By; ::/0 K(s,j/n)vr(s) ds,

1
Vi ::/ log |2 sin(m(s — j/n))|1/)k(5) ds,
0
and
1
gk ::/ g(s)Pi(s) ds
0
forall k € A, and j = 1,...,n. Also let A := (Ag;), B := (Byg;), V := (Vy;), and g := (gx).
Then the matrix form of equation (3.7) is
Aa=g

and the approximate potential (given in (3.8)) because

un(z):Zajlog|z—x(j/n)| dt V z€IR.

j=1

Fortunately, Vi; can be calculated exactly. In [2, section 4], Arnold showed that the Fourier
transform of

G6) =~ log |2sin(x0)] + 1 (3.12)
T
1s

(3.13)

|o~] =

Therefore,
1
Vi, :/ log [2sin(7(s — j/n))| ¥x(s) ds
0

:/Ollog|28in(ﬂ'9)| e (0 +j/n) db

_ /0 log [25in(x8)] ¥ (6) i (i/n) do

:/01 —7G(0)yx (0) do wk(j/n)+7r/01 Uk (0) df Pr(j/n)
= %W(j/n)—i—ﬂ/oll/)k(@) do Yn(j/n).
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Considering all cases for k, we get

Vi = { SR eR(i/n), if k£ 0,
! 0, k=0

We now define the matrix equation for the delta-trigonometric method with numerical quadra-
tures. Since the principal terms can be calculated exactly, only B and g need numerical quadratures.

We assume that the trapezoidal quadrature is used. Define

&= (G1,...,00)7,

Bey 1= = Y0 K(1/n, /n)u(l/n),
=1
and

I
== l l
8= 3 Do/t
forall k€ Ay and j =1,...,n. Also let g := (gi) and B = (ﬁk])
The delta-trigonometric method with numerical quadratures is to seek
on(t) == a;0(t—j/n)
j=1

such that

Ad:=Ba+Va=g.
The corresponding approximate potential is

un(z) = Z&jlog|z—x(j/n)| Y z €.
j=1

3.1 Convergence Analysis without Numerical Quadrature

In this section, we prove convergence for the approximate potentials produced by the delta-
trigonometric method. The convergence analyses for the spline-trigonometric method (where d > 0)
was given by Arnold [2, section 4 and 5] using the restriction method. We will extend his analyses
to the case d = —1 using the scaling formulation. (Recall that the difference between the two
formulations is whether the conformal radius of T' can be 1.) In this section, we continue to assume

that ' is a simple closed analytic curve such that the conformal radius of I' is not equal to 1. We
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will show that the operator A satisfies the inf-sup condition in the finite-dimensional spaces. Then
we prove exponential convergence rates for the approximate densities using the Fourier norms.
Afterward, we derive error bounds for the approximate potentials on compact sets disjoint from

the boundary, and at infinity (using weighted Sobolev norms).

Since ‘7?/)(0) is zero whenever ¢ is a constant function, we need an additional term. Let

Mé = /Olqb(t) dt.

The first theorem proves the inf-sup condition for the operator V; = V — 7 M (see (3.2) and (3.5))
in the finite-dimensional spaces. Later this fact is used to show the same for the operator A. Then

we prove exponential convergence using the projection operator (defined in 3.1.5).

THEOREM 3.1.1 Let d > dy > —1 and s < sg < do + 1/2. Then there exists a constant C

depending only on dy and sy such that

. (lea U)
inf
0S¢ 0zoer, |Pllsclloll—s—1 -2

>C

for alle € (0,1] and n € Z™.

PROOF:

We first show that there exists a constant C depending only on d, and s, such that
Il < CL > 1) PePIp™ ¥ p e sq. (3.1.1)
pEAL
Since Arnold [2, lemma 4.2] proved (3.1.1) for d > 0, it remains to prove (3.1.1) for d = —1. Let

peS;ti={pe HY([0,1])| p(m) = p(m+n), Y m € Z}. Then

lell2 e = D 1p(k) PR

keZ
- pp + mn) [ (p 4 mn)*
p —_—
PEA, mEXL
= Z |ﬁ(p)|2€2|p|p25{ Z €2|p+mn|—2|p|(p‘|‘#)25}.
PEAn ez P

Note that 2|p + mn| — 2|p| > 0 and € € (0, 1] imply that 2lptmal=2pl < 1 In other words,

ol < 3 i Pery {30 (BT, (3.1.2)

PEA,
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It suffices to show that the sum in braces is bounded by a constant depending only on s,. We

consider two cases using the fact that s < s, < —% and p € A,. If p =0 then

Z(w)zszzmzs

meX

[lsS]

If p # 0 then we let p > 0 without loss of generality. Since p € A,, implies |n/p| > 2 we derive

T (w )28 = ( Ip4|rpr|nn| )28

meX B meX

< D11+ mn/p|

meX

= Z (1 + mn/p)* + Z —1 — mn/p)**

m=—00

<Z (14 2m)%° + Z —1 — 2m)%e

< Cs.
Therefore, the braced term in (3.1.2) is bounded. This proves (3.1.1) for d = —1.

To finish the theorem simply choose

o(z) = — Z (k) 2+ oxp(—2mike). (3.1.3)
kEA,
Then
ol o = D 1ok PR (3.1.4)
kEA,

Combining (3.12), (3.13), and (3.1.3), we derive

(Vip,o _/ / {10g|281n (s —1) |—7T}p ) dt ds

:/ / {10g|281n (s —1) |—7T}p p(k’)ezlklﬁzs‘Hexp(—?ﬂ'iks) dt ds
kEA

Z (k) e2lkl 2ot /01 p(t) /01 { —log |2sin(r(s — 1)) + 71'} exp(—2miks) ds dt

kEA,
1
= Z ﬁ(k)ezlklﬁzs‘l'l/ p(t)%exp(—?wikt) di
kEA, 0 =
_ﬂ_Z |p |2 2|k|k’25.
keA,
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By (3.1.1) and (3.1.4),

Vipso) = [ S 15(k)2EHE flo]|_y_y s
keA,

2V Clplls elloll—s -1,

2 Cllplls,elloll—s -1,

This proves the theorem. Q.E.D.

The next two lemmas concern the exponential decays of the Fourier coefficients of an arbi-
trary analytic function. These results will be useful in showing exponential convergence for the

approximate densities and potentials.

LEMMA 3.1.2 Let f be a I-periodic analytic function on S5 where S5 = {2 € € | |Im(z)| < 6}.
Then

Fom) < el sy m e
PROOF: See P. Henrici [13, section 2.1]. Q.E.D.

LEMMA 3.1.3 The kernel K defined in (3.3) is a real 1-periodic analytic function in each variable
and extends analytically to Ss x Ss for some & > 0. Moreover, there exists constants C' and
ex € (0,1) such that

IK(p,q)| < ctltld g em.

PROOQOF: This is an easy consequence of lemma 3.1.2. Q.E.D.

By theorem 3.1.3, there exists 3 > 0 such that for all n and p € S¢, there exists o € T},

satisfying
(49,0) > Bllpllsclloll— oot ot — (K p,0)
The next theorem states the inf-sup condition for the operator A. Analogous theorems were men-

tioned by Arnold [2] and Aziz and Kellogg [5]. The proof is similiar to the compactness argument

given by Aziz and Kellogg [5] and is omitted.

THEOREM 3.1.4 Let d > dg > —1 and s < sp < dy + 1/2. Then for sufficiently large n, there
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exists a constant C' depending only on dy, sy, and I' such that

A
inf  sup (4p, ) >C
0#0€5% 0zoet, [|Plls,elloll—s—1,e1

REMARK: Note that the constant in the previous theorem blows up as the conformal radius of T

approaches 1. For a circular domain of radius r, this constant behaves like 1/log(r). &

Arnold showed that By (the operator with a smooth kernel using the restriction formulation
given in (3.6)) is a compact operator and A; (the single-layer operator using the restriction for-
mulation given in (3.4)) is an isomorphism from X, . to X 41 .. With minor modifications, we
conclude that B + wM is compact and that A is an isomorphism from X, . to X411 . (as long
as the conformal radius of T' is not equal to 1). Arnold also stated a theorem which allows us to
prove convergence using the projection operator. We will state an analogous theorem for d > —1
without proof since only minor modifications are needed. For more details, the reader may refer to

[2, theorem 4.6 to 4.10].

THEOREM 3.1.5 There exists a constant N, depending only on d and T, such that for alln > N
and g € U{Xsyﬁ|5 € R,e > 0} the delta-trigonometric and spline-trigonometric methods (3.7)
obtain unique solutions, ¢, € SI. Moreover, if s € (—oo,d +1/2), € € (ex, 1] (ex is determined
in lemma 3.1.3), g € Xs41, and n > N, then there exists a constant C, depending only on d, e, s,

and I' such that

l¢ = dnlls,e < C inf (¢ —plls,e -
pEST

For any ¢ € X; . we define the function P,¢ € 5S4 by

(Pnd,¥) = (¢, 0) V ¢ €T (3.1.5)

Equivalently, P, is characterized by the equation,

JE—

Poo(k) =o(k) YV ke A,

We now show convergence using this projection operator. The next theorem states exponential

error bounds for the approximate densities.
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THEOREM 3.1.6 Let s <d+1/2,t €[s,d+ 1], n > N, ¢ € H', and ¢,, € S* where ¢ and ¢,
are the exact and the approximate densities, respectively. Then for € € (ex, 1] (ex Is determined

in lemma 3.1.3), there exists a constant C' depending only on d, ¢, s, and T' such that
||¢_¢n||s,e < C€n/2ns—t||¢_$(0)||t’ if dZ 0,
and
16 = @nlls,c < C P8, if d> -1
PROOF:
By theorem 3.1.5, it suffices to show that

16 = Padlls.c < Ce™*(an) |6 — 6(0): ¥ € H', if d>0,

and

|6 — Pad|ls.c < Ce**(xn)*~t]|o]); VoeH", if d>-1. (3.1.6)

where C' depends only on d, €, s, and T.

The case d > 0 has been proven in [2, theorem 5.1]. We will prove (3.1.6) for the case d = —1.

Note that . -
||</> - 1an15||?E = Z |¢(]<;) — Pn¢(k)|2€2|k|ﬁ25
y s (3.1.7)
<2 ST H{IB(R)) + [Pa ()2} k.
k¢An

We will bound each part. For the first part, we use ¢t > s and ¢ € (e, 1] to get

Z |$(k,)|2€2|k|ﬁ25 < Z E25—2t|$(k)|2E2t
E¢A, k¢A, (3.1.8)
< € (mn)* g7

For the second part, we use P,¢ € S;t to get

D2 1Pt EHE = 37 37 [Pud(p+ mm) PP (p 4 mm)

kA, PEA, mEXL*
P 2s
=3 3 IBemleErt ! (2alp + mon))
pEA, meEL™
_ N2 2t 2t —2t 2lp+mn (27T|p+m”|)2s 2s
_p;: lo(p)|“p™" (mn/p)~* (7n) m%f lp IW(ﬂ'n)
< 25—2 . n ToN2o9t 2t 2|p 4+ mn|\ 2
< (en)> 7 N o(p)Pp” (7w /p) P D ) I

PEA, men*
(3.1.9)
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The quantity (ﬂn/ﬂ)% is bounded by 1 since t < 0 and p € A,. For the braced term, we use
s< —1/2and p € A, to get

5 (Al

-1

2p 2s 2p 2s
2o s 3 (-2
( n +2m + j{: n m

]2

mez* m=1 m=—oc
< i (=14 2m)* + i (=1 —2m)*
m=1 m=—oc
<G
Therefore we rewrite (3.1.9) to get
Y Pag(R)[PHIE < (mn)? = |g17C. (3.1.10)

E¢A,

Putting (3.1.7), (3.1.8), and (3.1.10) together, we have proved (3.1.6). Q.E.D.

