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ABSTRACT

Title of Dissertation� Delta�Trigonometric and Spline�Trigonometric Methods using the Single�

Layer Potential Representation�

Raymond Sheng�Chieh Cheng	 Doctor of Philosophy	 �����

Dissertation directed by� Douglas N� Arnold	 Associate Professor	 Applied Mathematics Depart�

ment

We study several numerical methods for solving the plane Dirichlet problem using a single�

layer potential representation� We introduce the delta�trigonometric Petrov�Galerkin method by

extending Arnold�s spline�trigonometric Petrov�Galerkin method� In other words	 we use summa�

tions of delta functions instead of splines as trial functions� For this new method	 we extend his

proof of exponential convergence of the approximate potentials on compact sets disjoint from the

boundary and global algebraic convergence in a weighted Sobolev norm� We also show that the

same types of convergence still hold when appropriate quadrature rules are used to compute the

matrices involved� Next	 we investigate an analogous method where the single�layer potential is

placed on a �ctitious boundary	 that is	 a closed curve which properly encloses the true domain�

For circular domains	 this method achieves exponential convergence of the approximate potentials

on the entire interior domain and the boundary	 even if quadrature rules are used� We conjecture

that exponential convergence of the approximate potentials is obtained on general smooth domains

with analytic boundaries� Finally	 we discuss our implementation of these methods in the program

SPLTRG which uses the fast Fourier transform to compute the discretization matrices	 and using

SPLTRGwe compute various cases in order to con�rm our theories and conjectures	 and to examine

the behaviors of the methods in cases where the theory doesn�t apply due to lack of smoothness�
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�� Introduction

We study the numerical methods for solving the Dirichlet problem	

�u � � on IR�n�� u � g� on �� �����

based on a single�layer potential representation where � is a simple closed analytic curve	 g is an

analytic function	 and u is bounded at in�nity� The single�layer potential representation is�

u�z� �

Z
�

��y� log jz � yj d�y for z � IR�� ���
�

where � is the density� For any harmonic u	 there exists a unique � satisfying the representation

���
� if the conformal radius of � does not equal � �see appendix�� The density � solves the

boundary integral equation	

g��z� �

Z
�

��y� log jz � yj d�y � z � �� �����

We consider several numerical methods to approximate the potential in equation ����� based

on the representation ���
�� In these methods	 � is approximated using equation ����� by an

approximate density selected from a �nite�dimensional space of trial functions on �� Then the

potential is approximated by using the approximate density instead of � in equation ���
�� Such a

method is speci�ed by choosing ��� the spaces of trial functions and �
� the procedures to select

the trial function� These methods usually require integrations over � and therefore we also study

the e�ects of numerical integrations�

Two common choices of trial spaces are spline spaces and spaces of trigonometric polynomials�

We also consider approximating the density by a summation of delta functions which we will call a

spline of degree ��� In this case	 the approximate potential is�

un�z� �
nX

j��

�j log jz � yjj for z � IR�� ���
�

where the yj�s are given points on the boundary and the �j�s are the unknown coe�cients� An

advantage of using a summationof delta functions instead of an ordinary spline function is that fewer

numerical integrations are needed� For instance	 if we perform the collocation method on equation

����� then we require no numerical integration instead of one numerical integration per matrix

�



element� If we perform the Galerkin method on equation ����� then we require single numerical

integration instead of double numerical integration per matrix element� Also	 the approximate

potential in equation ���
� does not require any further approximation by quadrature rule after the

trial function is found�

The most common numerical schemes to select the approximate density are collocation meth�

ods	 least square methods	 and Petrov�Galerkin methods� Spline�collocation methods �splines as

trial functions and collocation of the boundary integral equation ������ are known to give the optimal

asymptotic convergence rates in certain Sobolev spaces	 i�e�	

k���nkHt��� � Cn�s�tk�kHs��� �����

for all �� � t � s � d � �	 t � d � ��
	 and d�
 � s where �n is the approximate density due

to n subintervals and d is the degree of the splines ��	 
� pg� �	 
��� The approximate potential un

satis�es�

ku� unkL���K� � Cn�s��k�kHs���

for all �d � � � s � d � � where �K is a compact set disjoint from � �
� pg� ���� The optimal

asymptotic convergence rates are also achieved for elliptic equations of other orders� For more

details	 see Arnold and Wendland ��	 
�	 Saranen and Wendland �
��	 Prossdorf and Schmidt �
�	



�	 Prossdorf and Rathsfeld �
�	 

�	 and Schmidt �
���

The spline�spline Galerkin method obtains the same convergence rates as the spline�collocation

method except with a lesser regularity requirement	 i�e�	 equation ����� holds for �d� 
 � t � s �
d� � and t � d� ��
� However	 it is more costly to evaluate the double integrals numerically� For

more details	 see ��
	 ��	 
� pg� ���

Ruotsalainen and Saranen �
�� proved that the delta�spline Petrov�Galerkin method �sum�

mations of delta functions as trial functions and splines as test functions� achieves the optimal

asymptotic convergence rates	 i�e�	

k���nkHt��� � Cn�s�tk�kHs���

for all �d� � 
 � t � s � �	 t � ���
	 and �d��
� � � s where d� is the degree of the splines �
�

pg� ���� The approximate potential un satis�es�

ku� unkL���K� � Cn�s�d
���k�kHs���






for all �d��
� � � s � � where �K is a compact set disjoint from � �
� pg� ���� The advantages

of their method compared to the spline�spline methods or the splines�collocation methods are that

fewer numerical integrations are needed and a lesser regularity is required of the boundary data�

Numerical results were presented by Lusikka	 Ruotsalainen	 and Saranen �����

Arnold �
� showed that the approximate potentials produced by the spline�trigonometricmethod

�splines as trial functions and trigonometric polynomials as test functions� converge �in the L�

norm� exponentially on compact sets disjoint from � and algebraically up to the boundary� He also

showed that the condition numbers of the matrices produced by his method are linearly proportional

to the numbers of subintervals� McLean �
�� showed that the approximate potentials produced by the

trigonometric�trigonometric Galerkin method converge exponentially in L��IR��� Neither Arnold

nor McLean took into account the e�ect of quadrature errors which would occur on the computer�

In this paper	 we show that the approximate potentials produced by the delta�trigonometric

Petrov�Galerkin method �summations of delta functions as trial functions and trigonometric polyno�

mials as test functions� converge �in the L� norm� exponentially on compact sets disjoint from the

boundary and algebraically in a weighted Sobolev norm� Then we show that the convergence rates

do not change when we use the appropriate quadrature rules� This is signi�cant since now we have

a fully discretized method using the single�layer potential representation ���
� which approximates

the potential exponentially� We also show that the condition numbers of the matrices produced by

the delta�trigonometric method without quadrature rules are bounded proportionally to the num�

bers of subintervals� Finally we present computer results which con�rm our theoretical analyses�

We also show results in which the approximate potentials produced by the spline�trigonometric

method with numerical quadrature do not converge exponentially� The reason for this phenomenon

is that the spline�trigonometric method involves numerical integrations of non�analytic splines in

����� while the delta�trigonometric method avoids numerical integrations of ������

We also study the case where the single�layer potential is placed on a �ctitious boundary �o

to solve the interior Dirichlet problem� Let � and �o be simple open bounded domains with

boundaries � and �o	 respectively	 such that � is strictly contained in �o� We approximate the

potential as�

u�z� �� v�z� ��

Z
�o

��y� log jz � yj d�y for z � �� �����

�



where � is a ��ctitious density� function de�ned on the �ctitious boundary� In general	 given a

harmonic u there does not exist a � such that equation ����� is exact� However if we set the

condition� �o is such that jy � zj �� � for all z � � and y � �o	 then we can �nd a � such that

ku� vkL���� is arbitrary small� Consequently	 this condition implies that the set

fv
�� v�z� � Z

�o

��y� log jz � yj d�y for z � �� � � C���o�g

is dense in the set

fu � Hs���
�� �u � � in �g

for all s � IR ��	 theorem 
����

Again we have several choices of ��� the �nite�dimensional trial spaces and �
� the procedures

to select the trial function� The most interesting trial space is the span of delta functions� The

resulting method is called the fundamental solution method �e�g� Bogomolny ���	 Fairweather and

Johnston ����	 Mathon and Johnston ����	 Kupradze and Aleksidze ����	 Freeden and Kersten ��
��	

i�e�	

un�z� �
nX

j��

�j log jz � yj j for z � �� �����

where the yj �s are points outside of � and the �j�s are the unknown coe�cients�

Kupradze and Aleksidze ���� showed that the functions	

log jz � yj j� j � �� � � � � n�

are independent and complete in L���� and C���� Therefore for any � � � there exists N such that

for any n � N there is a un of the form ����� satisfying

ku� unkL���� � ��

Bogomolny ��� showed that any harmonic polynomial of degree � n can be approximated by a un

of the form ����� with an L� error which decreases exponentially as n increases� Then he showed

that the exact solution can be approximated by a un of the form ����� with an L� error which

decreases very rapidly as n increases�

Mathon and Johnston ���� showed that there exists a un of the form ����� which minimizes

ku� unkL����� They used a least square method to �nd the coe�cients of the delta functions and






the locations of the singularities� The main drawback of their program is the nonlinear aspect

which arises from allowing the singularities to vary� However	 their method works well when u

is of low continuity and for the three�dimensional Dirichlet problem� Bogomolny ��� investigated

where these singularities should be placed and then used a least square method to �nd only the

coe�cients of the delta functions �In this case	 the matrices are linear�� He obtained theoretical

results which suggest that the singularities should be placed far away from the boundary�

In this paper	 we examine the delta�trigonometric and spline�trigonometric method using a