The next theorem states exponential convergence rates for the approximate potentials on com-

pact sets disjoint from the boundary.

THEOREM 3.1.7 Let d > —1,n > N, ¢ € H*, and Qi be a compact set in ]RZ\F. Then there

exists constants C' and € € (0,1) depending only on d, t, N, Q, and T’ such that

and

107 (1 = tn) || L=y < CE 16l if d>-1.

PROOF: The proof is similiar to [2, theorem 5.3]. Q.E.D.

We now extend one of Arnold’s theorems which give approximate potential error bounds in a

weighted Sobolev norm. Let . be the exterior domain. We define the weighted Sobolev norm as

v 2 k ::/
1olliwx () o

o%u(5)”
+ 2 (117 1|@| dz

1<Uﬂ<k

|v(2)]?
(1+r2)(1 + llogu +12))?

(3.1.11)

where r = |z|. The corresponding space W*(£,) is the set of all functions in which their norms are

finite. Note that W*(€.) contains the constant functions.

19



THEOREM 3.1.8 Let k <d+1,d>—1,t€[k—3/2,d+1],n > N, and ¢ € H". Then there

exists a constant C' depending only on d and T' such that

= gy + 1t = wnllws @y < Cn*==3216 = GO, if d >0,

and

et — | e () + [ = wn [l ) < CRFI732) 6], if d>-1.

PROOF: See [2, theorem 5.5] and [17, theorem 1.1 and 1.3]. Q.E.D.

3.2 Condition numbers

For the spline-trigonometric method, Arnold [2] proved that the condition numbers of the
matrices are linearly proportional to the numbers of subintervals. We will show a similiar result for

the delta-trigonometric method.

Recall that A (defined in (3.1)) represents the single-layer potential operator and A (defined
in (3.11)) represents the matrix arising from the delta-trigonometric method. In lemma 3.2.1, we
prove a relationship between [|¢,||—1 and ||| defined in (3.9) and (3.10), respectively. Then in
theorem 3.2.2, we prove bounds for [|A[| and ||[A~!||. Finally, in theorem 3.2.3, we state bound for

the condition numbers of A.

LEMMA 3.2.1 Let d = —1, then there exists a constant C such that

[énll-1 < CV/nlla]] (3.2.1)

and

lall < CV/nll¢nll-1- (3.2.2)
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PROOF:

For the first half, note that

16120 = > [6n(k)"k7

keZ

= Z |Z aj exp(2mikj/n)| %k~

keZ j=1

< Z (Zn: lev; exp(?ﬂ'ikj/nﬂ)zﬁ_z

keZ j=1

=S (S el)’

keZ =1

Cz(ilaﬂ)z

< C?nllal”

For the second half, we use p € A,, to derive

l6nllZy = D 1D ajexp(2mikj/n)[*k~

ke j=1

= Z Z p+mn)” ‘Za]exp 271'2])_]/77,)‘
pEA, mEX

> p‘ZIZag exp(2mipj/n)|’
PEAL

Z (mn) {Z|a‘7|2+2 Z 2050 exp(2mip(j —l)/n)}
pEA, j=li=j+1

Rearranging the summations, we get

n

allZy > D (wn) 72 Y Jayl?

PEAL Jj=1
ﬂn)_zz Z 2050y Z exp(2mip(j — 1) /n).
j=11=j+1 PEAL

But ZpEAn exp(2mip(j —{)/n) = 0 since | # j(mod1 n). Therefore,

6allZe > D (n) 72 Y Jay?
j=1

PEAL
)7y Jagl®
j=1
= ol
Thus, (3.2.2) holds. Q.E.D.
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THEOREM 3.2.2 Let d = —1, then there exists a constant C' depending only on I' such that
1Al < Cva (3:23)

and

1A= < OV, (3.2.4)

PROOF:

In the appendix, we note that A is an isomorphism from H~' onto L? whenever the conformal
radius of I' is not equal to 1. In other words, ||A||L(z-1 2y and ||A_1||L(L27H—1) are bounded
constants depending only on I'. Let a be an arbitrary vector and define § := Aa«. Also, define
[ = 2 ren, Betx and ¢ = A=1f. Note that the ¢’s are orthonormal, and therefore ||3|| =
[|||z= Finally, let ¢, be the approximate density for the Dirichlet problem with data f, i.e., ¢, =

Z;zl a;d(t — j/n)). Then f is the L? projection of A¢, onto T,. By (3.2.1),

lAell =181l = [/l
< [A¢nlle: < Allz-1 Lo)llénll-1 (3.2.9)
< GVl Al -1 oy llell

This proves (3.2.3).

Also,
Al = [/l

A

= A ez m-ry (3.2.5)

_ 1611

1A= ez -1y
Using e =1, s = —1, and ¢t = —1 in theorem 3.1.5, we derive
16nll-1 < (16 — dnll-1 +[I6]]-1

(3.2.6)

< Colloll-1-

By (3.2.2) and (3.2.6), equation (3.2.5) becomes

Cs|lgnll-1
|Aal] > ——=
A=Y L2, -1
> 0, [lev]]

Vol A= e, m-r)
This implies that A~! exists and (3.2.4) holds. Q.E.D.
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THEOREM 3.2.3 Let d > —1 and let k(A) represents the condition number of the matrix A.

Then there exists a constant C depending only on I' such that

k(A) < Cn.

PROOF:

For the case d > 0 Arnold [2, section 6] defined a special set of basis function for S¢ and T;,.
Then he proved that the condition numbers of the matrices are linearly proportional to the numbers

of subintervals. The case d = —1 is proven in theorem 3.2.2. Q.E.D.

3.3 Convergence Analysis with Numerical Quadrature

In this section, we show that the delta-trigonometric method with numerical quadratures cal-
culates the approximate potentials with exponential convergence rates. First, we use the Euler-
MacLaurin theorem to bound the errors in numerical integrations of a given periodic analytic
function times any trigonometric polynomial of degree less than n. Then we prove exponential
error bounds due to numerical integration for the matrix terms, the unknown coefficients, and the
approximate potentials on compact sets disjoint from the boundary. Finally we give numerical
integration error bounds in a weighted Sobolev norm defined in (3.1.11). We continue to assume
that ¢ 1s an analytic function and I is a simple closed analytic curve such that the conformal radius

of I' is not equal to 1.

We now recall the Euler-MacLaurin theorem which tells us that the error in numerical integra-
tion of a given periodic smooth function is less than O(n~"™) for any m > 0 (where n is the number

of subintervals).

THEOREM 3.3.1 Let f be any C'°° I-periodic function. Set

1

F = f(s) ds
0
and
1 n
F=—
- Zf(]/n)
j=1
Then
F—F= Bom n_sz(zm)(w ) VmeZ"
(2m)! ’



where Ba,,’s are the Bernoulli numbers and w,,’s are numbers in [0, 1]. Moreover,

By, - 2 +
= (=)™ ——— VY me#“".
(2m)! (=1) ; (2jm)m

PROOF: See Aktinson [1, section 5.5] and Davis and Rabinowitz [9, pg. 108 ]. Q.E.D.

REMARK: Suppose we use a P-point Gaussian quadrature rule, i.e.,

- 1 E eF 45 -3/2
Fr= 33l s ()

j=1p=1

where qf’s are quadrature weights and E’;D’s are the quadrature points on [0,1]. Then

~ L » Z Ptj—3/2
F—Fp:/o f(s) ds—%ZZqif(W)

j=1p=1
$ ! L, & +i—3/2
= P S §— — P
_;q,,{/o f(s) d n;f( )

P
B
_ P 2m__—2m p(2m) P +
= pEIl ap —(Qm)!n I (wh), YV melZr,

where w?,’s are numbers in [0,1]. In other words, a similiar result holds for the P-point Gaussian

quadrature. <

We modify theorem 3.3.1 in two ways. First, we seek numerical integration error bounds for
analytic functions instead of C'* functions. Second, we consider the analytic functions multiplied

by arbitrary trigonometric polynomials of degree less than n.

THEOREM 3.3.2 Let f be any analytic 1-periodic function and define

e = /01 f(s) exp(2miks) ds

and

~ 1 <&
e = g;f(l/n) exp(2mikl/n) V k€ZX.

Then there exist constants C and € € (0,1) depending only on f such that

e — Fol S Ce® Y k € A,
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PROOF:

By theorem 3.3.1, we have,

B m _9m aZm .
(272n)! n 352m (f(s) exp(2miks))

B m 2 . .
— Zm o, —2m Z ( m) wm)(2mk)2m_l exp(2mikwy,), ¥V meZT and k€ Z,

fo—Fr =

S=W gy

(3.3.1)
where wy,’s are numbers in [0,1]. First, we bound
Bom | 1 & 2
‘(Qm!) ‘  (2m)Em ; jrm
1 s 2
< - (3.3.2)
(2m)2m ; ;2
C
S (271)2”1, V m e %-I—,

where C is a constant independent of m.

Next, we bound f). We extend f to be an analytic function in the complex strip Ss for some
d > 0. Moreover, this extension is 1-periodic. (This is possible because f is analytic in a complex

neighborhood of the real line. Therefore f is analytic on {(l‘, y)eC® | 2 €[0,1] and |y < (5}

for some § > 0. Since [ is 1-periodic, it is analytic on ?5.) For each point ¢ € [0, 1],
0] {! +
|77 ()] < ||f||Lw(aB(t,5))6—l VIeX

where B:(d) is an open ball of radius § centered at ¢ [26, pg 154]. This implies that

l!
|f(’)(t)|§||f||Lw(§5)6—l Vte0,1] and l€ZT. (3.3.3)

Combining (3.3.1) to (3.3.3) we get:

2m 2 .
5 — Jel < rn)m ‘ Z ( / )f (wn) (2mik)*™ =" exp(2mikw,y, )
ZZm N Wl gy 2k
27rn )2 =\ L>=(Ss) (5’ (3.3.4)
Cullfll =3, % Y(2m — 1) ... (2m — 1+ 1) |2k 2!
(2mn)2m 5 5

1=0
VmeZt and keZ.
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Since m is an arbitrary positive integer, we choose m such that m € (=14 dnn/2,d7n/2]. Using

m < dmn/2 and k € Ay, (3.3.3) implies

C1||f||Lw(§) - m
(2mn)2m : Z(ﬂ-n)z

=0
_ Cl||f||L°°(§5)(2m +1)
- 92m

Tym
= Cillfll e (3, (Z) (2m+1)

<O, Y k€A,

\fx = [l

IN

Q.E.D.

In theorem 3.3.3, we use theorem 3.3.2 to bound the perturbations of the matrices and vectors
due to numerical integration. Then we use theorem 3.3.3 to bound the approximate potential errors

in theorem 3.3.4.

THEOREM 3.3.3 Let d = —1. Then there exist constants C' and € € (0,1) depending only on g
and T such that

lg —gll < Ce"

and
1B - Bl < cen.

PROOF:

For the first half of this theorem, note that by theorem 3.3.2,

lg — 8l < vn max |gy, — gx| < Ce™.
KEA,

For the second half of this theorem, recall that K is an 1-periodic analytic function with respect

to either variable (lemma 3.1.3). By theorem 3.3.2,

Byj — Byy| = ‘/0 K(s,j/n)vx(s) ds—%ZK(p/n,j/n)d)k(p/n)

<Cse™, Y ji=1,....n and k€A,
Therefore,

[|B — ]§|| <n? max max|(B— ﬁ)’w| < Cem.
j=1,...nk€eA,

Q.E.D.
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REMARK: Theorem 3.3.3 does not hold for d > 0. The reason is because we must apply numerical
integration on an non-analytic function (i.e. spline trial functions). Exponential convergence may
hold for the trigonometric-trigonometric method with numerical quadrature since the trigonometric

functions are analytic.