�ctitious boundary� In the special case where � and �o are concentric circles	 we show that the

approximate potentials produced by the delta�trigonometric method converge exponentially	 even

if quadrature rules are used� We note that the trial functions may not converge even though the

associated approximate potentials do�

We also note that the delta�trigonometric and spline�trigonometric methods with trapezoidal

quadrature produce the same results as the delta�collocation method �summation of delta func�

tions as trial functions and collocation of the boundary integral equation�� Hence	 we prove that

the approximate potentials produced by the delta�collocation method converge exponentially in

circular domains� Since the spline�trigonometric method with trapezoidal quadrature and delta�

trigonometric method with trapezoidal quadrature are exactly the same we will provide conver�

gence analysis for the delta�trigonometric method only� However	 we present numerical results for

both methods� We conjecture that both methods with and without numerical quadrature obtain

exponential convergence for the approximate potentials on general smooth domains with analytic

boundaries and present computer results which support this conjecture�

The delta�trigonometric and spline�trigonometric methods �with and without numerical quad�

rature� work quite well if we are seeking the potential on compact sets disjoint from the boundary�

To compute the potential on the boundary	 better results are obtained using a �ctitious boundary�

However	 note that we have assumed that the boundary and the boundary data are analytic� Ob�

viously this is not true in the real world� G� DeMey ���� investigated the delta�collocation method

on a rectangular domain with mixed data �Dirichlet and Neumann data� using a �ctitious circular

boundary� Using n � 
�	 he obtained relative error of about � percent� He did not examine the

errors for di�erent n�s	 but for di�erent circle radii� He found that it was best not to let the �ctitious

�



circle be near the corners of the rectangle or to be too far away from the rectangle� No theoretical

proof was given�

�



�� Preliminaries

In this section	 we de�ne some of the norms and spaces that are used throughout this paper�

First	 we de�ne ZZ� to be the set of positive integers and ZZ� to be the set of integers except zero�

Next	 we de�ne the vector norm

kvk ��
q
v�� � � � �� v�n

and the matrix norm

kAk �� sup
v�IRn

kAvk
kvk �

Then we de�ne the space of trigonometric polynomials with complex coe�cients	

T �� spanfexp�
�ikt�� k � ZZg�

Any function f in this space can be represented as

f�t� �
X
k�ZZ

bf�k� exp�
�ikt�
where bf �k� �� Z �

�

f�t� exp��
�ikt� dt

are arbitrary complex numbers	 all but �nitely many zero�

For f � T 	 s � IR	 and � � �	 we de�ne the Fourier norm �
	 section ��

kfks�� ��
X
k�ZZ

j bf �k�j���jkjk�s
where

k ��

�
�� if k � �	

�jkj� if k �� �	

and the corresponding space Xs�� to be the completion of the closure of T with respect to this norm�

For further discussions about the properties of this Fourier norm and space see �
	 section ��� We

also de�ne the functional space L�X�Y � as the set of bounded linear functions which map from X

to Y � Finally	 we say fn is O�nm� if for all n there exists a constant C such that jfnj � Cnm�

�



�� Delta�Trigonometric and Spline�Trigonometric Methods

In this section	 we de�ne several operators	 the trial spaces	 and the test spaces� Next	 we

de�ne the delta�trigonometric and spline�trigonometric Petrov�Galerkin methods without numer�

ical quadratures� Then for the delta�trigonometric method	 we derive the matrix equations with

and without numerical quadratures� In section ���	 we show exponential error bounds for the ap�

proximate potentials �away from the boundary� for both methods without numerical quadrature�

In section ��
	 we show that the matrix condition numbers for both methods without numerical

quadrature are proportionally bounded by the numbers of subintervals� Then in section ���	 we

derive exponential errors bounds for the approximate potentials �away from the boundary� for the

delta�trigonometric method with numerical quadrature� Finally	 we present numerical results for

both methods in section ��
�

First we de�ne the transformation	

��x�t��
���dx
dt
�t�
��� � 	�t� and g��x�t��

���dx
dt

�t�
��� � g�t��

where x � IR � � is a ��periodic analytic function which parametrizes � and has nonvanishing

derivatives� We continue to assume that the conformal radius of � is not equal to �� Next	 we

de�ne three integral operators in L�Xs��� Xs������ Let

A	�s� ��

Z �

�

	�t� log jx�s�� x�t�j dt� �����

V 	�s� ��

Z �

�

	�t� log j
 sin���s � t��j dt� ���
�

and

B	�s� �� A	�s� � V 	�s� �

Z �

�

	�t�K�s� t� dt�

where K � IR� � IR is a smooth kernel de�ned by

K�s� t� ��

�
log j x�s��x�t�� sin ��s�t� j� if s� t �� ZZ	

log jx��s��� j� if s� t � ZZ�
�����

Then the single�layer potential representation ���
� becomes

u�z� ��

Z �

�

	�t� log jz � x�t�j dt � z � IR

�



and our boundary integral equation ����� becomes

A	�s� � g�s� � s � ��� ���

Note that A	 � B	 � V 	 where V is the principal part of A and the remainder B has

a smooth kernel� The advantage of the splitting is that the Fourier transforms of V 	 can be

calculated analytically� This fact will be useful for proving the inf�sup condition for A in the

�nite�dimensional spaces and for numerical implementations�

REMARK� Christiansen ��� described our formulation as the scaling formulation� The limitation

of the scaling formulation is that a unique solution does not necessarily exist when � has a con�

formal radius of � �see appendix�� Another formulation	 which Christiansen called the restriction

formulation	 works on domains of arbitrary conformal radii�

For the restriction formulation	 we de�ne three operators in L�Xs��� Xs������

A�	�s� ��

Z �

�

�	�t�� b	���� log jx�s�� x�t�j dt� �b	���� ���
�

V�	�s� ��

Z �

�

	�t�
�
log j
 sin���t � s��j � �

�
dt� �����

and

B�	�s� �� A�	� V�	 ��

Z �

�

�	�t�� b	����K�s� t� dt� �����

where b	��� � Z �

�

	�t� dt�

The corresponding single�layer potential representation is

u�z� ��

Z �

�
�	�t�� b	���� log jz � x�t�j dt� �b	��� � z � IR

and the boundary integral equation isZ �

�

A�	�s� ds �

Z �

�

g�s� ds � s � ��� ���

The theoretical results in the sections ��� to ��� hold using A�	 B�	 and V� instead of A	 B	 and

V with minor modi�cations� Note that the restriction formulation allows the conformal radius of

�



� to be equal to � but requires more terms� Christiansen ��� compared the two formulations using

a least square method and preferred the restriction formulation because the condition numbers of

the matrices were better� We chose the scaling formulation because of its simplicity and because

this formulation relates better to the case where a �ctitious boundary is used �We will discuss this

later�� �

Let n be a positive odd number	 d be an integer � ��	 and

�n ��
n
k � ZZ

���� jkj � n� �




o
�

For d � ��	 we de�ne the trial space

Sdn �� f
 � Hd���� ���
��� b
�m�md�� � b
�m � n���m � n�d�� � m � ZZg�

Note that S��n is the span of the ��periodic extension of the delta functions at the points j�n	

j � �� � � � � n� For d � �	 Sdn is the space of ��periodic splines of degree d subordinate to the mesh

fj�n
��� j � ZZg for d � �� �� �� � � � and to the mesh f�j � ��
��n

��� j � ZZg for d � �� 
� 
� � � � �
	

section 
�� We also de�ne

Tn �� spanfexp�
�ikt�
��� k � �ng

to be the space of trigonometric polynomials with degree � n�

REMARK� Let d � �� and 	n�t� �
Pn

j�� �j��t� j�n�� We wish to con�rm ��� 	n is in S��n and

�
� all functions in S��n are of this form�

Note that b	n�m� �

Z �

�

nX
j��

�j��t � j�n� exp�
�imt� dt

�
nX
j��

�j exp�
�imj�n��

for all m � ZZ� Also note that

b	n�m � qn� �
nX

j��

�j exp�
�i�m � qn�j�n�

�
nX

j��

�j exp�
�imj�n�

� b	n�m�

��



for all m� q � ZZ� This proves ����

For �
�	 note that dimSdn � n and that 	n has n degrees of freedom� Therefore	 all functions

in Sdn are of the form of 	n� �

We now de�ne our methods without numerical quadratures� We seek 	n � Sdn such thatZ �

�

A	n�s���s� ds �

Z �

�

g�s���s� ds � � � Tn� �����

Then our approximate potential is

un�z� ��

Z �

�

	n�t� log jz � x�t�j dt � z � IR� �����

We call the above procedure the delta�trigonometric Petrov�Galerkin method for d � �� and the

spline�trigonometric Petrov�Galerkin method for d � ��

REMARK� For the restriction formulation	 we seek 	n � Sdn such thatZ �

�

A�	n�s���s� ds �

Z �

�

g�s���s� ds � � � Tn�

Then the approximate potential is

un�z� ��

Z �

�

�	n�t� � b	n���� log jz � x�t�j dt� �b	n��� � z � IR�

�

We now de�ne the matrix equations with and without numerical quadratures for the delta�

trigonometric method only� For the remaining part of this section	 we assume that d � ���

We represent the approximate density �trial function� as

	n�t� �
nX

j��

�j��t� j�n� �����

where �j�s are the unknown coe�cients�

We also de�ne the basis for test space Tn as

�k�s� �� exp�
�iks� for k � �n�

��



Let

� �� ���� � � � � �n�
T � ������

Akj ��

Z �

�

log
��x�s� � x�j�n�

���k�s� ds� ������

Bkj ��

Z �

�

K�s� j�n��k�s� ds�

Vkj ��

Z �

�

log
��
 sin���s � j�n��

���k�s� ds�

and

gk ��

Z �

�
g�s��k�s� ds

for all k � �n and j � �� � � � � n� Also let A �� �Akj�	 B �� �Bkj�	 V �� �Vkj�	 and g �� �gk��

Then the matrix form of equation ����� is

A� � g

and the approximate potential �given in ������ because

un�z� �
nX
j��

�j log jz � x�j�n�j dt � z � IR�

Fortunately	 Vkj can be calculated exactly� In �
	 section 
�	 Arnold showed that the Fourier

transform of

G�
� ��
��
�

log j
 sin��
�j� � ����
�

is bG�k� � �

k
� ������

Therefore	

Vkj �

Z �

�

log j
 sin���s � j�n��j �k�s� ds

�

Z �

�
log j
 sin��
�j �k�
 � j�n� d


�

Z �

�

log j
 sin��
�j �k�
� �k�j�n� d


�

Z �

�

��G�
��k�
� d
 �k�j�n� � �

Z �

�

�k�
� d
 �k�j�n�

�
��
k

�k�j�n� � �

Z �

�

�k�
� d
 �k�j�n��

�




Considering all cases for k	 we get

Vkj �

�
��
�jkj �k�j�n�� if k �� �	

�� if k � ��

We now de�ne the matrix equation for the delta�trigonometric method with numerical quadra�

tures� Since the principal terms can be calculated exactly	 onlyB and g need numerical quadratures�

We assume that the trapezoidal quadrature is used� De�ne

e� �� �e��� � � � � e�n�T �
eBkj ��

�

n

nX
l��

K�l�n� j�n��k�l�n��

and

egk �� �

n

nX
l��

g�l�n��k�l�n�

for all k � �n and j � �� � � � � n� Also let eg �� �egk� and eB �� �eBkj��

The delta�trigonometric method with numerical quadratures is to seek

e	n�t� �� nX
j��

e�j��t� j�n�

such that eAe� �� eBe��Ve� � eg�
The corresponding approximate potential is

eun�z� �� nX
j��

e�j log jz � x�j�n�j � z � IR�

��� Convergence Analysis without Numerical Quadrature

In this section	 we prove convergence for the approximate potentials produced by the delta�

trigonometric method� The convergence analyses for the spline�trigonometric method �where d � ��

was given by Arnold �
	 section 
 and �� using the restriction method� We will extend his analyses

to the case d � �� using the scaling formulation� �Recall that the di�erence between the two

formulations is whether the conformal radius of � can be ��� In this section	 we continue to assume

that � is a simple closed analytic curve such that the conformal radius of � is not equal to �� We

��



will show that the operator A satis�es the inf�sup condition in the �nite�dimensional spaces� Then

we prove exponential convergence rates for the approximate densities using the Fourier norms�

Afterward	 we derive error bounds for the approximate potentials on compact sets disjoint from

the boundary	 and at in�nity �using weighted Sobolev norms��

Since cV 	��� is zero whenever 	 is a constant function	 we need an additional term� Let

M	 ��

Z �

�

	�t� dt�

The �rst theorem proves the inf�sup condition for the operator V� � V � �M �see ���
� and ������

in the �nite�dimensional spaces� Later this fact is used to show the same for the operator A� Then

we prove exponential convergence using the projection operator �de�ned in �������

THEOREM ����� Let d � d� � �� and s � s� � d� � ��
� Then there exists a constant C

depending only on d� and s� such that

inf
�����Sdn

sup
�����Tn

�V�
� ��

k
ks��k�k�s������
� C

for all � � ��� �� and n � ZZ��

PROOF�

We �rst show that there exists a constant C� depending only on do and so such that

k
k�s�� � C�

X
��	n

jb
�p�j���jpjp�s � 
 � Sdn� �������

Since Arnold �
	 lemma 
�
� proved ������� for d � �	 it remains to prove ������� for d � ��� Let

 � S��n �� f
 � H������ ���j b
�m� � b
�m � n�� � m � ZZg� Then

k
k�s�� �
X
k�ZZ

jb
�k�j���jkjk�s
�
X
p�	n

X
m�ZZ

jb
�p�mn�j���jp�mnj�p�mn��s

�
X
p�	n

jb
�p�j���jpjp�sn X
m�ZZ

��jp�mnj��jpj
� p�mn

p

��so
�

Note that 
jp�mnj � 
jpj � � and � � ��� �� imply that ��jp�mnj��jpj � �� In other words	

k
k�s�� �
X
p�	n

jb
�p�j���jpjp�sn X
m�ZZ

� p �mn

p

��so
� �����
�

�




It su�ces to show that the sum in braces is bounded by a constant depending only on so� We

consider two cases using the fact that s � so � ��
� and p � �n� If p � � thenX

m�ZZ

� p�mn

p

��s
�
X
m�ZZ

mn�s

�
X
m�ZZ

mn�so

�
X
m�ZZ

m�so

� C��

If p �� � then we let p � � without loss of generality� Since p � �n implies jn�pj � 
 we deriveX
m�ZZ

� p�mn

p

��s
�
X
m�ZZ

� jp�mnj
jpj

��s
�
X
m�ZZ

j� �mn�pj�so

�
�X

m��

�� �mn�p��so �
��X

m���

����mn�p��so

�
�X

m��

�� � 
m��so �
��X

m���

���� 
m��so

� C
�

Therefore	 the braced term in �����
� is bounded� This proves ������� for d � ���

To �nish the theorem simply choose

��x� � �
X
k�	n

b
�k���jkjk�s�� exp��
�ikx�� �������

Then

k�k��s������ �
X
k�	n

jb
�k�j���jkjk�s� �����
�

Combining ����
�	 ������	 and �������	 we derive

�V�
� �� �

Z �

�

Z �

�

n
log j
 sin���s � t��j � �

o

�t���s� dt ds

�

Z �

�

Z �

�

n
log j
 sin���s � t��j � �

o

�t�����

X
k�	n

b
�k���jkjk�s�� exp��
�iks� dt ds

�
X
k�	n

b
�k���jkjk�s�� Z �

�


�t�

Z �

�

n
� log j
 sin���s � t��j� �

o
exp��
�iks� ds dt

�
X
k�	n

b
�k���jkjk�s�� Z �

�


�t�
�

k
exp��
�ikt� dt

� �
X
k�	n

jb
�k�j���jkjk�s�
��



By ������� and �����
�	

�V�
� �� � �

sX
k�	n

jb
�k�j���jkjk�s k�k�s������
� �

p
C�k
ks��k�k�s������

� Ck
ks��k�k�s�������

This proves the theorem� Q�E�D�

The next two lemmas concern the exponential decays of the Fourier coe�cients of an arbi�

trary analytic function� These results will be useful in showing exponential convergence for the

approximate densities and potentials�

LEMMA ����� Let f be a ��periodic analytic function on S� where S� � fz � C
��� jIm�z�j � �g�

Then

j bf�m�j � e����jmjkfkL��S�� � m � ZZ�

PROOF� See P� Henrici ���	 section 
���� Q�E�D�

LEMMA ����� The kernel K de�ned in ����� is a real ��periodic analytic function in each variable

and extends analytically to S� 	 S� for some � � �� Moreover� there exists constants C and

�K � ��� �� such that

j bK�p� q�j � C�
jpj�jqj
K � p� q � ZZ�

PROOF� This is an easy consequence of lemma ����
� Q�E�D�

By theorem �����	 there exists � � � such that for all n and 
 � Sdn	 there exists � � Tn

satisfying

�A
� �� � �k
ks��k�k�s������ � �K
� ��

The next theorem states the inf�sup condition for the operator A� Analogous theorems were men�

tioned by Arnold �
� and Aziz and Kellogg ���� The proof is similiar to the compactness argument

given by Aziz and Kellogg ��� and is omitted�

THEOREM ����� Let d � d� � �� and s � s� � d� � ��
� Then for su�ciently large n� there

��



exists a constant C depending only on d�� s�� and � such that

inf
�����Sdn

sup
�����Tn

�A
� ��

k
ks��k�k�s������
� C

REMARK� Note that the constant in the previous theorem blows up as the conformal radius of �

approaches �� For a circular domain of radius r	 this constant behaves like �� log�r�� �

Arnold showed that B� �the operator with a smooth kernel using the restriction formulation

given in ������ is a compact operator and A� �the single�layer operator using the restriction for�

mulation given in ���
�� is an isomorphism from Xs�� to Xs����� With minor modi�cations	 we

conclude that B � �M is compact and that A is an isomorphism from Xs�� to Xs���� �as long

as the conformal radius of � is not equal to ��� Arnold also stated a theorem which allows us to

prove convergence using the projection operator� We will state an analogous theorem for d � ��
without proof since only minor modi�cations are needed� For more details	 the reader may refer to

�
	 theorem 
�� to 
�����

THEOREM ����� There exists a constant N � depending only on d and �� such that for all n � N

and g � SfXs��

��s � IR� � � �g the delta�trigonometric and spline�trigonometric methods ���	�

obtain unique solutions� 	n � Sdn� Moreover� if s � ��
� d � ��
�� � � ��K � �� ��K is determined

in lemma ������� g � Xs���� and n � N � then there exists a constant C� depending only on d� �� s�

and � such that

k	� 	nks�� � C inf
��Sdn

k	� 
ks�� �

For any 	 � Xs�� we de�ne the function Pn	 � Sdn by

�Pn	� �� � �	� �� � � � Tn� �������

Equivalently	 Pn is characterized by the equation	

dPn	�k� � b	�k� � k � �n�

We now show convergence using this projection operator� The next theorem states exponential

error bounds for the approximate densities�

��



THEOREM ����� Let s � d� ��
� t � �s� d� ��� n � N � 	 � Ht� and 	n � Sdn where 	 and 	n

are the exact and the approximate densities� respectively� Then for � � ��K � �� ��K is determined

in lemma ������� there exists a constant C depending only on d� �� s� and � such that

k	� 	nks�� � C�n��ns�tk	� b	���kt� if d � ��

and

k	� 	nks�� � C�n��ns�tk	kt� if d � ���

PROOF�

By theorem �����	 it su�ces to show that

k	� Pn	ks�� � C�n����n�s�tk	� b	���kt � 	 � Ht� if d � ��

and

k	� Pn	ks�� � C�n����n�s�tk	kt � 	 � Ht� if d � ��� �������

where C depends only on d	 �	 s	 and ��

The case d � � has been proven in �
	 theorem ����� We will prove ������� for the case d � ���
Note that

k	� Pn	k�s�� �
X
k��	n

jb	�k�� dPn	�k�j���jkjk�s
� 


X
k��	n

fjb	�k�j� � jdPn	�k�j�g��jkjk�s� �������

We will bound each part� For the �rst part	 we use t � s and � � ���� �� to getX
k��	n

jb	�k�j���jkjk�s � �n
X
k��	n

k�s��tjb	�k�j�k�t
� �n��n��s��tk	k�t �

�������

For the second part	 we use Pn	 � S��n to getX
k��	n

jdPn	�k�j���jkjk�s � X
p�	n

X
m�ZZ�

jdPn	�p�mn�j���jp�mnj�p�mn��s

�
X
p�	n

X
m�ZZ�

jdPn	�p�j���jp�mnj
�

�jp�mnj

��s
�
X
p�	n

jb	�p�j�p�t��n�p��t��n���t X
m�ZZ�

��jp�mnj �
�jp�mnj��s
��n��s

��n��s

� ��n��s��t�n
X
p�	n

jb	�p�j�p�t��n�p��tn X
m�ZZ�

�
jp�mnj
n

��so
�

�������

��



The quantity ��n�p��t is bounded by � since t � � and p � �n� For the braced term	 we use

s � ���
 and p � �n to get

X
m�ZZ�

� 
jp�mnj
n

��s
�

�X
m��

�
p
n

� 
m
��s

�
��X

m���

�
� 
p

n
� 
m

��s
�

�X
m��

��� � 
m��s �
��X

m���

��� � 
m��s

� C��

Therefore we rewrite ������� to getX
k��	n

jdPn	�k�j���jkjk�s � ��n��s��t�nk	k�tC�� ��������

Putting �������	 �������	 and �������� together	 we have proved �������� Q�E�D�

The next theorem states exponential convergence rates for the approximate potentials on com�

pact sets disjoint from the boundary�

THEOREM ����� Let d � ��� n � N � 	 � Ht� and �K be a compact set in IR�n�� Then there

exists constants C and � � ��� �� depending only on d� t� N � �k� and � such that

k���u� un�kL���K� � C�nk	� b	���kt� if d � ��

and

k���u� un�kL���K� � C�nk	kt� if d � ���

PROOF� The proof is similiar to �
	 theorem ����� Q�E�D�

We now extend one of Arnold�s theorems which give approximate potential error bounds in a

weighted Sobolev norm� Let �c be the exterior domain� We de�ne the weighted Sobolev norm as

kvk�Wk��c�
��

Z
�c

�
jv�z�j�

�� � r���� � �
� log�� � r����

�
X

��j�j�k

j��v�z�j�
�� � r����j�j

�
dz

��������

where r � jzj� The corresponding space W k��c� is the set of all functions in which their norms are

�nite� Note that W k��c� contains the constant functions�

��



THEOREM ����	 Let k � d� �� d � ��� t � �k � ��
� d� ��� n � N � and 	 � Ht� Then there

exists a constant C depending only on d and � such that

ku� unkHk��� � ku� unkWk��c� � Cnk�t�
��k	� b	���kt� if d � ��

and

ku� unkHk��� � ku� unkWk��c� � Cnk�t�
��k	kt� if d � ���

PROOF� See �
	 theorem ���� and ���	 theorem ��� and ����� Q�E�D�

��� Condition numbers

For the spline�trigonometric method	 Arnold �
� proved that the condition numbers of the

matrices are linearly proportional to the numbers of subintervals� We will show a similiar result for

the delta�trigonometric method�

Recall that A �de�ned in ������ represents the single�layer potential operator and A �de�ned

in ������� represents the matrix arising from the delta�trigonometric method� In lemma ��
��	 we

prove a relationship between k	nk�� and k�k de�ned in ����� and ������	 respectively� Then in

theorem ��
�
	 we prove bounds for kAk and kA��k� Finally	 in theorem ��
��	 we state bound for

the condition numbers of A�

LEMMA ����� Let d � ��� then there exists a constant C such that

k	nk�� � C
p
nk�k ���
���

and

k�k � C
p
nk	nk��� ���
�
�


�



PROOF�

For the �rst half	 note that

k	nk��� �
X
k�ZZ

jb	n�k�j�k��
�
X
k�ZZ

j
nX
j��

�j exp�
�ikj�n�j�k��

�
X
k�ZZ

� nX
j��

j�j exp�
�ikj�n�j
��
k��

�
X
k�ZZ

k��
� nX
j��

j�jj
��

� C�
� nX
j��

j�jj
��

� C�nk�k��
For the second half	 we use p � �n to derive

k	nk��� �
X
k�ZZ

j
nX

j��

�j exp�
�ikj�n�j�k��

�
X
p�	n

X
m�ZZ

�p�mn���
��� nX
j��

�j exp�
�ipj�n�
����

�
X
p�	n

p��j
nX

j��

�j exp�
�ipj�n�j�

�
X
p�	n

��n���
n nX
j��

j�jj� �
nX

j��

nX
l�j��


�j�l exp�
�ip�j � l��n�
o
�

Rearranging the summations	 we get

k	nk��� �
X
p�	n

��n���
nX
j��

j�jj�

� ��n���
nX

j��

nX
l�j��


�j�l
X
p�	n

exp�
�ip�j � l��n��

But
P

p�	n
exp�
�ip�j � l��n� � � since l �� j�mod� n�� Therefore	

k	nk��� �
X
p�	n

��n���
nX
j��

j�jj�

� n��n���
nX
j��

j�jj�

� C�n��k�k��
Thus	 ���
�
� holds� Q�E�D�


�



THEOREM ����� Let d � ��� then there exists a constant C depending only on � such that

kAk � C
p
n ���
���

and

kA��k � C
p
n� ���
�
�

PROOF�

In the appendix	 we note that A is an isomorphism fromH�� onto L� whenever the conformal

radius of � is not equal to �� In other words	 kAkL�H���L�� and kA��kL�L��H��� are bounded

constants depending only on �� Let � be an arbitrary vector and de�ne � �� A�� Also	 de�ne

f ��
P

k�	n
�k�k and 	 �� A��f � Note that the ��s are orthonormal	 and therefore k�k �

kfkL� Finally	 let 	n be the approximate density for the Dirichlet problem with data f 	 i�e�	 	n �Pn
j���j��t � j�n��� Then f is the L� projection of A	n onto Tn� By ���
���	

kA�k � k�k � kfkL�

� kA	nkL� � kAkL�H���L��k	nk��

� C�

p
nkAkL�H���L��k�k�

���
���

This proves ���
����

Also	
kA�k � kfkL�

� kA��fk��
kA��kL�L��H���

�
k	k��

kA��kL�L��H���
�

���
���

Using � � �	 s � ��	 and t � �� in theorem �����	 we derive

k	nk�� � k	� 	nk�� � k	k��

� C�k	k���
���
���

By ���
�
� and ���
���	 equation ���
��� becomes

kA�k � C
k	nk��
kA��kL�L��H���

� C�
k�kp

nkA��kL�L��H���
�

This implies that A�� exists and ���
�
� holds� Q�E�D�







THEOREM ����� Let d � �� and let ��A� represents the condition number of the matrix A�

Then there exists a constant C depending only on � such that

��A� � Cn�

PROOF�

For the case d � � Arnold �
	 section �� de�ned a special set of basis function for Sdn and Tn�

Then he proved that the condition numbers of the matrices are linearly proportional to the numbers

of subintervals� The case d � �� is proven in theorem ��
�
� Q�E�D�

��� Convergence Analysis with Numerical Quadrature

In this section	 we show that the delta�trigonometric method with numerical quadratures cal�

culates the approximate potentials with exponential convergence rates� First	 we use the Euler�

MacLaurin theorem to bound the errors in numerical integrations of a given periodic analytic

function times any trigonometric polynomial of degree less than n� Then we prove exponential

error bounds due to numerical integration for the matrix terms	 the unknown coe�cients	 and the

approximate potentials on compact sets disjoint from the boundary� Finally we give numerical

integration error bounds in a weighted Sobolev norm de�ned in ��������� We continue to assume

that g is an analytic function and � is a simple closed analytic curve such that the conformal radius

of � is not equal to ��

We now recall the Euler�MacLaurin theorem which tells us that the error in numerical integra�

tion of a given periodic smooth function is less than O�n�m� for any m � � �where n is the number

of subintervals��

THEOREM ����� Let f be any C� �
periodic function� Set

F ��

Z �

�

f�s� ds

and eF ��
�

n

nX
j��

f�j�n��

Then

F � eF �
B�m

�
m��
n��mf ��m��wm� � m � ZZ��


�



where B�m�s are the Bernoulli numbers and wm�s are numbers in ��� ��� Moreover�

B�m

�
m��
� ����m��

�X
j��




�
j���m
� m � ZZ��

PROOF� See Aktinson ��	 section ���� and Davis and Rabinowitz ��	 pg� ��� �� Q�E�D�

REMARK� Suppose we use a P�point Gaussian quadrature rule	 i�e�	

eFP �
�

n

nX
j��

PX
p��

qPp f
��Pp � j � ��


n

�
where qPp �s are quadrature weights and �

P
p �s are the quadrature points on ��	��� Then

F � eFP �

Z �

�

f�s� ds� �

n

nX
j��

PX
p��

qPp f
� �Pp � j � ��


n

�
�

PX
p��

qPp

nZ �

�

f�s� ds � �

n

nX
j��

f
� �Pp � j � ��


n

�o

�
PX
p��

qPp
B�m

�
m��
n��mf ��m��wp

m�� � m � ZZ��

where wp
m�s are numbers in ��	��� In other words	 a similiar result holds for the P�point Gaussian

quadrature� �

We modify theorem ����� in two ways� First	 we seek numerical integration error bounds for

analytic functions instead of C� functions� Second	 we consider the analytic functions multiplied

by arbitrary trigonometric polynomials of degree less than n�

THEOREM ����� Let f be any analytic ��periodic function and de�ne

fk ��

Z �

�

f�s� exp�
�iks� ds

and efk �� �

n

nX
l��

f�l�n� exp�
�ikl�n� � k � ZZ�

Then there exist constants C and � � ��� �� depending only on f such that

jfk � efkj � C�n � k � �n�







PROOF�

By theorem �����	 we have	

fk � efk � B�m

�
m��
n��m

��m

�s�m
�f�s� exp�
�iks��

���
s�wm

�
B�m

�
m��
n��m

�mX
l��

	

m

l



f �l��wm��
�ik�

�m�l exp�
�ikwm�� � m � ZZ� and k � ZZ�

�������

where wm�s are numbers in ��	��� First	 we bound

��� B�m

�
m��

��� � �

�
���m

�X
j��




j�m

� �

�
���m

�X
j��




j�

� C�

�
���m
� � m � ZZ��

�����
�

where C� is a constant independent of m�

Next	 we bound f �l� � We extend f to be an analytic function in the complex strip S� for some

� � �� Moreover	 this extension is ��periodic� �This is possible because f is analytic in a complex

neighborhood of the real line� Therefore f is analytic on
n
�x� y� � C

��� x � ��� �� and jyj � �
o

for some � � �� Since f is ��periodic	 it is analytic on S��� For each point t � ��� ��	

jf �l��t�j � kfkL���B�t����
l�

�l
� l � ZZ�

where Bt��� is an open ball of radius � centered at t �
�	 pg ��
�� This implies that

jf �l��t�j � kfkL��S��

l�

�l
� t � ��� �� and l � ZZ�� �������

Combining ������� to ������� we get�

jfk � efkj � C�

�
�n��m

��� �mX
l��

	

m

l



f �l��wm��
�ik�

�m�l exp�
�ikwm�
���

� C�

�
�n��m

�mX
l��

	

m

l



kfkL��S��

l�

�l
j
�kj�m�l

�
C�kfkL��S��

�
�n��m

�mX
l��

�
m��
m � �� � � � �
m � l � ��j
�kj�m�l
�l

�

� m � ZZ� and k � ZZ�

�����
�


�



Since m is an arbitrary positive integer	 we choose m such that m � ��� � ��n�
� ��n�
�� Using

m � ��n�
 and k � �n	 ������� implies

jfk � efkj � C�kfkL��S��

�
�n��m

�mX
l��

��n��m

�
C�kfkL��S��

�
m� ��


�m

� C�kfkL��S��

��



�m
�
m� ��

� C�n� � k � �n�

Q�E�D�

In theorem �����	 we use theorem ����
 to bound the perturbations of the matrices and vectors

due to numerical integration� Then we use theorem ����� to bound the approximate potential errors

in theorem ����
�

THEOREM ����� Let d � ��� Then there exist constants C and � � ��� �� depending only on g

and � such that

kg� egk � C�n

and

kB� eBk � C�n�

PROOF�

For the �rst half of this theorem	 note that by theorem ����
	

kg � egk � p
nmax
k�	n

jgk � egkj � C�n�

For the second half of this theorem	 recall thatK is an ��periodic analytic function with respect

to either variable �lemma ������� By theorem ����
	

jBkj � eBkjj �
��� Z �

�
K�s� j�n��k�s� ds � �

n

nX
p��

K�p�n� j�n��k�p�n�
���

� C
�
n� � j � �� � � � � n and k � �n�

Therefore	

kB� eBk � n� max
j���			�n

max
k�	n

j�B� eB�kjj � C�n�

Q�E�D�


�



REMARK� Theorem ����� does not hold for d � �� The reason is because we must apply numerical

integration on an non�analytic function �i�e� spline trial functions�� Exponential convergence may

hold for the trigonometric�trigonometric method with numerical quadrature since the trigonometric

functions are analytic� �

Finally we give exponential numerical integration bounds for the unknown coe�cients and the

approximate potentials�

THEOREM ����� Let d � �� and �K be a compact set disjoint from the boundary� Then there

exist constants C and � � ��� �� depending only on g and � such that for all z � �k�

k�� e�k � C�n�

jun�z�� eun�z�j � C�n� �������

and

ju�z�� eun�z�j � C�n�

PROOF�

Note that
�� e� � A���g� eg � �A� eA�e��

� A���g� eg � �B� eB�e���
Hence	

k�� e�k � kA��k�kg� egk� kB� eBkke�k��
Using the fact that

ke�k � k�� e�k� k�k � k�� e�k� kA��kkgk

we derive

k�� e�k � kA��k�kg� egk� kB� eBkkA��kkgk��
�� kA��kkB� eBk� � �������

By theorems ��
�� and �����	

k�� e�k � C

p
nfC��

n
� � C��

n
�C


p
nkgkg

��C

p
nC��n� �

� C��
n

 �


�



To prove �������	 we note that �K is a compact set	 and therefore	 we bound the logarithmic

term by a constant� Thus	

jun�z�� eun�z�j � ��� Z �

�

nX
j��

��j � e�j� log jz � x�j�n�j dt
���

� max
j��			�n

j�j � e�jj��� Z �

�

log jz � x�j�n�j dt
���

� pnk�� e�kC�

� C
�
n
� �

Also	 by theorem �����	

ju�z�� eun�z�j � ju�z�� un�z�j � jun�z� � eun�z�j
� C��

n
� �C
�

n
�

� C�n�

Q�E�D�

We also prove that the use of numerical quadratures does not a�ect the convergence rates in

the weighted Sobolev norm de�ned in ���������

THEOREM ����� Let d � ��� k � �� t � �k � ��
� ��� n � N � and 	 � Ht� Then there exists a

constant C depending only only g� k� and � such that

ku� eunkHk��� � ku� eunkWk��c� � Cnk�t�
��k	kt� �������

PROOF�

By theorem �����	

ku� unkHk��� � ku� unkWk��c� � C�k	� 	nkk�
��

� C�n
k�t�
��k	kt�

Similiarly	 by theorem ��
��	

kun � eunkHk��� � kun � eunkWk��c� � C�k	n � e	nkk�
��
� C
k

nX
j��

��j � e�j��jkk�
��
� C
n max

j����n�
j�j � e�jj max

j����n�
k�jkk�
��

� C�n
p
nk�� e�k�


�



By theorem ����
	

kun � eunkHk��� � kun � eunkWk��c� � C��
n�

Since
ku� eunkHk��� � ku� eunkWk��c� � ku� unkHk��� � ku� unkWk��c�

� kun � eunkHk��� � kun � eunkWk��c��

we conclude that ������� holds� Q�E�D�

��� Numerical Technique

The program SPLTRG implements the spline�trigonometric method with numerical quadra�

tures using splines of degree � �piecewise constant splines� as trial functions� It can also be used to

compute the delta�trigonometric method by selecting the ��point quadrature rule for certain inte�

grals� SPLTRG employs the fast Fourier transform to calculate the matrix entries� In this section	

we show how the fast Fourier transform has been implemented in the program and give operation

counts�

Assume that d � �	 n is odd	 and let �
� j����n �

j����
n �

for j � �� � � � � n be the basis for S�n where

��a�b� denotes the characteristic function on the interval �a� b�� Then

	n�t� ��
nX

j��

�j�� j����n �
j����
n �

�t�

where �j�s are the unknown coe�cients� Instead of complex test functions	 we use real test func�

tions� Let

e�k�s� � � sin�k�s�� if k � 
� 
� � � � � n� �	
cos��k � ���s�� if k � �� �� � � � � n�

We wish to perform numerical integrations on

Z �

�

A	n�s� e�k�s� ds �

Z �

�

g�s� e�k�s� ds � k � ��� n��

The above system can be rewritten as

Z �

�

Z �

�

� nX
j��

�j�� j����n �
j����
n �

�t�



log
��x�s� � x�t�

�� e�k�s� dt ds

�

Z �

�

g�s� e�k�s� ds � k � ��� n��


�



The left hand side is split into two parts	 the principal log term and the smooth remainder� Thus	

we rewrite the last equation asZ �

�

Z �

�

� nX
j��

�j�� j����n �
j����
n �

�t�



log

���� x�s�� x�t�


 sin���s � t��

���� e�k�s� dt ds

�

Z �

�

Z �

�

� nX
j��

�j�� j����n �
j����
n �

�t�



log
��
 sin���s � t��

�� e�k�s� dt ds

�

Z �

�

g�s� e�k�s� ds � k � ��� n��

���
���

The equivalent matrix equation is

B��V� � g

where

Bkj �

Z �

�

Z �

�

�
� j����n �

j����
n �

�t� log

���� x�s� � x�t�


 sin���s � t��

���� e�k�s� dt ds�

Vkj �

Z �

�

Z �

�

�
� j����n �

j����
n �

�t� log
��
 sin���s � t��

�� e�k�s� dt ds�

and

egk � Z �

�
g�s� e�k�s� ds

for all k� j � �� � � � � n� An M �point Gaussian quadrature rule on n subintervals is applied on the

right hand term to get

egk � �

n

nX
l��

MX
m��

qMm g
��Mm � l � ��


n

� e�k��Mm � l � ��


n

�
where qMm �s are quadrature weights on ��	�� and �Mm �s are the quadrature points on ��	��� For any

even k	 simple trigonometric identities imply

e�k��Mm � l � ��


n

�
� e�k� l � �

n

� e�k����Mm � ��


n

�
� e�k��� l � �

n

� e�k��Mm � ��


n

�
���
�
�

and

e�k����Mm � l � ��


n

�
� e�k��� l � �

n

� e�k����Mm � ��


n

� � e�k� l � �

n

� e�k��Mm � ��


n

�
� ���
���

The sums	

�

n

nX
l��

qMm g
��Mm � l � ��


n

� e�k� l � �

n

�
for m � ���M � and k � ��� n�

��



are calculated using the fast Fourier transform in O�nM logn� operations� Then we calculate g

using ���
�
� and ���
��� in O�nM � calculations� Thus	 the total work to calculate eg is O�nM logn��

The smooth log matrix eB is calculated similiarly� Apply M��point and M��point quadrature

rules on the inner and outer integrals respectively �i�e�	 the integrals with respect to t and s	

respectively� to get

eBkj �
�

n�

nX
l��

M�X
m���

nX
p��

M�X
m���

qM�

m�
qM�

m�
log

����� x
� 
M�

m�
�l�
��

n

�� x
� 
M�

m�
�p�
��

n

�

 sin

�
�
� 
M�

m�
�l�
��

n � 

M�
m�

�p�
��

n

��
����� e�k��M�

m�
� l � ��


n

�

�
�

n�

nX
p��

M�X
m���

�
nX
l��

M�X
m���

qM�

m�
qM�

m�
log

����� x
� 
M�

m�
�l�
��

n

�� x
�


M�
m�

�p�
��

n

�

 sin

�
�
� 
M�

m�
�l�
��

n � 

M�
m�

�p�
��

n

��
����� e�k��M�

m�
� l � ��


n

��
�

The double sum in the braces is calculated �for k � �� � � � � n� by the fast Fourier transform� Thus	

the total time needed to calculate eB is O�n�M�M� logn��

The principal part can be integrated exactly� If k � �	 then Vkj � �� If k �� � then we use the

same idea as in ����
� to get

Vkj �

Z �

�

Z �

�

log
��
 sin���s � t��

���
� j����n �

j����
n �

�t� e�k�s� dt ds

�

Z j����
n

j����
n

Z �

�

log
��
 sin���s � t��

�� e�k�s� ds dt

�

�����
�
k

R j����
n

j����
n

e�k�t� dt� if k � 
� 
� � � � � n� ��

�
k��

R j����
n

j����
n

e�k�t� dt� if k � �� �� � � � � n�

���
�
�

We could easily integrate the trigonometric function in ���
�
� if we desire to use �th degree splines in

O�n�� calculations� However we found it better to integrate the outer integral analytically and per�

form trapezoidal quadratures on the inner integral� In other words	 we use the delta�trigonometric

method� The numerical errors due to approximating the non�analytic piecewise constant functions

is terrible �see next section for numerical results�� For either method we require O�n�� calculations

to calculate V�

In summary	 the program requires a total time ofO�M�M�n
� logn� to calculate the matrix� The

LU decomposition requires O�n
��� calculations� Therefore when n is su�ciently large	 SPLTRG

uses O�n
��� time� Computer analysis show that the LU decomposition requires less than a third of

the total time for n as large as ��� In other words	 it is important to use the fast Fourier transform

since the matrix formations require a signi�cant amount of time�

��



��� Numerical Results

Program SPLTRG was implemented to test the delta�trigonometric and spline�trigonometric

methods with numerical quadratures� In this section	 we present several sample problems and their

numerical results� The �rst problem is an ideal problem	 that is	 the boundary and boundary data

are real analytic� Then we look at some problems where the boundary and�or boundary data are

not so ideal�

Program SPLTRG calculates the approximate solutions and derivatives� If the user provides the

exact answer	 then SPLTRG calculates the exact numerical errors� Otherwise	 SPLTRG calculates

the approximate numerical errors�

There are seven integrals to be evaluated� Five of them come from equation ���
���� The other

two integrals result from �nding the approximate potentials and their normal derivatives� For each

integral	 program SLPTRG allows the user to pick the number of quadrature points per subinterval�

Some of the integrals can be calculated exactly	 in particular	 the principal term�

For the best result �given a �xed n� using piecewise constant splines as trial functions	 the user

should calculate the principal term exactly and the rest by ��points Guassian quadrature	 the best

quadrature rule available in SPLTRG� For the best result �given a �xed n� using summations of

delta functions as trial functions	 the user should use trapezoidal quadrature on all inner integrals

and the approximate potential integral	 and ��points Gaussian quadrature rule on the other integrals�

�




For the following tables	 we let

���� �� no answer due to over ow or under ow

u �� the exact potential

uen �� the error for the approximate potential using n subintervals

rn�m �� the convergence rate from n subintervals to m subintervals

delta ��pt �� delta trial functions with ��point quadrature

delta ��pts �� delta trial functions with ��points quadrature

delta ��pts �� delta trial functions with ��points quadrature

p�c� ��pt �� piecewise constant trial functions with ��point quadrature

p�c� ��pts �� piecewise constant trial functions with ��points quadrature

p�c� ��pts �� piecewise constant trial functions with ��points quadrature

We de�ne the relative error to be the absolute error divided by the exact solution� In cases

where the exact solution is near zero	 SPLTRG will give the absolute errors� All calculations are

done in double precision� Consequently	 we can not expect the relative errors to be much smaller

than ���E��
�

EXAMPLE ����� Ellipse with analytic data

The �rst example involves an elliptic boundary �an analytic boundary� with analytic boundary

data� In this example	 we examine the e�ects of using di�erent trial functions and quadrature rules�

Boundary� x��
 � y� � ��
�

Data� g � �x�


Exact solution�

u �

����x�
� if �x� y� � ellipse	
�x� w� if �x� y� �� ellipse and x � �	
�x� w� if �x� y� �� ellipse and x � �	

where

w �

s

��x� � y�� � � �

p
�
��x� � y�� � ��� � 
���x�y�



�

For table �A and �B	 we pick a typical interior point and present the approximate potentials

relative errors and convergence rates	 respectively	 using di�erent trial functions and quadrature

��



rules� The numerical results for other points away from the boundary are similiar� When delta

trial functions are used	 the approximate potentials converge very fast	 i�e�	 relative errors are about

����� for n � ��� There are very little error di�erences when using di�erent quadrature rules� Note

that the convergence rates appear to be exponential in table �B� For the piecewise constant trial

functions	 we found it necessary to use a high quadrature rule in order to obtain fast convergence�

For ��point and 
�points quadrature rules	 the convergence rates approach 
�� and 
��	 respectively�

For higher quadrature rules	 the convergence rates initially appear to increase and do not show any

slowdown until after the roundo� errors become signi�cant�

TABLE �A� relative errors at �����	 �����

jue
j jue�j jue��j jue��j jue��
j
delta ��pt ��
�E��� ����E��� ���
E��� ����E��� 
�

E���
delta ��pts ����E��� ����E��� ���
E��� ����E��� ����E���
delta ��pts ��
�E��� ����E��� ���
E��� 
���E��� ����

p�c� ��pt ���
E��� ����E��� ����E��� ����E��
 
���E���
p�c� 
�pts ��
�E��� ����E��� ���
E��� ��
�E��� ����E���
p�c� ��pts 
���E��� ����E��� ��
�E��� ���
E��
 
���E��

p�c� ��pts 
���E��� ����E��� ����E��� 
�

E��� ����

TABLE �B� convergence rates at �����	 �����

r
�� r���� r����� r�����


delta ��pt 
�
� ���
 ����
 ����

delta ��pts 
��� ���
 ����
 ���


delta ��pts 
��� ���
 ����� ����

p�c� ��pt ���� ���� 
��� 
���

p�c� 
�pts ���� ���� ���
 
���

p�c� ��pts ���
 ��

 �
�
� ��
�

p�c� ��pts ���� ����� �
��� ����

We also examine the approximate potentials errors on the boundary� Note that the approximate

potential in ������ has a logarithmic singularity at the quadrature points� Therefore we evaluate

�




the maximum relative errors at the mesh points and present these results in table �C� Table �C

shows that there are only small improvements in the errors when higher quadrature rules are used	

and therefore	 it is best to use a low quadrature rule with either trial space�

TABLE �C� maximum relative errors in between subintervals on the boundary

jue
j jue�j jue��j jue��j jue��
j
delta ��pt ����E��� ���
E��� ����E��� ��
�E��
 
�
�E���
delta ��pts ����E��� ���
E��� ����E��� ��
�E��
 
�
�E���
delta ��pts ����E��� ���
E��� ����E��� ��
�E��
 ����

p�c� ��pt ��
�E��� ���
E��� ����E��� ��
�E��
 
�
�E���
p�c� 
�pt ����E��� 
��
E��� 
���E��
 ����E��� ��
�E���
p�c� ��pts ���� ���� 
���E��
 ���
E��� ����

p�c� ��pts ���� ����E��� ���� ���� ����

In table �D	 we present the matrix condition numbers for di�erent trial functions and quadra�

ture rules� Note that the condition numbers grow proportionally slower than the numbers of subin�

tervals�

TABLE �D� matrix condition numbers

jue
j jue�j jue��j jue��j jue��
j
delta ��pt ����E��� ����E��
 ��
�E��
 ����E��
 ���
E��


delta ��pts ���
E��� ����E��
 ��
�E��
 ����E��
 ���
E��


delta ��pts ���
E��� ����E��
 ��
�E��
 ����E��
 ����

p�c� ��pt ����E��� ��
�E��
 ��
�E��
 ����E��
 ����E���

p�c� 
�pts ����E��� ��
�E��
 ��
�E��
 ���
E��
 ����E���

p�c� ��pts ����E��� ��
�E��
 ��
�E��
 ���
E��
 ����E���

p�c� ��pts ����E��� ��
�E��
 ��
�E��
 ���
E��
 ����

Table �E shows the CPU time required for each run� From this table	 we see that it is expensive