Finally we give exponential numerical integration bounds for the unknown coefficients and the

approximate potentials.

THEOREM 3.3.4 Let d = —1 and Qg be a compact set disjoint from the boundary. Then there

exist constants C' and € € (0,1) depending only on g and T such that for all z € Qy,

o —afl < C€”,

|un(2) = tn(2)] < C€, (3.3.5)
and

|u(z) — un(z)] < Ce.
PROOF:

Note that
a-d=A"lg—F- (A—A)a]

=A"'[g-g— (B-B)a

Hence,

llo =&l < [JA~I{llg — &l + [1B — BJ|||al]}.

Using the fact that

&l < llo = &[] + llef] < [lo = &l + A~ gl

we derive
1A~ I{llg — &ll + B — BlllA~"[lllgll}
{1—llA=lIIB - BJ|}

[l —all <

(3.3.6)

By theorems 3.2.3 and 3.3.3,

Csy/n{Crel + Cae Cs/nl|gl|}
- 1— 03\/50265)
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To prove (3.3.5), we note that Qg is a compact set, and therefore, we bound the logarithmic

term by a constant. Thus,

unl) = () = | [ 1 iw — ) log | — a(j/m)| di|

Sjgéfnlaj—5j|‘/0110g|2—l‘(j/n)| at|
< Vnlla —a[|Cs
< Csey.
Also, by theorem 3.1.7,
[u(z) = tn(2)| < |u(z) — un(2)] + |un(z) = tn(2)]
< Creg + Coey
< Cem.

Q.E.D.

We also prove that the use of numerical quadratures does not affect the convergence rates in

the weighted Sobolev norm defined in (3.1.11).

THEOREM 3.3.5 Let d = -1,k <0,t €[k—3/2,0],» > N, and ¢ € H*. Then there exists a

constant C' depending only only ¢, k, and T such that

e = Tl ey + Il = Bl @y < O~ =216l (3.3.7)

PROOF:

By theorem 3.1.7,
lw = wn |l gx o) + llu = unllwr ) < Cillg — dnllk—3/2
< Con* 324
Similiarly, by theorem 3.2.1,
e = Gl (@) + lltn = Tnlliwx () < Cillén = Gnlli—sy2
< Ol > (aj —@;)8llk—3/2
j=1
< Can max Jaj — ;] max 15;]ls-s/2
< Canv/nlla — @|).
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By theorem 3.3.4,

lwn — @nllme @) + llen — Unllwx ) < Cse”.

Since
lu = Unll e (o) + [lv = tnllwr ) < llu—=uallze @) + llv = unllws .

+ [|un — Unllgr ) + |un = Unllwe o),

we conclude that (3.3.7) holds. Q.E.D.

3.4 Numerical Technique

The program SPLTRG implements the spline-trigonometric method with numerical quadra-
tures using splines of degree 0 (piecewise constant splines) as trial functions. It can also be used to
compute the delta-trigonometric method by selecting the 1-point quadrature rule for certain inte-
grals. SPLTRG employs the fast Fourier transform to calculate the matrix entries. In this section,
we show how the fast Fourier transform has been implemented in the program and give operation

counts.

Assume that d = 0, n i1s odd, and let Xpizs/2 i=1/2) for j = 1,...,n be the basis for S° where

X[a,p] denotes the characteristic function on the interval [a, b]. Then
n
Pn(t) = Z} QjX[iza/2 7j—711/2](t)
]:

where a;’s are the unknown coefficients. Instead of complex test functions, we use real test func-

tions. Let

goee ey

~ [ sin(kws), k=24 ... n-1,
¥i(s) = {cos((k —ms), ifk=1,3

We wish to perform numerical integrations on

/0 A (s)y (s) ds:/o g(s)Ux(s) ds ¥V ke[l,n]

The above system can be rewritten as

1 1 n ~
[ [ ainme o brogleto) - st as
o Jo Ui " "
1

:/ g(s)Jk(s) ds Y kel n].

0
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The left hand side is split into two parts, the principal log term and the smooth remainder. Thus,

we rewrite the last equation as

1ol
//{Z%x[&yﬁ](t)}log
o Jo L5 R
1ol -
—I-/O /0 {Z%X[#y#](t)}log|281n(7r(s—t))|1/)k(s) dt ds (3.4.1)
ij=1

:/0 g(s)@k(s) ds Y ke[l n].

z(s) — z(¢)

2sin(n(s — 1)) Vr(s) dt ds

The equivalent matrix equation is

Ba+Va=g
where
_w(s) —w(t) )
B J 3/2 J 1/2 | dt d
kj = / / i=a2 i=i2)(t) log T — 1/) s,
1,1 _
Vi :/ / Xpiz2/2 j—1/2](t) log|251n(7r(5—t))|1/)k(s) dt ds,
0 Jo oo
and
1 o~
Be= [ 9)0n(s) ds
0
forall k,5 = 1,...,n. An M-point Gaussian quadrature rule on n subintervals is applied on the

right hand term to get

n M

M _ - M _
Bo= 230 Y (S I g S LA,

n n
=1 m=1

where ¢M’s are quadrature weights on [0,1] and ¥ ’s are the quadrature points on [0,1]. For any

even k, simple trigonometric identities imply

BB g (g G (SR @) gay
and

G (=) 2 5 (a0 (EhR ), ay
The sums,

n

M| _3/9 ~ -
%;q%g<€m +n 3/2)1/%( nl) for me[l,M] and ke€[l,n]
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are calculated using the fast Fourier transform in O(nM logn) operations. Then we calculate g

using (3.4.2) and (3.4.3) in O(nM) calculations. Thus, the total work to calculate g is O(nM logn).

The smooth log matrix B is calculated similiarly. Apply M;i-point and Ms-point quadrature
rules on the inner and outer integrals respectively (i.e., the integrals with respect to t and s,

respectively) to get

n

By, = % Z > Z T O 108

=1 me=1p=1m;=1

x<§%§+ri—3/2) _ x<5%11+:—3/2)

Mg 5 My _
9sin (ﬂ_<5m2+l 3/2  &mitp 3/2>)

n n

‘Jk(&ﬂfj +1- 3/2)

n

3

x<§%§+l—3/2) _ x(5%11+p—3/2)

n n

QSm( (EHi=sse s%;+p—3/z))

n n

U

1 Mo n M,
13y {z S gl o

p=1mo=1 =1 my=1

&%j+l—3/2)}

n

The double sum in the braces is calculated (for & = 1,...,n) by the fast Fourier transform. Thus,

the total time needed to calculate B is O(n? My Mslogn).

The principal part can be integrated exactly. If & = 1, then V; = 0. If & # 1 then we use the

same idea as in (3.14) to get

1,1
Vi, :/ / log|28in(7r(5—t))|x[j_3/z j—1/2](t)'l/)k;(5) dt ds
0o Jo noon

j—1/2 1
= log |2 sin(7(s — t))|<n (s) ds di
j—j/z/o g |2sin(n(s —)|¢x () (3.4.4)
j—1/2 o~
£ fi i3t Up(t) dt,  ifk=24,...,n—1,
= J 1/2 ~

= 1f] 3/2 Yp(t) dt, ifk=35...,n
We could easily integrate the trigonometric function in (3.4.4) if we desire to use 0" degree splines in
O(n?) calculations. However we found it better to integrate the outer integral analytically and per-
form trapezoidal quadratures on the inner integral. In other words, we use the delta-trigonometric
method. The numerical errors due to approximating the non-analytic piecewise constant functions
is terrible (see next section for numerical results). For either method we require O(n?) calculations

to calculate V.

In summary, the program requires a total time of O(M; M2n?log n) to calculate the matrix. The
LU decomposition requires O(n3/3) calculations. Therefore when n is sufficiently large, SPLTRG
uses O(n3/3) time. Computer analysis show that the LU decomposition requires less than a third of
the total time for n as large as 81. In other words, it is important to use the fast Fourier transform

since the matrix formations require a significant amount of time.
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3.5 Numerical Results

Program SPLTRG was implemented to test the delta-trigonometric and spline-trigonometric
methods with numerical quadratures. In this section, we present several sample problems and their
numerical results. The first problem is an ideal problem, that is, the boundary and boundary data
are real analytic. Then we look at some problems where the boundary and/or boundary data are

not so ideal.

Program SPLTRG calculates the approximate solutions and derivatives. If the user provides the
exact answer, then SPLTRG calculates the exact numerical errors. Otherwise, SPLTRG calculates

the approximate numerical errors.

There are seven integrals to be evaluated. Five of them come from equation (3.4.1). The other
two integrals result from finding the approximate potentials and their normal derivatives. For each
integral, program SLPTRG allows the user to pick the number of quadrature points per subinterval.

Some of the integrals can be calculated exactly, in particular, the principal term.

For the best result (given a fixed n) using piecewise constant splines as trial functions, the user
should calculate the principal term exactly and the rest by 8-points Guassian quadrature, the best
quadrature rule available in SPLTRG. For the best result (given a fixed n) using summations of
delta functions as trial functions, the user should use trapezoidal quadrature on all inner integrals

and the approximate potential integral, and 8-points Gaussian quadrature rule on the other integrals.
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For the following tables, we let

ook := no answer due to overflow or underflow

u := the exact potential

uey, := the error for the approximate potential using n subintervals
I'nem := the convergence rate from n subintervals to m subintervals
delta 1-pt := delta trial functions with 1-point quadrature

delta 3-pts:= delta trial functions with 3-points quadrature

delta 8-pts:= delta trial functions with 8-points quadrature

p.c. 1-pt := piecewise constant trial functions with 1-point quadrature
p.c. 3-pts := piecewise constant trial functions with 3-points quadrature
p.c. 8-pts := piecewise constant trial functions with 8-points quadrature

We define the relative error to be the absolute error divided by the exact solution. In cases
where the exact solution is near zero, SPLTRG will give the absolute errors. All calculations are

done in double precision. Consequently, we can not expect the relative errors to be much smaller

than 1.0E—14.

EXAMPLE 3.5.1 Ellipse with analytic data

The first example involves an elliptic boundary (an analytic boundary) with analytic boundary

data. In this example, we examine the effects of using different trial functions and quadrature rules.
Boundary: z?/4 + y* = 1/25
Data: g = ba/2

Exact solution:
ba/2, if (z,y) € ellipse,
u=< br—w, if(z,y) ¢ ellipse and z > 0,
b+ w, if (#,y) ¢ ellipse and = <0,

where

¢25(1‘2 —y2) = 34+ /(25(22 — y2) — 3)2 + 250022y?
w =
2

For table 1A and 1B, we pick a typical interior point and present the approximate potentials

relative errors and convergence rates, respectively, using different trial functions and quadrature
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rules. The numerical results for other points away from the boundary are similiar. When delta
trial functions are used, the approximate potentials converge very fast, i.e., relative errors are about
10~ for n = 81. There are very little error differences when using different quadrature rules. Note
that the convergence rates appear to be exponential in table 1B. For the piecewise constant trial
functions, we found it necessary to use a high quadrature rule in order to obtain fast convergence.
For 1-point and 2-points quadrature rules, the convergence rates approach 2.0 and 4.0, respectively.
For higher quadrature rules, the convergence rates initially appear to increase and do not show any

slowdown until after the roundoff errors become significant.

TABLE 1A: relative errors at (0.10, 0.05)

|ues| |ues| luear| lues: | luezas|
delta 1-pt 7.41E-01 5.89E—-03 1.52E-06 3.78E—15 2.44E—15
delta 3-pts 7.30E-01 5.88E—-03 1.52E-06 5.33E—15 1.55E-15
delta 8-pts 7.29E-01 5.88E—-03 1.52E-06 4.66E—15 HAAK
p.c. 1-pt 7.04E-01 9.39E—-03 1.69E-03 1.88E—04 2.09E—-05
p.c. 2-pts 548E—-01 1.89E—-03 1.94E-07 6.29E—09 7.76E—11
p.c. 3-pts 4.78E—-01 1.93E-03 6.23E—08 8.82E—14 2.13E—-14
p.c. 8-pts 4.83E-01 1.97E-03 3.10E-08 2.22E—15 HAAK

TABLE 1B: convergence rates at (0.10, 0.05)

I'z—9 Ig—27 I27-81 I'g1-243
delta 1-pt 4.40 7.52 18.04 0.10
delta 3-pts 4.39 7.52 17.72 1.12
delta 8-pts 4.39 7.52 17.80 ook
p.c. 1-pt 3.93 1.56 2.00 2.00
p.c. 2-pts 5.16 8.36 3.12 4.00
p.c. 3-pts 5.02 9.42 12.26 1.29
p.c. 8-pts 5.01 10.07 14.97 ook

We also examine the approximate potentials errors on the boundary. Note that the approximate

potential in (3.15) has a logarithmic singularity at the quadrature points. Therefore we evaluate
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the maximum relative errors at the mesh points and present these results in table 1C. Table 1C
shows that there are only small improvements in the errors when higher quadrature rules are used,

and therefore, it is best to use a low quadrature rule with either trial space.

TABLE 1C: maximum relative errors in between subintervals on the boundary

|ues| |ues| |uear| |ues: | |uesas|
delta 1-pt 1.05E+4+01 8.94E—-01 1.08E-01 1.28E—02 4.28E—-03
delta 3-pts 1.10E+4-01 8.94E—-01 1.08E-01 1.28E—02 4.28E—-03

delta 8-pts  1.10E4+01  8.94E—01  1.08E—01  1.28E—02 Hohdok
p.c. 1-pt 1.21E401  8.92E—01  1.10E—01  1.26E—02  4.26E—03
p.c. 2-pt 1.66E4+01  2.54E+00  4.16E—02  3.87E—03  1.29E—03
p.c. 3-pts Hohdok Hohdok 2.95E—02  1.94E—03 HoHrk
p.c. 8-pts Hohdok 1.09E+00 HoHrk HHAk HHAk

In table 1D, we present the matrix condition numbers for different trial functions and quadra-
ture rules. Note that the condition numbers grow proportionally slower than the numbers of subin-

tervals.

TABLE 1D: matrix condition numbers

|ues| |ues| luear| lues: | luezas|
delta 1-pt ~ 0.59E+01  0.11E402  0.21E402  0.55E+02  0.92E+02
delta 3-pts  0.52E+01  0.11E402  0.21E402  0.55E+02  0.92E+02
delta 8-pts  0.52E4+01  0.11E+02  0.21E402  0.55E402 Ak
p.c. 1-pt 0.81E+01  0.21E4+02  0.28E402  0.63E402  0.16E+03
p.c. 2-pts  0.58E401  0.21E+402  0.28E+02  0.62E402  0.16E403
p.c. 3-pts  0.59E401  0.21E+02  0.28E+02  0.62E402  0.16E403
p.c. 8pts  0.59E+01  0.21E4+02  0.28E+02  0.62E+02 Ak

Table 1E shows the CPU time required for each run. From this table, we see that it is expensive
to compute using a high quadrature rule. It is more efficient to use a low quadrature rule and more

subintervals (larger n).
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TABLE 1E: CPU time

times timeg timesy timesg timesys
delta 1-pt 6.889 18.761 66.014 307.978 2749.478
delta 3-pts 6.997 20.893 85.215 487.562 4562.625
delta 8-pts 8.106 26.741 132.652 953.534 koK
p.c. 1-pt 4.105 9.141 32.629 158.226 1472.793
p.c. 2-pts 7.010 18.696 68.012 325.431 2472.231
p.c. 3-pts 9.930 28.420 107.010 526.649 3880.172
p.c. 8-pts 55.953 190.065 811.078 4656.722 koK

We also examine the relative errors on a sample line. Graph 1A, 1B, and 1C show the relative
errors on the line z = 2y for different values of n using delta trial functions with trapezoidal
quadrature, piecewise constant trial functions with trapezoidal quadrature, and piecewise constant
trial functions with 8-points Guassian quadrature, respectively. Note that the relative errors are

worst when the line crosses the boundary (about (x,y)=(0.283,0.141)).

For this example, we conclude that very fast convergence is obtained for the approximate
potentials on compact sets disjoint from the boundary using the delta-trigonometric method with
numerical quadrature. In fact, the convergence rates appear to be exponential. For the spline-
trigonometric method with numerical quadrature, the convergence rates does not appear to be

exponential.

EXAMPLE 3.5.2 Ellipse with data of varying smoothness

This example involves the same elliptic boundary but with boundary data of different degrees

of smoothness.
Boundary: z?/4 + y* = 1/25

Data:

g:{l'o’ Te<0 o 5=01,23.45 and 6.

1.0+ 2%, ifz>0,

The exact potential is not known, and therefore, the approximate relative errors are computed

by using the approximate potentials for n = 243. For this problem, we present results using only
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the delta trial functions with trapezoidal quadrature. Table 2A compares the approximate relative
errors at a typical interior point for difference data smoothness. We see that the smoothness of the

data affects the convergence rates significantly.

TABLE 2A: approximate convergence rates and relative errors at (0.10, 0.05) using the delta trial

functions with trapezoidal quadrature

8  Is_9 Tg_27 2781 |ue3| |ue9| |U627| |U681|

0 1.20 1.26 0.60 2.86E-01 7.66E-02 1.92E-02 9.96E-03
1 3.14 2.12 3.01 7.89E-02 2.52E-03 2.46E-04 8.98E-06
2 6.68 0.79 2.90 6.98E-02 4.54E-05 1.90E-05 7.90E-07
3 3.63 6.70 6.58 8.18E-02 1.52E-03 9.62E-07 6.98E-10
4 3.70 7.04 7.25 8.94E-02 1.54E-03 6.75E-07 2.36E-10

5 3.80 7.02 12.21 9.31E-02 1.43E-03 6.39E-07 9.56E-13
6 3.85 6.99 13.74 9.47E-02 1.38E-03 6.41E-07 1.79E-13

Graph 2A show the approximate relative errors on the line z = 2y using n = 243 for s equal
0,1,2,3,4,5, and 6. It is interesting to note that the errors are about the same as the line crosses

the boundary. We did not study the errors where the boundary data is not smooth.

For this example, we conclude that the boundary data lack of smoothness affects the errors
greatly. These results do not contradict our theoretical results, since we required the boundary and
boundary data to be analytic in our proofs with and without numerical quadrature. Note that we
did obtain fair results at points away from the boundary for s > 1. The condition numbers depend

only on the geometry of the domain and are exactly the same as in table 1D (example 3.5.1).

EXAMPLE 3.5.3 Rectangle with linear data

The third example involves a boundary with corners, but the boundary data is linear.

Domain: (—0.1,0.1) x (=0.1,0.1)

Data: g = ba/2

The exact solution is known in the interior region only and coincides with the formula given
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for g. As in example 3.5.1, we examine the effects of using different trial functions and quadrature
rules. Table 3A and 3B shows the exact relative errors and exact convergence rates, respectively,
at a sample interior point. Note that there are only little differences in the error when different
trial functions and quadrature rules are used. In other words, the corners of the rectangle affect

the errors significantly.

TABLE 3A: exact relative errors at (0.05, 0.05)

|ues| |ues| lueaz| lues: | [uezas|
delta 1-pt 3.29E-01 4.41E-02 1.53E-03 846E—-05 4.43E—-06
delta 3-pts  3.14E—-01 7.74E-02 1.91E-03 1.17TE-04 6.20E—06
p.c. 1-pt 1.42E-01 6.98E—-02 2.32E-03 9.74E-05 1.14E-06
p.c. 3-pts 1.78E—-01 3.12E-02 7.25E—-04 4.97TE—-05 2.64E—-06

TABLE 3B: exact convergence rates at (0.05, 0.05)

I3—9 To—27 TIa7-81 I81-243
delta 1-pt 1.83  3.06 2.63 2.69
delta 3-pts  1.27  3.37 2.54 2.67
p.c. 1-pt 0.65 3.10 2.89 4.05
p.c. 3-pts 1.58  3.42 2.44 2.67

Table 3C shows the exact maximum relative errors for points in between the subintervals on
the boundary (i.e. points which are not quadrature points). Again, there are little differences in

the errors when different trial functions and quadrature rules are used.

TABLE 3C: maximum relative errors in between subintervals on the boundary

|ues| |ueg| |uear| |ues: | |uesas|
delta 1-pt 2.29E+01 3.65E—01 1.55E-01 7.44E—-02 3.58E—02
delta 3-pts  2.49E401 1.77E400 1.40E-01 6.73E—-02 3.23E-02
p.c. 1-pt 2.74E+01 6.99E—01 149E-01 7.20E-02 3.47E—02
p.c. 3-pts ook ook 2.22E-01 3.86E—02 ook
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In table 3D, we present the matrix condition numbers for different trial functions and quadra-

ture rules. Asin example 3.4.1, the condition numbers grow proportionally slower than the numbers

of subintervals.

TABLE 3D: matrix condition numbers

delta 1-pt
delta 3-pts
delta 8-pts
p.c. 1-pt

p.c. 3-pts

p.c. &pts

|ues|
0.58E401
0.56E401
0.56E401
0.69E401
0.67E401
0.67E401

|ues|
0.13E402
0.13E402
0.13E402
0.17E402
0.16E402
0.16E402

|uear|
0.27E402
0.27E402
0.27E402
0.35E402
0.34E+02
0.34E+02

|ues: |
0.55E+402
0.59E402
0.59E402
0.84E+02
0.88E+402
0.88E+402

[uegs|
0.11E4-03
0.12E4-03

KAk
0.18E4-03
0.20E4-03

Kok kok

Table 3E shows the CPU time required for each run. Again, we see that it is more efficient to

use a low quadrature rule and more subintervals.

TABLE 3E: CPU time

delta 1-pt
delta 3-pts
p.c. 1-pt

p.c. 3-pts

times
3.918
4.311
4.043
9.538

timeg
8.709
10.423
9.056
28.770

timesy

36.346
51.849
38.307
130.968

time81

215.810
374.263
235.171
801.703

time243

2885.201
4430.722
3044.403
7401.127

Graph 3A and 3B show the exact relative errors (for different n) on a sample line from the

origin to a corner of the rectangle using delta trial functions with trapezoidal quadrature and

plecewise constant trial functions with trapezoidal quadrature, respectively. We see that the errors

become worse as the line approaches the boundary.

For this example, it 1s best to use trapezoidal quadrature with either trial function. The lack

of boundary smoothness affects the errors significantly.

EXAMPLE 3.5.4 Wedge with analytic data

The last example involves an wedge problem in which the potential possesses a singularity at
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the corner of the domain

Interior Domain: (in polar coordinates) 0 < r < 1,0 < 8 < 27/5

Data: g = 1.0 4 r%/%sin(50/2)

The exact solution is known in the interior region only and coincides with the formula given

for g. Table 4A shows the exact relative errors using different quadrature rules at a typical interior

point. The results show that there are little differences in the errors when using different quadrature

rules. The convergence rates behave a little wildly, but we did obtain errors of order 10~% for n = 81

regardless of which quadrature rules were used.

TABLE 4A: exact convergence rates and relative errors at (0.10, 0.05)

Tg_27 T27-81

delta 1-pt  0.21
delta 3-pts 3.06
delta 8-pts 3.54
p.c. 1-pt  0.95
p.c. 3-pts  3.85

p.c. &pts  4.13

2.88
—0.09
—0.51

2.48

0.84

0.79

I's1—243

3.05
3.26
KKK
2.26
3.45

Kok kok

|ues|
4.22FE—03
7.22E-03
7.66E—03
2.71E-02
4.11E-02
5.42E—-02

|uear|
3.36E—03
2.50E-04
1.57E-04
9.52E—-03
5.97E—04
5.78E—04

|ues: |
1.41E-04
2.76E—-04
2.76E—-04
6.23E—-04
2.37TE-04
2.43E-04

[ueaqs|
4.98E-06
7.66E—06

KAk
5.23E—-05
5.39E—-06

Kok kok

Table 4B shows the maximum relative errors in between the subintervals on the boundary.

Again, all the results are similiar when using different trial functions and quadrature rules.

TABLE 4B: Maximum relative errors in between the subintervals on the boundary

delta 1-pt
delta 3-pts
p.c. 1-pt

p.c. 3-pts

|ues|
1.35E+00
1.94E4-00
1.38E+00
1.45E+00

|ues| |uear| |ues: |
3.55E-01  4.89E-02 1.89E-02
3.28E-01  4.88E-02 1.88E-02
4.30E-01 6.70E-02 1.85E-02
1.00E+04  3.14E-02  9.68E-03

[uegs|
8.40E-03
8.34E-03
9.31E-03
2.79E-03

In table 4C, we observe that the matrix condition numbers grow proportionally less than the

numbers of subintervals.
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TABLE 4C: matrix condition numbers
|ues| |ues| luear| lues: | luezas|
delta 1-pt ~ 0.21E4+01  0.10E402  0.26E402  0.60E+02  0.96E402
delta 3-pts  0.23E4+01  0.10E402  0.26E402  0.55E+02  0.89E402
p.c. I-pt  0.23E401  0.99E+01  0.25E+02  0.71E402  0.16E403
p.c. 3-pts  0.29E401  0.89E+01  0.25E+02  0.71E402  0.16E403

Table 4D shows the CPU time required for each run. Again, we see that it is more efficient to

use a low quadrature rule and more subintervals.

TABLE 4D: CPU time
times timeg timesy timesg timesys
delta 1-pt  0.21E+01 0.10E+02 0.26E+02 0.60E+02 0.96E402
delta 3-pts  0.23E+01 0.10E+02 0.26E+02 0.55E+02 0.89E+402
p.c. 1-pt 0.23E+01 0.99E+01 0.25E402 0.71E+02 0.16E403
p.c. 3-pts  0.29E+01 0.89E+01 0.25E+02 0.71E+02 0.16E403

For this example, it is best to use trapezoidal quadrature. We did note that SPLTRG works
slightly better using delta trial functions than using piecewise constant trial functions. The corners

and the data singularity at the origin affect the errors significantly.

Considering all four examples together, we recommend using delta trial functions with trape-
zoidal quadrature. If the boundary and boundary data are analytic, then the delta-trigonometric
method with trapezoidal quadrature appears to obtain exponential convergence for the approximate
potentials at points away from the boundary. Hence, our numerical results confirm the theory. In
examples, where the boundary and/or boundary data are not smooth, our results are only fair and
do not invalidate the theory. In all examples, using delta trial functions with trapezoidal quadrature

works as well as using a higher quadrature rule and/or using piecewise constant trial functions.
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4. Delta-Trigonometric and Spline-Trigonometric Petrov-Galerkin Methods

using a Fictitious Boundary

We now investigate a formulation where the single-layer potential is concentrated on a fic-
titious boundary. We analyze convergence for only the interior Dirichlet problem with analytic
boundary and boundary data. Consequently, we choose a fictitious domain which strictly contains
the true domain. If we wished to solve the exterior Dirichlet problem, we would choose a fictitious
domain which is strictly contained by the true domain. First, we redefine the operator A and the
corresponding approximate potential. After reviewing some properties of this fictitious single-layer
potential representation, we define the delta-trigonometric and the spline-trigonometric methods
using a fictitious boundary without numerical quadrature. Finally, we define the matrix equations
for the delta-trigonometric method with and without numerical quadrature. In section 4.1 and 4.2,
we show that the delta-trigonometric method with and without numerical quadrature (respectively)
obtains unique approximate potentials on circular domains with exponential convergence if we use

the canonical parameterization.

Let Q and €2, be open interior domains with boundaries I' and I',, respectively, such that

Q C Q,. We redefine the operator A as

1
A6(s) = [ 6(0)logle(s) — ()] di ¥ s 0.1,
0
where # : [0,1] —» T and #, : [0,1] - T,. Here z and x, are l-periodic analytic functions
that parameterize I' and T',, respectively, and have nonvanishing derivatives. We approximate the
potential as
1
u(z) Zu(z) = / d(t)log|z — x,(t)] dt ¥V z € (4.1)
0
A natural question to ask is how well can the potential be approximated by this fictitious single-
layer representation? Given a potential u, there does not generally exist a ¢ such that (4.1) is
exact. However, Bogomolny [5] showed that if we require |z(s) — x,(¢)| # 1 for all s,¢ € [0, 1], then
there exists a ¢ such that ||u — v||p>(q) is arbitrary small. For instance, this is so if diam(£2,) < 1

or if T', is placed far from Q. In this case, the set

1
{v | v(z2) = / é(t)loglz —x(t)] dt for z€Q, ¢e€C([0, 1])}
0
1s dense 1n the set

{ue H*(Q) | Au=0in 0}
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for all s € IR [5, theorem 2.1].

We have several choices of (1) the finite-dimensional trial spaces and (2) the procedures to
select the trial function. The most interesting trial space is the span of delta functions. The
resulting method is called the fundamental solution method (e.g. Bogomolny [5], Fairweather and
Johnston [11], Mathon and Johnston [19], Kupradze and Aleksidze [16], Freeden and Kersten [12]),
ie.,

n
un(z) = Zaj log |z —y;| for z€Q, (4.2)
j=1
where the y;’s are points outside of Q and the a;’s are the unknown coefficients.

We need to consider the following question. How well can the potential be approximated by
using delta trial functions (i.e. a summation of logarithmic functions) and what is the optimal

convergence? Kupradze and Aleksidze [16] showed that the functions,
10g|2—y]|, jzla"'ana

are independent and complete in L?(T') and C'(T'). Therefore for any e > 0 there exists N such that

for any n > N there is a u, of the form (4.2) satisfying
| — unl|Loo(q) < €

Bogomolny [5] showed that any harmonic polynomial of degree < n can be approximated by a u,
of the form (4.2) with an L> error which decreases exponentially as n increases. Then he showed
that the exact solution can be approximated by a w, of the form (4.2) with an L°° error which

decreases very rapidly as n increases.

Mathon and Johnston [19] showed that there exists a w, of the form (4.2) which minimizes
|| — wnl|L2(q). They used a least square method to find the coefficients of the delta functions and
the locations of the singularities. The main drawback of their program is the nonlinear aspect
which arises from allowing the singularities to vary. However, their method works well when u is
of low continuity and for the three-dimensional Dirichlet problem. Bogomolny [5] studied where
the singularities should be placed and then used a least square method to find only the coefficients
of the delta functions (in this case, the matrices are linear). He obtained theoretical results which

suggest that the singularities should be placed far away from the boundary.
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No method has been developed to obtain exponential convergence for the approximate po-
tentials using a fictitious boundary (or fundamental solution method). For circular domains, the
delta-trigonometric method with and without numerical quadrature obtains a u, of the form (4.2)
with exponential convergence. We conjecture that exponential convergence results also hold for

arbitrary analytic boundaries.

As a numerical method, we seek ¢, € S¢ such that

| Aeatsivte) ds= [ atits) ds v v et

Then our approximate potential is

1
un (2) ::/0 dn(t)loglz —u,(t)] dt ¥ z € TR.

We call the above procedure the delta-trigonometric Petrov-Galerkin method using a fictitious
boundary for d = —1 and the spline-trigonometric Petrov-Galerkin method using a fictitious bound-
ary for d > 0. Since the logarithmic functions are independent and complete [16], we know that
the delta-trigonmetric method obtains unique solutions. We conjecture the same for the spline-
trigonometric method. We note that the delta-trigonometric method with trapezoidal quadrature
and spline-trigonometric method with trapezoidal quadrature are the same. In this report, we give

a convergence analysis for the delta-trigonometric method only.

We now define the matrix equation for the delta-trigonometric method with trapezoidal quadra-

ture. For the remaining part of this section, we assume that d = —1. Again, write
n
Snll) =Y ajd(t—j/n)
j=1
where «;’s are the unknown coefficients. We redefine A := (Ay;) where

Ay ::/0 log|x(5)—xo(j/n)|1/)k(s) ds

and recall that g := (gg) where
1
gk = / g(s)Pi(s) ds
0
forall j =1,...,n and k& € A,,. Note that the kernel of A is nonsingular, and therefore, no splitting

of A is needed. Our matrix equation is

Aa=g
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and our approximate potential 1s

un(z) = Zaj log|z — #,(j/n)| V z€R.
j=1

We now define the matrix equation for the delta-trigonometric method with trapezoidal quadra-

ture. Let
on(t) =Y &;6(t—j/n)
j=1
where @;’s are the unknown coeflicients. Redefine A= (;‘:k]) where
~ 1 & )
Ay = - Z;log |x(p/n) — xo(j/n)|1/)k(p/n)
p:

and recall that g := (gy) where

n

B =~ > olp/n)un(p/n)

p=1
forall j =1,...,n and k € A,,. Then our matrix equation with numerical quadrature is
Ad=g (4.3)

and our approximate potential with numerical quadrature is
n
Un(z) =Y ajlogle —a,(j/n)| V¥ z€R.
j=1

4.1 Convergence Analysis on a Circular Domain without Numerical Quadrature

In this section, we show that the approximate potentials produced by the delta-trigonometric
method without numerical quadrature converge exponentially on a circular domain if we use the
canonical parameterization and if the fictitious circular domain is sufficiently large. The restriction
to a circular domain enables us to analyze convergence simply with Fourier series. We conjecture
that the spline-trigonometric and delta-trigonometric methods without numerical quadrature ob-
tains exponential convergence for the approximate potentials on arbitrary boundaries, but 1t is not

clear whether special parametrizations are needed.

We continue to assume that g is an analytic function and that T and T', are circles. First, we

prove a simple lemma which will be used to bound ||A¢n||zec[0,1] independently of n in theorem
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4.1.2. Then we prove exponential error bounds for the approximate potentials on the boundary using
lemma 3.1.2 (exponential decays of the Fourier coefficients of analytic functions). By the maximum
principle we obtain exponential error bounds for the approximate potentials on the entire circular

domain.

LEMMA 4.1.1 Let y,z € © be such that |z| < |y|. Then
-1 2\
log |y — z| = log |y| + Re{ Z — (—) }
y=1 v y

PROOF:

Define the complex function,
f(x) =log(1 —x),

where 2 € € and |#]| < 1. Then the Taylor series expansion for f(xz) is

oQ

flx) = Z iaﬂ.

Also recall that

log |#| = Re{log z}.
Using @ = z/y, we derive
log |y — z| = log |y| + log |1 — z/y|
=1 /z\"
=log|y| + Re{; - (;) }
Q.E.D.

Our next goal is to bound ||A¢y||fe[0,1] independently of n. We show that there is a nice
relationship between the Fourier coefficients of A¢,. Then we represent A¢, as a Fourier series
and use this relationship to represent A¢, in terms of ;125(147) for £k € A,,. Afterward, we use the
definition of the delta-trigonometric method and lemma 3.1.2 to bound A¢, in the complex strip

Ss. (Recall that S5 := {z € @ : |[Im(z)] < d}.)

THEOREM 4.1.2 Assume that d = —1, I' and ', are circles with radii v and R parametrized by

z(s) = rexp(2nis) and x,(t) = Rexp(2mit), respectively, and that g is a I-periodic real analytic
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function. Let § be such that g extends analytically to the closed strip §g and let 0 < § < 0. Then
for R sufficiently large (depending only on r and &), the delta-trigonometric method obtains unique

solutions. Moreover, there exists a positive constant C' depending only on § and § such that
|Adn(s)] < Cllgllze(syy ¥V s€S55 and neZ*.

PROOF:

We first prove a nice relationship between the Fourier coefficients of A¢,,. By lemma 4.1.1,
e 1
Ag¢, (k) = / A¢n(s) exp(—2miks) ds
0
1 n
= / Zaj log|z(s) — x,(j/n)| exp(—27iks) ds
0 j=1

1 n
= / Z a; log |rexp(2mis) — Rexp(2mij/n)|exp(—2miks) ds

"¢ 1 rexp(2mis vy ]
:/0 ‘;a](logR%-Re{;T(W) }) exp(—?mks) ds
/ Za] (logR—l— Z 2|’y| (%)M exp(2mivy(s —j/n))) exp(—2miks) ds,
YEZ*

for all k € Z and n € Z*. We integrate with respect to s (using the orthogonality of the exponential

functions) to get

_ > i1 ajlogR, if k=0,
To,y =4 7w, o (1)
2—2|(%) > =1 ajexp(—2mikj/n), ifk #0.
Define
. k|, ifk#0,
iy Tegry k=0
Then (4.1.1) becomes
(k) = 4 —2mik VkeZ and z* 4.1.2
onlk) = 5~ (7) Za]exp rikj/n) ¥ k€L and neZt.  (412)
Consequently,
-~ -1 |k+qn]
Ag,, (k =—|(= —27i(k V k,g€Z and Zt.
Salk+am) = 5= () ;a]exp rilk+ qn)j/n) ¥ kg €Z and ne
(4.1.3)
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Putting (4.1.2) and (4.1.3) together, we get
r)|k+qn|—|k|/\

— k
Ao, (k =—" (= Ao, (k k Z d ZT.
Sulk+ ) = o (5 Gu(k) V kg€ and ne

Next, we seek to bound Ag¢, (s) in S5 for all n € Zt. Note that
|A¢n(s)| = | Z Ag¢,, (k) exp(2miks)|

keZ

< Z |Aq/> k)|l exp(2miks)|

keZ

= 3" 3146, (p + qn)l] exp(2mi(p + qn)s))|

PEA, qEZ

=3 S 1A |\ R

PEAn g€
Later on, we will choose R to satisfy 2log R > 1 so that if & = 0 then 0 < |k«| < 1. This implies

(4.1.4)

[p+an|—|pl| .
( ) |exp(2mi(p + qn)s)|, ¥V s € R.

that p+qn ‘ <lforallp€eA,, g%, and n € Z*. Therefore, for all s € S,
[p+gn|—Ipl
A6a(s) € D Y 140, (0) () |exp(2n|p + qnl5)|
PEAn gE€X
(4.1.5)
_ o~ TeXp(Qﬂ'(S) lp+an|—Ipl
= Y 146, () exp(alpl){ 3 () 3
PEAR qEXL
By definition of the method, ZIES (p) = g(p) for all p € Aj,. Hence,
rexp(2nd)\ lp+an|-|p|
|[Adn(s)] < Y [(p)| exp(27plo) {Z (#) } Vs€Ss (4.1.6)

PEA,

We now choose R sufficiently large so that & exp(27d) < 1/2 (and satisfying 2log R > 1).

Hhen (276) +anl ~In|
rexplim pranl—|p —

Z i o Sl SZ(1/2)|P+<1”| Ip|

qeﬂ( R ) q€Z
< 1_|_ #
= 1—(1/2)n (4.1.7)
<1
= +1—1/2

=5 VpeA, and neZ'.
By lemma 3.1.2, [¢(p)| < exp(— 27T5|p|)||g||Loo y for all p € Z. Therefore, using 0 < § < J, we

derive
|Agn(s)] <5 > |d(p)] exp(27|pld)
pEA,
<5llgllzeosy Y, exp(2n|p|(d —5))
PEAL (4.1.8)
< 5llgllLoe(sy) Y exp(2lpl(d — 8))
pEZ

< Ollgllzesisyy, V s€S; and neZ*,
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where C' depends only on § and 6.

We now prove the uniqueness result. By (4.1.1),

log R, if k=0,
A=< _ O\ F . .
kj 2_%“ (E) exp(—2mikj/n), if k#0.

It is well known that trigonometric vectors are linearly independent. This implies that A is non-

singular and therefore the delta-trigonometric method obtains unique solutions. Q.E.D.

The next theorem states exponential error bounds for the approximate potentials on the bound-
ary of a circular domain. Then we use the maximum principle in theorem 4.1.4 to show exponential

error bounds for the approximate potentials on the entire domain.

THEOREM 4.1.3 Assume the same hypotheses as in theorem 4.1.2. Then for sufficiently large
R (depending only on v and &), there exist positive constants C' and € € (0,1) depending only on
§ and § such that

[(Agn —g)(s)| < Ce* ¥V s€]0,1].

PROOF:
Note that
(460 = 9)(s)] = | D2 (Ad,, — ) (k) exp(2riks)

keZ

= ‘ Z (z@n —9)(k) exp(2miks)
k€A,

< Y |8, 9w
k€A,

< > {16, 01 + 1501}
k€A,

< 3 {exp(=2m b0} |A6nl 1~ (s, + exp(=2nkD)llgllzw(sp ). ¥ s €[0,1]
k€A,
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By theorem 4.1.2, (recall that 0 < § < J)

(A6 —9)(s)] < 37 {Crexp(~2nlk18) + exp(~27(K3) Hlgll (s
k€A,

<(Cr 4+ )[lgllpoe(sy) Y, exp(=2n|k|6)
E¢A,

= (Cr 4+ Dllglle(sy) 2 > exp(—2mkd)
k>n/2
2exp(—m(n + 1)d)
1 — exp(—2md)
<Ce", ¥ sel0,1].

=(Ci+1) llgll Lo (s5)

Q.E.D.

THEOREM 4.1.4 Assume the same hypotheses as in theorem 4.1.2. Then for sufficiently large
R (depending only on v and &), there exist positive constants C' and € € (0,1) depending only on
§ and § such that

|(u —un)(2)] < C™ ¥V z€Q.

PROOF: Use theorem 4.1.3 and the maximum principle for harmonic functions. Q.E.D.

4.2 . Convergence Analysis on a Circular Domain with Numerical Quadrature

We now show that the approximate potentials produced by the delta-trigonometric method con-
verge exponentially on a circular domain with numerical quadrature if the fictitious circular domain
is sufficiently large. We note that the spline-trigonometric method with trapezoidal quadrature is
the same as the delta-trigonometric method with trapezoidal quadrature, and therefore, we continue
to analyze only the delta-trigonometric method. We conjecture that exponential convergence holds
for both methods with numerical quadrature on arbitrary analytic boundaries. In lemma 4.2.1, we
prove that A%n 18 bounded independently of n. Then in theorem 4.2.2, we show exponential error

bounds for the approximate potentials due to numerical quadrature.

REMARK: For the special case where both boundaries are circles, Christiansen and Lygung [8]
showed that the condition numbers of the matrices produced by the collocation-discretization method
(collocation of the boundary integral equation and discretization of the integral) can be calculated
analytically. Their results showed that the matrices becomes ill-conditioned as n goes to infinity

or as the (conformal) radius of the larger circle approaches 1. In section 4.3, we present results
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which shows that the matrix condition numbers in the delta-trigonometric method appear to grow

exponentially as n increases.

REMARK: For the case where a fictitious boundary is not used, we derived error bounds for
the delta-trigonometric method without numerical quadrature (section 3.1). Then we bounded the
perturbation of the matrices and vectors due to numerical integration and used this bound to derive
error bounds for the delta-trigonometric method with numerical quadrature. Note that in section
3.1, we were able to bound the errors of the unknown coefficients due to numerical integration
in (3.3.6) because [|A|| was proportionally bounded to y/n, the square root of the numbers of
subintervals (see section 3.2). However this idea fails when using a fictitious boundary because the
condition numbers of A explode as n increases. In this section, we use Fourier analysis to bound

A%n as we did In section 4.1. &

Our next goal is to bound ||A$n||Loo[071] independently of n. As in section 4.1, we note a nice
relationship between the Fourier coefficients of A%. Thus, we represent A%n as a Fourier series
and use this relationship to represent A%n in terms of ;125(147) for k € A,,. In section 4.1, we used
@n(k) = g(k) for all k € A,,. This equation does not hold in the case of numerical quadrature. In

this section, we show instead that |A$n(k)| < |gg| for all k € A,.

LEMMA 4.2.1 Assume the same hypothesis as in theorem 4.1.2. Then for sufficiently large R
(depending only on r and §), there exist positive constants C' and ¢ € (0,1) depending only on §

and § such that

A, (k)] < || < Cé*

for all k € A,,. Moreover, ||A$n||Loo[071] is bounded independently of n.
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PROOF:

We first bound A%n(k) in term of gi. By equation (4.3) and lemma4.1.1,
gk = (Ad)y
1 n n _ )
== D> djlogle(p/n) = zo(j/n) Wk (p/n)
p=1j=1

1 n n
=— Z Z &, log |rexp(2mip/n) — Rexp(2wij/n)| exp(—2mikp/n)
n
p—lj—l

== Z Za] (logR + Re{ Z ! (—) & exp(2miy(p — j)/n)}) exp(—2mikp/n)

pl]l

S Z Z Z (_) 1 exp(2miy(p — j)/n) exp(—2mikp/n)

le 1 YEXL

n

=y S a5 (—)”' exp(~2mivj)/n) Y exp(2mip(y — k)/n), ¥ k € Ay

’YEZ] 1 p=1

Now
n

S expizrinty — b/ = {

p=1

if v = k(modln),

otherwise.
Therefore,
gL = Z Za ( )M exp(—2miyj/n) V k€ A,.
J 2,}/

y=k(modin)i=1

Also note that

— 1 n
A, (v) = / Z &, log |rexp(2mis) — Rexp(2mij/n)|exp(—2miys) ds

0 j=1
1 n
-1 |m|
= Z&j —(1) exp(2mim(s — j/n)) exp(—2miys) ds
g 4 2m, \R
j=1 meX
"L =1 /el o
:;ajx(ﬁ) exp(—2miyj/n), VY v€ZX.
This implies that

~v=k (modin)

{ Z f‘;—( )M lkl}A(b k), ¥ k€A
(modin)

Since R will be chosen so that 2log R > 1, we know that |k./v«] < 1. By geometric series,

the bracketed quantity in the last equation is bounded. Also note that the terms are all positive
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and the v = k term equal 1. Therefore the bracketed quantity in the last equation belongs to
[1,(1+7r/R)/(1 —r/R)] for all k € A,, and n € Z*. Hence, |A$n(k)| < |gk| for all & € A,, and
n € Z'. In view of the fact that g is the same as §(k) calculated with trapezoidal quadrature, we

use theorem 3.3.2 to get
4, (1) < il
< Cilgr — g(k)| + Chlg (k)| (4.2.1)
< Ciel! + Coexp(=2md k) |9l os (52
<cdfl v keA,.

To bound A%n we represent 1t by a Fourier series. Then we use the relationship,

Ay (k +qn) =

k. (;)|k+qn|—|k|/\~

(k+qn). +
(k +qn)« A¢, (k) YV kq€Z and neZ

o~

to express A%n in term of A%n(k) for k € A,. Afterward, we use (4.2.1) to bound A%n. (The idea

is the same as in lemma 4.1.2, i.e, (4.1.4) to (4.1.8).) Q.E.D.

THEOREM 4.2.2 Assume the same hypothesis as in theorem 4.1.2. Then for sufficiently large
R (depending only on v and &), there exist positive constants C' and € € (0,1) depending only on
§ and & such that

(Adn — g)(s)] < C* ¥ s €[0,1].

Moreover,
|(u — W) (2)] < C™ ¥V z€Q.

PROOF:

Recall that

gk = (Ad)x
= % Z &; > _loglz(p/n) — x,(j/n)| exp(—2mikp/n)
= % Z(Agn)(p/n) exp(—2wikp/n).

o~

Consequently, g is equal to A%n (k) with trapezoidal rule. By lemma4.2.1, A%n and ¢ are bounded
independently of n. Therefore by theorem 3.3.2,
> 140, (k) = 8l < Cie} (4.2.2)
kEA,
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and

> 18k — (k)| < Cael. (4.2.3)
kEA,
By lemma 3.1.2,
> {1AG, ()] + [0} < Caeds. (1.2.4)

kEA,
Putting (4.2.2) to (4.2.4) together, we derive

(A3 — )) < 3 140, () =50 [+ 3 148, (k) — (k)|

kEA, k¢A,
< S A k)~ B+ D B - aR)+ S {143, 01+ k) |}
k€A, k€A, E¢A,

<Ce", ¥ sel0,1].

By the maximum principle,
|(u —,)(2)] < C™ ¥V z€Q.
Q.E.D.

4.3 Numerical Results

Program SPLTRG is also able to perform the delta-trigonometric and the spline-trigonometric
methods using a fictitious boundary. We present results for both methods using different quadrature
rules. Recall that the spline-trigonometric method with trapezoidal quadrature is exactly the same
as the delta-trigonometric method with trapezoidal quadrature. We also present results for the
delta-trigonometric method with trapezoidal quadrature using different radii for the fictitious circle.
We present the same four examples as in section 3.5 except we consider only the interior Dirichlet
problem. In many of these examples, we study the errors on the boundary only. By the maximum
principle, we know that the errors in the interior are no worse than the maximum errors on the

boundary.

EXAMPLE 4.3.1 Ellipse with analytic data

The first example involves an elliptic boundary (an analytic boundary) with ideal boundary

data.

Boundary: z?/4 + y* = 1/25
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Data: g = ba/2

Exact solution:

where

-

For the boundary, we examine the errors at the quadrature points and at the meshes points
which are between the quadrature points. We first examine this problem for both methods using
1, 3, and 8 points quadrature. Table 1A shows the differences in the errors for both methods with
different quadrature rules using R = 2.0. There are virtuely no differences in the errors when

using different methods and quadrature rules. An analysis of table 1A indicates that very fast

bx/2,

u=1< br—w, if (x,

5z + w,

if (z,y) € ellipse,

Y
y) ¢ ellipse and z > 0,
Y

if (#,y) ¢ ellipse and = <0,

25(x2 — y?) — 3+ /(25(x2 — y?) — 3)% + 2500z2y>
5 :

convergence rates are obtained for the approximate potentials on the boundary.

TABLE 1A: maximum relative errors on the boundary using R = 2.0

delta 1-pt
delta 3-pts
delta 8-pts
p.c. 3-pts

p.c. &pts

Table 1B shows the differences in CPU time for both methods with different quadrature rules

|ueq|
7.80E401
2.21E400
1.00E+00
2.18E4-00
1.00E+00

|ues|
3.11E+00
3.23E400
3.24E+00
1.62E4-00
1.61E400

|ues|
2.96E—02
3.36E—02
3.37TE—02
8.44E—03
8.19E—-03

|ueg|
1.22E-05
1.44E—-05
1.45E—05
1.88E—06
1.71E—-06

|uess|
3.50E—-10
3.87TE—-10
3.88E—10
3.33E—11
2.72E-11

using R = 2.0. It is most efficient to use delta trial functions with trapezoidal quadrature.

TABLE 1B: CPU time

delta 1-pt
delta 3-pts
delta 8-pts
p.c. 3-pts

p.c. &pts

time;
2.479
2.434
2.630
6.448
15.653

times
5.120
5.320
5.751
17.463
44.934

61

times
9.203
10.010
11.348
28.659
77.485

timeg
17.469
19.701
23.480
53.780
151.616

time15

30.123
35.183
46.371
95.086
279.180



Table 1C shows the maximum relative errors on the boundary for the delta-trigonometric
method with trapezoidal rule using different radii for the fictitious circle. Note that the errors are

less as R increases. In fact, for R > 50, the errors are O(107'?) for n as small as 9.

TABLE 1C: maximum relative errors on the boundary using delta trial function with trapezoidal

quadrature

R |ueq | |ues] |ues]| |ueg| |uess|
1.0 2.22E400 2.53E4+00 2.98E—-01 2.08E—03 1.38E—06
1.2 4.58E4+01 5.13E400 1.29E—-01  3.90E—-04 2.37E-07
15  228E402 4.10E4+00 6.79E-02 8.62E—05 1.38E—08
2.0 T7.80E+01 3.11E4+00 2.96E-02 1.22E—-05  3.50E—-10
5.0  5.55E+01 1.28E400  2.04E—03  2.23E-08  2.72E—-12

10.0  5.35E+01 6.49E-01 261E-04 183E-10 2.72E-12
50.0  5.27E401 1.31E-01  2.14E-06 4.93E—-12 Ak
100.0  5.26E401  6.56E—02  2.68E—07 8.99E—12 koK

Table 1D show the matrix condition numbers for different R’s. Note that the condition numbers
are worse when the fictitious circle 1s too near the boundary or too far away. In fact, they increase
almost as fast as the errors decrease. Thus, we have significant roundoff errors (as the errors

decrease) and can not expect our errors to be better than 1.05 — 12.

TABLE 1D: matrix condition numbers
R Ky K3 Ky Kg Kis

1.0 0.10E4+01  0.28E402 0.43E404 0.15E407  0.49E409
1.2 0.10E4+01  0.33E401  0.17E402  0.51E403  0.64E405
1.5 0.10E401 0.67YE+401 0.42E402 0.20E404  0.47E406
2.0 0.10E+01 0.14E+02 0.11E403  0.96E4+04  0.57E407
5.0 0.10E401 0.77E402 0.16E4+04 0.86E406  0.78E+10
10.0  0.10E401  0.22E4+03  0.91E404  0.20E408  0.15E+13
50.0 0.10E+01  0.19E404  0.39E4+06  0.22E4+11  0.45E418
100.0  0.10E+01  0.45E+404  0.18E+07  0.41E412  0.25E419

Graph 1A shows the relative errors on a line z = 2y. Note that there 1s no dramatic change in the
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errors as the line approaches the boundary (as it would be if a fictitious boundary is not used). For
this interior Dirichlet problem, the results are significantly better using a fictitious boundary than
not using a fictitious boundary since very fast convergence rates are obtained for the approximate
potentials on the boundary. The most efficient way to solve this problem numerically 1s to use the

delta-trigonometric method with trapezoidal quadrature and a very large fictitious circle (large R).

EXAMPLE 4.3.2 Ellipse with different data smoothness

This example involves the same elliptic boundary but with boundary data of different degrees

of smoothness.
Boundary: z?/4 + y* = 1/25
Data:

g:{l'o’ Te <0 5=01,23.45 and 6

1.042%, ifz>0

For this example, the exact potential is not known. Instead, the approximate relative errors
are computed by using the approximate potentials for the largest n possible (before the condition
numbers blow up). We present results using the delta-trigonometric method with trapezoidal
quadrature only. (We note that using the spline-trigonometric method and/or higher quadrature
rules do not change the errors significantly.) Table 2A and 2B show the maximum approximate
relative errors on the boundary for different data smoothness using the delta-trigonometric method
with trapezoidal quadrature with R = 2.0 and R = 10.0, respectively. The largest n such that the
condition number is less than 10* for R = 10.0 is 17 and for R = 2.0 is 31. At this largest n, we
note that the results are better for R = 2.0. Thus, it is better not to use a fictitious circle too far

from the true boundary.

TABLE 2A: maximum approximate relative errors on the boundary using delta trial functions with
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trapezoidal quadrature and R = 2.0

s |ues| |ues| |ueg| |uess|

0 4.15E-01 1.01E400 8.64E-01 1.91E-01
1 1.07E-01 4.70E-02 2.14E-02 1.17E-02
2 6.62E-02 1.91E-02  4.86E-03 1.07E-03
3 2.41E-02 8.61E-03  4.82E-04 1.09E-04
4  1.78E-02 5.53E-03  3.97E-04  2.78E-05
5  9.52E-03 3.03E-03  3.78E-04  1.12E-05
6  5.84E-03 1.50E-03  2.63E-04  4.19E-06

TABLE 2B: maximum approximate relative errors on the boundary using delta trial functions with

trapezoidal quadrature and R = 10.0

$ |ueq | |ues| |ues| |ues|

0 1.47E400 3.92E—01 9.74E-01  7.36E—-01
1 4.54E-01 1.31E-01  3.32E—-02 1.41E-02
2 2.02E-01 6.86E—-02 2.52E-02 5.06E—03
3 1.02E—-01  3.40E—-02 1.38E—-02  5.77TE—-04
4  6.19E-02 1.53E—-02 5.95E—-03 6.93E—04
5 4.60E-02 6.64E-03 3.15E—-03  5.32E—04
6 3.96E—02 2.8lE-03 151E-03 3.09E—04

The matrix condition numbers are the same as in example 4.3.1. Graph 2A and 2B shows the
relative errors on the line x = 2y for s = 0,1,...,6. Again note that there is no significant change

in the errors as the line approaches the boundary.

For this example, the results are slightly better using a smaller radius because the singularities
in the potential is approximated better. For the interior points, it is better not to use a fictitious

boundary. For the boundary points, it is better to use a fictitious boundary.

EXAMPLE 4.3.3 Rectangle with ideal data

The third example involves a boundary with corners, but the boundary data is linear.
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Domain: (—0.1,0.1) x (=0.1,0.1)

Data: g = ba/2

The exact solution is known in the interior region only and coincides with the formula given for
the data g. Table 3A shows the maximum relative errors on the boundary for both methods using
different quadrature rules with R = 2.0. All the results are quite good, i.e., errors are O(10713) for

n = 15. However, there are virtually no improvement in the errors when higher quadrature rules

are used.

TABLE 3A: maximum relative errors on the boundary using R = 2.0

delta 1-pt
delta 3-pts
delta 8-pts
p.c. 3-pts

p.c. &pts

The next table shows the maximum relative errors on the boundary for different size fictitious

|ueq|
7.66E401
9.84E+01
9.40E401
1.07TE+02
1.02E4-02

|ues|
1.11E4-00
2.38E4-00
2.38E4-00
1.20E+00
1.19E+00

|ues|
2.57TE-03
3.42E-03
3.58E—03
8.79E—-04
8.97TE—04

circles. Note that the errors are smaller as R increases.

TABLE 3B: maximum relative errors on the boundary using delta trial functions with trapezoidal

quadrature

1.0
1.2
1.5
2.0
5.0
10.0
50.0
100.0

|uey|
4.06E400
4.06E400
7.08E+01
7.66E+01
8.10E+01
8.17E+01
8.20E+01
8.20E+01

|ues|
2.15E+00
2.15E+00
1.46E4-00
1.11E400
4.51E-01
2.27E-01
4.56E-02
2.28E-02

|ues |
1.46E-02
1.46E-02
6.07E-03
2.57E-03
1.65E-04
2.07E-05
1.66E-07
2.07E-08
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|ueg|
1.94E-07
1.93E—07
1.93E—07
2.65E—08
2.41E—-08

|ues|
4.44E-06
4.44E-06
2.60E-07
1.94E-07
5.54E-11
1.04E-12
3.23E-11
2.29E-11

|uess|
2.51E—13
1.79E—-13
3.23E-13
1.12E-13
6.86E—14

|ue15|

Kok kok

Kok kok

2.66E-14
2.51E-13
8.99E-13

Kok kok
Kok kok

Kok kok



Table 3C shows the matrix condition numbers. As in example 3.1, the condition numbers grow

almost as fast as the errors decrease.

TABLE 3C: matrix condition numbers using delta trial functions with trapezoidal quadrature
R Ky K3 K5 Ky Ky

1.0 0.10E4+01  0.22E403  0.25E405  0.42E409  0.20E415
1.2 0.10E4+01  0.22E403  0.25E405  0.42E409  0.20E415
1.5 0.10E4+01  0.11E402  0.33E403  0.11E406  0.29E409
2.0 0.10E401  0.24E402 0.92E403  0.55E406  0.35E+10
5.0 0.10E401  0.13E403 0.13E405 0.46E408  0.45E+13
10.0  0.10E401  0.37E4+03  0.73E405  0.10E410  0.81E+15
50.0 0.10E+01  0.32E404  0.31E4+07 0.11E4+13  0.13E418
100.0  0.10E+01  0.75E+404  0.15E+08  0.20E414  0.16E420

Graph 3A shows the relative errors on the line & = y. Note that the results are very nice and

the errors remain small at the boundary.

For this problem, it is best to let R be large. It is remarkable that very fast convergence was

obtained even though the boundary has corners. Thus, it is worthwhile using a fictitious boundary.

EXAMPLE 4.3.4 Wedge with analytic data

The last example involves an wedge-shaped domain. The potential possesses a singularity at

the corner of the domain.

Interior Domain: (in polar coordinate) 0 < 7 < 1,0 < 0 < 27/5

Data: ¢ = 1.0 + r>®sin(2.50)

The exact solution is known in the interior region only and coincides with the formula given

for the data g.

Table 4A shows the maximum relative errors on the boundary for both methods using different
quadrature rules and R = 2.0. Note that there are virtually no differences in the errors for different

quadrature rules. Overall, the results are only fair.
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TABLE 4A: maximum relative errors on the boundary using R = 2.0

delta 1-pt
delta 3-pts
delta 8-pts
p.c. 3-pts

p.c. &pts

Table 4B shows the maximum relative errors on the boundary using the delta trial functions

with trapezoidal quadrature for different radii for the fictitious circle. Note that the errors did not

|ueq |
9.99E-01
9.99E-01
9.99E-01
9.05E-01
6.18E-01

|ues|
3.73E-01
5.50E-01
5.68E-01
5.38E-01
5.54E-01

|ues|
3.14E-01
2.48E-01
2.48E-01
1.65E-01
1.65E-01

|ues|
1.05E-02
4.73E-03
4.79E-03
1.57E-03
1.53E-03

improve very much as R becomes large. Again the results are only fair.

TABLE 4B: maximum relative errors on the boundary using delta trial functions with trapezoidal

quadrature

1.2
1.5
2.0
5.0
10.0
50.0
100.0

The last table shows the matrix condition numbers. Again, the condition numbers grow faster

as n increases. We also noted that the condition numbers are worse if the fictitious circle 1s too

ues |
9.43E+00
2.64E400
9.99E-01
5.53E-01
5.18E-01
5.02E-01
5.01E-01

|ues|
5.22E-01
3.27E-01
3.73E-01
3.79E-01
3.77E-01
3.76E-01
3.76E-01

close to the true boundary or too far away.

|ues |
2.00E-01
4.01E-01
3.14E-01
1.82E-01
1.51E-01
1.30E-01
1.27E-01
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|ues|
5.50E-01
8.67TE-02
1.05E-02
3.50E-03
3.64E-03
3.24E-03
3.17E-03

[ues|
1.99E-04
1.87E-04
1.90E-04
2.07E-04
1.93E-04

|uess|
1.74E-01
6.78E-03
1.99E-04
2.69E-04
3.65E-04

Kok kok

Kok kok



TABLE 4C: matrix condition numbers using delta trial functions with trapezoidal quadrature
R K Ks Ks Kg Kis

1.2 0.10E401  0.13E402  0.54E402  0.73E+05  0.88E407

1.5  0.10E+01 0.81E401  0.79E4+02  0.14E405  0.24E+07

2.0 0.10E401  0.78E401  0.13E+03  0.16E405  0.57E+07

5.0 0.10E401  0.26E402  0.76E+03  0.22E406  0.86E+409

10.0  0.10E4+01  0.74E402  0.38E404  0.34E+07  0.68E+11

50.0  0.10E401  0.64E+03  0.153E+06  0.30E410  0.86E+416

100.0  0.10E+01  0.15E404  0.72E+06  0.55E4+11  0.12E+418

Graph 4A shows the relative errors on the line # = 2y. Note that there is no significant changes
as the line approaches the boundary. For this example, the results are not so good because of the

singularity of the data.

Considering both methods and different quadrature rules, we see that the delta-trigonometric
method with trapezoidal quadrature works the best. We need to consider when a fictitious bound-
ary should be used. If the data is smooth, then using a fictitious boundary obtains very rapid
convergence on the boundary as well as in the interior. (Recall that in section 3.5, we obtain rapid
convergence at points away from the boundary only). If the data is bad, then using a fictitious
boundary obtains better results on the boundary, but worse results in the interior. It turns out that
the fictitious boundary should not be too far from the true boundary. If the fictitious boundary is
used, then there are no significant differences between the errors on the boundary and the errors in

the interior. (In section 3.5, we saw significant changes in the errors as we approach the boundary.)
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5. Appendix

In this section, we define the conformal radius and discuss some of its basic properties in
relation to the single-layer potential representation. In particular, we explain why the conformal
radius of T' should not be equal to 1 in (1.2). We begin with the Riemann mapping theorem and a
corollary. Then we present a theorem which states that solving the Dirichlet problem is equivalent
to solving the single-layer potential problem using the restriction formulation (defined in section
3). Afterward, we present a theorem which states that if the conformal radius of T' is not equal to 1
then solving the Dirichlet problem is equivalent to solving the single-layer potential problem using

the scaling formulation (defined in section 3).

For the next two theorems, let By (1) be the open unit ball centered at the origin and let Q be an
a simply-connected open set with analytic boundary T'. Also let B§(1) and Q¢ be the corresponding

open exterior regions. We identify IR? with the complex plane .

THEOREM 5.1 (Riemann mapping theorem) Let z, € § be arbitrary. Then there exists a unique

conformal mapping S : Q@ — By(1) such that S(z,) = 0 and S'(z,) > 0.

PROOF: See for example, B. Choudhay [6, chapter 9 and appendix I]. Q.E.D.

COROLLARY 5.2 There exists a unique positive number a and conformal mapping T : Q° —
B§(1) such that T(z) = a=tz(1 4+ O(]z|71)) as |z| = oco. The number a is called the conformal
radius of I.

PROOF:

Let s(z) = z/]z|* and define QF = {s(z)|z € Q°} U {0} so that Q*F is a bounded simply-
connected region in IR?. Then by theorem 5.1, there exists a mapping S : Qt — Bg(1) such that

S(0) = 0 and S’(0) > 0. Hence, T(z) = s(S(s(#))) is a conformal mapping of Q¢ onto B§(1).

By Taylor theorem, S(y) = S(0) +y5"(0) + O(|¢*|) = y57(0) + O(|y?|) as y — 0. This implies
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that S( ( ))
TG = St P

5(2)5'(0) + O(/s()%)
SEIPS (0 + O(ls(2)2])
_ (/1)) + 001/ I+F)
W/1P)50)2 + O(1/[=F)
z4+0(1)

SI0)

as |z| — oo. This shows that 7" has the desired form with ¢ = S5’(0). Uniqueness follow from the

uniqueness of the conformal map (theorem 5.1). Q.E.D.

REMARK: If T is a circle, then the conformal radius is the usual radius. If ¥ = {pz | z € T} for

some p > 0 then the conformal radius of I'” is p times the conformal radius of T'.

We now state a uniqueness theorem for solving the single-layer potential problem using the

restriction formulation (defined in section 3).

THEOREM 5.3 Given (g, \)€(H'*(T),IR), there exists a unique pair (®,¢) € (H~/*(T),R)
such that

g(z):/q)(y)log|z—y| doy+c VYV zel
r

and

/\:/<I>(y) doy.
r
Moreover, if T is C*, then the relation (g,\) — (®,¢) is an isomorphism from (HY*(T),R) to

(H~2(0), R).
PROOF: See M.N. LeRoux [17] Q.E.D.

We now define the operator

A*®(z) ::/FCD(y)log|z—y| doy.

The next theorem explains an important property of A*. In particular, we show that the conformal

radius of I' should not be 1 when we use the scaling formulation.
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THEOREM 5.4 Assume that I' is Ct. The following are equivalent:
1)  A*: H=Y*(T) = HY*(T) is an isomorphism.
2)  There does not exist a &, € H_l/Z(F) such that A*®, = 0 on ' and fF ¢, doy =1.

3)  The conformal radius of T does not equal 1.

PROOF:

It is obvious that 1) implies 2). Suppose 1) is not true, i.e., A* is not an isomorphism.
Then there exists a nonzero ® such that A*® = 0. There are two possibilities, fF<I> doy = 0 or
Jp® doy, # 0. For the first case, A*® = 0 implies that (®,0) solves (5.1) and (5.2) with data
(f,A) = (0,0). We also know that (0,0) solves (5.1) and (5.2) with data (f,A) = (0,0). By the
uniqueness result in theorem 5.3, this is a contradiction. For the second case, set £ = <I>/(fF ¢ doy)

so that [.£ = 1. This contradicts 2). Therefore 2) implies 1).

We now prove 3) implies 2). Suppose that 2) is not true, i.e., there exists a ®, € H~/?(T) such
that A*®, = 0 on I' and f.®, = 1. First, note that u(z) = log|z| solves the exterior homogeneous
Dirchlet problem on B§(1), i.e.,

Au=0 on B§(1),

up =0 on JBy(l).
Let T be the 1-1, onto, conformal mapping as defined in theorem 5.2. Define u;(z) = log|T'(#)].

Then
Au; =0 on QF°

u1(z) = log|z| = log|a| + O(1) as |z] = oo,

1 =0 on T.

Also define us(z) = [ log |z — y|®,(y) doy. Then A*®, =0 on I' implies

Aus; =0 on QF°.
uz(z) = loglz| + O(1) as |z| = .
s =0 on T.
Therefore uy; — us 1s harmonic, bounded and vanishes on I'. Hence u; = usy, which implies
log|a| = 0, i.e., a = 1. This contradicts 3). This proves that 3) implies 2).
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Finally suppose that 3) is not true, i.e., that @ = 1. Then u; satisfies

Au; =0 on
ur(z) = loglz| + O(1) as |z| = oo,
1 =0 on T.

Now there exists (®,¢) such that A*® + ¢ =0 and [.® do, = 1. Define

uz(2) :/log|z—y|<1>(y) doy + c.
r
Then
Auz =0 on Q°.

uz(z) =log|z| + ¢4+ O(2]7Y) as |z] = oo

uz3 =0 on T.

Hence, u; = uz and therefore ¢ = 0, which contradicts 2). Therefore, 2) implies 3).
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