to compute using a high quadrature rule� It is more e�cient to use a low quadrature rule and more

subintervals �larger n��

��



TABLE �E� CPU time

time
 time� time�� time�� time��


delta ��pt ����� ������ �����
 ������� 
�
��
��

delta ��pts ����� 
����� ���
�� 
�����
 
��
��
�

delta ��pts ����� 
���
� ��
���
 ������
 ����

p�c� ��pt 
���� ���
� �
��
� ����

� �
�
����

p�c� 
�pts ����� ������ �����
 �
��
�� 

�
�
��

p�c� ��pts ����� 
��

� ������� �
���
� �������


p�c� ��pts ������ ������� ������� 
�����

 ����

We also examine the relative errors on a sample line� Graph �A	 �B	 and �C show the relative

errors on the line x � 
y for di�erent values of n using delta trial functions with trapezoidal

quadrature	 piecewise constant trial functions with trapezoidal quadrature	 and piecewise constant

trial functions with ��points Guassian quadrature	 respectively� Note that the relative errors are

worst when the line crosses the boundary �about �x	y�����
��	���
����

For this example	 we conclude that very fast convergence is obtained for the approximate

potentials on compact sets disjoint from the boundary using the delta�trigonometric method with

numerical quadrature� In fact	 the convergence rates appear to be exponential� For the spline�

trigonometric method with numerical quadrature	 the convergence rates does not appear to be

exponential�

EXAMPLE ����� Ellipse with data of varying smoothness

This example involves the same elliptic boundary but with boundary data of di�erent degrees

of smoothness�

Boundary� x��
 � y� � ��
�

Data�

g �

�
���� if x � �	
��� � xs� if x � �	

for s � �� �� 
� �� 
� �� and ��

The exact potential is not known	 and therefore	 the approximate relative errors are computed

by using the approximate potentials for n � 

�� For this problem	 we present results using only

��



the delta trial functions with trapezoidal quadrature� Table 
A compares the approximate relative

errors at a typical interior point for di�erence data smoothness� We see that the smoothness of the

data a�ects the convergence rates signi�cantly�

TABLE 
A� approximate convergence rates and relative errors at �����	 ����� using the delta trial

functions with trapezoidal quadrature

s r
�� r���� r����� jue
j jue�j jue��j jue��j
� ��
� ��
� ���� 
���E��� ����E��
 ���
E��
 ����E���

� ���
 
��
 ���� ����E��
 
��
E��� 
�
�E��
 ����E���


 ���� ���� 
��� ����E��
 
��
E��� ����E��� ����E���

� ���� ���� ���� ����E��
 ���
E��� ���
E��� ����E���


 ���� ���
 ��
� ���
E��
 ���
E��� ����E��� 
���E���

� ���� ���
 �
�
� ����E��
 ��
�E��� ����E��� ����E���

� ���� ���� ����
 ��
�E��
 ����E��� ��
�E��� ����E���

Graph 
A show the approximate relative errors on the line x � 
y using n � 

� for s equal

�	 �	 
	 �	 
	 �	 and �� It is interesting to note that the errors are about the same as the line crosses

the boundary� We did not study the errors where the boundary data is not smooth�

For this example	 we conclude that the boundary data lack of smoothness a�ects the errors

greatly� These results do not contradict our theoretical results	 since we required the boundary and

boundary data to be analytic in our proofs with and without numerical quadrature� Note that we

did obtain fair results at points away from the boundary for s � �� The condition numbers depend

only on the geometry of the domain and are exactly the same as in table �D �example �������

EXAMPLE ����� Rectangle with linear data

The third example involves a boundary with corners	 but the boundary data is linear�

Domain� ������ ����	 ������ ����

Data� g � �x�


The exact solution is known in the interior region only and coincides with the formula given

��



for g� As in example �����	 we examine the e�ects of using di�erent trial functions and quadrature

rules� Table �A and �B shows the exact relative errors and exact convergence rates	 respectively	

at a sample interior point� Note that there are only little di�erences in the error when di�erent

trial functions and quadrature rules are used� In other words	 the corners of the rectangle a�ect

the errors signi�cantly�

TABLE �A� exact relative errors at �����	 �����

jue
j jue�j jue��j jue��j jue��
j
delta ��pt ��
�E��� 
�
�E��
 ����E��� ��
�E��� 
�
�E���
delta ��pts ���
E��� ���
E��
 ����E��� ����E��
 ��
�E���
p�c� ��pt ��

E��� ����E��
 
��
E��� ���
E��� ���
E���
p�c� ��pts ����E��� ���
E��
 ��
�E��
 
���E��� 
��
E���

TABLE �B� exact convergence rates at �����	 �����

r
�� r���� r����� r�����


delta ��pt ���� ���� 
��� 
���

delta ��pts ��
� ���� 
��
 
���

p�c� ��pt ���� ���� 
��� 
���

p�c� ��pts ���� ��

 
�

 
���

Table �C shows the exact maximum relative errors for points in between the subintervals on

the boundary �i�e� points which are not quadrature points�� Again	 there are little di�erences in

the errors when di�erent trial functions and quadrature rules are used�

TABLE �C� maximum relative errors in between subintervals on the boundary

jue
j jue�j jue��j jue��j jue��
j
delta ��pt 
�
�E��� ����E��� ����E��� ��

E��
 ����E��

delta ��pts 
�
�E��� ����E��� ��
�E��� ����E��
 ��
�E��

p�c� ��pt 
��
E��� ����E��� ��
�E��� ��
�E��
 ��
�E��

p�c� ��pts ���� ���� 
�

E��� ����E��
 ����

��



In table �D	 we present the matrix condition numbers for di�erent trial functions and quadra�

ture rules� As in example ��
��	 the condition numbers grow proportionally slower than the numbers

of subintervals�

TABLE �D� matrix condition numbers

jue
j jue�j jue��j jue��j jue��
j
delta ��pt ����E��� ����E��
 ��
�E��
 ����E��
 ����E���

delta ��pts ����E��� ����E��
 ��
�E��
 ����E��
 ���
E���

delta ��pts ����E��� ����E��
 ��
�E��
 ����E��
 ����

p�c� ��pt ����E��� ����E��
 ����E��
 ���
E��
 ����E���

p�c� ��pts ����E��� ����E��
 ���
E��
 ����E��
 ��
�E���

p�c� ��pts ����E��� ����E��
 ���
E��
 ����E��
 ����

Table �E shows the CPU time required for each run� Again	 we see that it is more e�cient to

use a low quadrature rule and more subintervals�

TABLE �E� CPU time

time
 time� time�� time�� time��


delta ��pt ����� ����� ����
� 
������ 
����
��

delta ��pts 
���� ���

� ����
� ��
�
�� 

����



p�c� ��pt 
��
� ����� ������ 
������ ��

�
��

p�c� ��pts ����� 
����� ������� ������� �
����
�

Graph �A and �B show the exact relative errors �for di�erent n� on a sample line from the

origin to a corner of the rectangle using delta trial functions with trapezoidal quadrature and

piecewise constant trial functions with trapezoidal quadrature	 respectively� We see that the errors

become worse as the line approaches the boundary�

For this example	 it is best to use trapezoidal quadrature with either trial function� The lack

of boundary smoothness a�ects the errors signi�cantly�

EXAMPLE ����� Wedge with analytic data

The last example involves an wedge problem in which the potential possesses a singularity at

��



the corner of the domain�

Interior Domain� �in polar coordinates� � � r � �	 � � 
 � 
���

Data� g � ��� � r��� sin��
�
�

The exact solution is known in the interior region only and coincides with the formula given

for g� Table 
A shows the exact relative errors using di�erent quadrature rules at a typical interior

point� The results show that there are little di�erences in the errors when using di�erent quadrature

rules� The convergence rates behave a little wildly	 but we did obtain errors of order ���� for n � ��

regardless of which quadrature rules were used�

TABLE 
A� exact convergence rates and relative errors at �����	 �����

r���� r����� r�����
 jue�j jue��j jue��j jue��
j
delta ��pt ��
� 
��� ���� 
�

E��� ����E��� ��
�E��
 
���E���
delta ��pts ���� ����� ��
� ��

E��� 
���E��
 
���E��
 ����E���
delta ��pts ���
 ����� ���� ����E��� ����E��
 
���E��
 ����

p�c� ��pt ���� 
�
� 
�
� 
���E��
 ���
E��� ��
�E��
 ��
�E���
p�c� ��pts ���� ���
 ��
� 
���E��
 ����E��
 
���E��
 ����E���
p�c� ��pts 
��� ���� ���� ��

E��
 ����E��
 
�
�E��
 ����

Table 
B shows the maximum relative errors in between the subintervals on the boundary�

Again	 all the results are similiar when using di�erent trial functions and quadrature rules�

TABLE 
B� Maximum relative errors in between the subintervals on the boundary

jue
j jue�j jue��j jue��j jue��
j
delta ��pt ����E��� ����E��� 
���E��
 ����E��
 ��
�E���

delta ��pts ���
E��� ��
�E��� 
���E��
 ����E��
 ���
E���

p�c� ��pt ����E��� 
���E��� ����E��
 ����E��
 ����E���

p�c� ��pts ��
�E��� ����E��
 ���
E��
 ����E��� 
���E���

In table 
C	 we observe that the matrix condition numbers grow proportionally less than the

numbers of subintervals�


�



TABLE 
C� matrix condition numbers

jue
j jue�j jue��j jue��j jue��
j
delta ��pt ��
�E��� ����E��
 ��
�E��
 ����E��
 ����E��


delta ��pts ��
�E��� ����E��
 ��
�E��
 ����E��
 ����E��


p�c� ��pt ��
�E��� ����E��� ��
�E��
 ����E��
 ����E���

p�c� ��pts ��
�E��� ����E��� ��
�E��
 ����E��
 ����E���

Table 
D shows the CPU time required for each run� Again	 we see that it is more e�cient to

use a low quadrature rule and more subintervals�

TABLE 
D� CPU time

time
 time� time�� time�� time��


delta ��pt ��
�E��� ����E��
 ��
�E��
 ����E��
 ����E��


delta ��pts ��
�E��� ����E��
 ��
�E��
 ����E��
 ����E��


p�c� ��pt ��
�E��� ����E��� ��
�E��
 ����E��
 ����E���

p�c� ��pts ��
�E��� ����E��� ��
�E��
 ����E��
 ����E���

For this example	 it is best to use trapezoidal quadrature� We did note that SPLTRG works

slightly better using delta trial functions than using piecewise constant trial functions� The corners

and the data singularity at the origin a�ect the errors signi�cantly�

Considering all four examples together	 we recommend using delta trial functions with trape�

zoidal quadrature� If the boundary and boundary data are analytic	 then the delta�trigonometric

method with trapezoidal quadrature appears to obtain exponential convergence for the approximate

potentials at points away from the boundary� Hence	 our numerical results con�rm the theory� In

examples	 where the boundary and�or boundary data are not smooth	 our results are only fair and

do not invalidate the theory� In all examples	 using delta trial functions with trapezoidal quadrature

works as well as using a higher quadrature rule and�or using piecewise constant trial functions�


�



�� Delta�Trigonometric and Spline�Trigonometric Petrov�Galerkin Methods

using a Fictitious Boundary

We now investigate a formulation where the single�layer potential is concentrated on a �c�

titious boundary� We analyze convergence for only the interior Dirichlet problem with analytic

boundary and boundary data� Consequently	 we choose a �ctitious domain which strictly contains

the true domain� If we wished to solve the exterior Dirichlet problem	 we would choose a �ctitious

domain which is strictly contained by the true domain� First	 we rede�ne the operator A and the

corresponding approximate potential� After reviewing some properties of this �ctitious single�layer

potential representation	 we de�ne the delta�trigonometric and the spline�trigonometric methods

using a �ctitious boundary without numerical quadrature� Finally	 we de�ne the matrix equations

for the delta�trigonometric method with and without numerical quadrature� In section 
�� and 
�
	

we show that the delta�trigonometric method with and without numerical quadrature �respectively�

obtains unique approximate potentials on circular domains with exponential convergence if we use

the canonical parameterization�

Let � and �o be open interior domains with boundaries � and �o	 respectively	 such that

� � �o� We rede�ne the operator A as

A	�s� ��

Z �

�

	�t� log jx�s� � xo�t�j dt � s � ��� ���

where x � ��� �� � � and xo � ��� �� � �o� Here x and xo are ��periodic analytic functions

that parameterize � and �o	 respectively	 and have nonvanishing derivatives� We approximate the

potential as

u�z� �� v�z� ��

Z �

�

	�t� log jz � xo�t�j dt � z � �� �
���

A natural question to ask is how well can the potential be approximated by this �ctitious single�

layer representation! Given a potential u	 there does not generally exist a 	 such that �
��� is

exact� However	 Bogomolny ��� showed that if we require jx�s�� xo�t�j �� � for all s� t � ��� ��	 then

there exists a 	 such that ku� vkL���� is arbitrary small� For instance	 this is so if diam��o� � �

or if �o is placed far from �� In this case	 the setn
v
�� v�z� � Z �

�
	�t� log jz � x�t�j dt for z � �� 	 � C����� ���

o
is dense in the set

fu � Hs���
�� �u � � in �g


�



for all s � IR ��	 theorem 
����

We have several choices of ��� the �nite�dimensional trial spaces and �
� the procedures to

select the trial function� The most interesting trial space is the span of delta functions� The

resulting method is called the fundamental solution method �e�g� Bogomolny ���	 Fairweather and

Johnston ����	 Mathon and Johnston ����	 Kupradze and Aleksidze ����	 Freeden and Kersten ��
��	

i�e�	

un�z� �
nX

j��

�j log jz � yj j for z � �� �
�
�

where the yj �s are points outside of � and the �j�s are the unknown coe�cients�

We need to consider the following question� How well can the potential be approximated by

using delta trial functions �i�e� a summation of logarithmic functions� and what is the optimal

convergence! Kupradze and Aleksidze ���� showed that the functions	

log jz � yj j� j � �� � � � � n�

are independent and complete in L���� and C���� Therefore for any � � � there exists N such that

for any n � N there is a un of the form �
�
� satisfying

ku� unkL���� � ��

Bogomolny ��� showed that any harmonic polynomial of degree � n can be approximated by a un

of the form �
�
� with an L� error which decreases exponentially as n increases� Then he showed

that the exact solution can be approximated by a un of the form �
�
� with an L� error which

decreases very rapidly as n increases�

Mathon and Johnston ���� showed that there exists a un of the form �
�
� which minimizes

ku� unkL����� They used a least square method to �nd the coe�cients of the delta functions and

the locations of the singularities� The main drawback of their program is the nonlinear aspect

which arises from allowing the singularities to vary� However	 their method works well when u is

of low continuity and for the three�dimensional Dirichlet problem� Bogomolny ��� studied where

the singularities should be placed and then used a least square method to �nd only the coe�cients

of the delta functions �in this case	 the matrices are linear�� He obtained theoretical results which

suggest that the singularities should be placed far away from the boundary�


�



No method has been developed to obtain exponential convergence for the approximate po�

tentials using a �ctitious boundary �or fundamental solution method�� For circular domains	 the

delta�trigonometric method with and without numerical quadrature obtains a un of the form �
�
�

with exponential convergence� We conjecture that exponential convergence results also hold for

arbitrary analytic boundaries�

As a numerical method	 we seek 	n � Sdn such thatZ �

�

A	n�s���s� ds �

Z �

�

g�s���s� ds � � � Tn�

Then our approximate potential is

un�z� ��

Z �

�

	n�t� log jz � xo�t�j dt � z � IR�

We call the above procedure the delta�trigonometric Petrov�Galerkin method using a �ctitious

boundary for d � �� and the spline�trigonometric Petrov�Galerkin method using a �ctitious bound�

ary for d � �� Since the logarithmic functions are independent and complete ����	 we know that

the delta�trigonmetric method obtains unique solutions� We conjecture the same for the spline�

trigonometric method� We note that the delta�trigonometric method with trapezoidal quadrature

and spline�trigonometric method with trapezoidal quadrature are the same� In this report	 we give

a convergence analysis for the delta�trigonometric method only�

We now de�ne the matrix equation for the delta�trigonometric method with trapezoidal quadra�

ture� For the remaining part of this section	 we assume that d � ��� Again	 write

	n�t� �
nX

j��

�j��t� j�n�

where �j�s are the unknown coe�cients� We rede�ne A �� �Akj� where

Akj ��

Z �

�

log
��x�s�� xo�j�n�

���k�s� ds

and recall that g �� �gk� where

gk ��

Z �

�

g�s��k�s� ds

for all j � �� � � � � n and k � �n� Note that the kernel of A is nonsingular	 and therefore	 no splitting

of A is needed� Our matrix equation is

A� � g

��



and our approximate potential is

un�z� �
nX

j��

�j log jz � xo�j�n�j � z � IR�

We now de�ne the matrix equation for the delta�trigonometric method with trapezoidal quadra�

ture� Let e	n�t� � nX
j��

e�j��t� j�n�

where e�j�s are the unknown coe�cients� Rede�ne eA �� � eAkj� where

eAkj ��
�

n

nX
p��

log
��x�p�n�� xo�j�n�

���k�p�n�
and recall that eg �� �egk� where

egk �� �

n

nX
p��

g�p�n��k�p�n�

for all j � �� � � � � n and k � �n� Then our matrix equation with numerical quadrature is

eAe� � eg �
���

and our approximate potential with numerical quadrature is

eun�z� � nX
j��

e�j log jz � xo�j�n�j � z � IR�

��� Convergence Analysis on a Circular Domain without Numerical Quadrature

In this section	 we show that the approximate potentials produced by the delta�trigonometric

method without numerical quadrature converge exponentially on a circular domain if we use the

canonical parameterization and if the �ctitious circular domain is su�ciently large� The restriction

to a circular domain enables us to analyze convergence simply with Fourier series� We conjecture

that the spline�trigonometric and delta�trigonometric methods without numerical quadrature ob�

tains exponential convergence for the approximate potentials on arbitrary boundaries	 but it is not

clear whether special parametrizations are needed�

We continue to assume that g is an analytic function and that � and �o are circles� First	 we

prove a simple lemma which will be used to bound kA	nkL������ independently of n in theorem

��




���
� Then we prove exponential error bounds for the approximate potentials on the boundary using

lemma ����
 �exponential decays of the Fourier coe�cients of analytic functions�� By the maximum

principle we obtain exponential error bounds for the approximate potentials on the entire circular

domain�

LEMMA ����� Let y� z � C be such that jzj � jyj� Then

log jy � zj � log jyj�Re
n �X
���

��
�

�z
y

��o
�

PROOF�

De�ne the complex function	

f�x� � log��� x��

where x � C and jxj � �� Then the Taylor series expansion for f�x� is

f�x� �
�X
���

��
�

x� �

Also recall that

log jxj � Reflogxg�

Using x � z�y	 we derive

log jy � zj � log jyj� log j�� z�yj

� log jyj� Re
n �X
���

��
�

�z
y

��o
�

Q�E�D�

Our next goal is to bound kA	nkL������ independently of n� We show that there is a nice

relationship between the Fourier coe�cients of A	n� Then we represent A	n as a Fourier series

and use this relationship to represent A	n in terms of cA	�k� for k � �n� Afterward	 we use the

de�nition of the delta�trigonometric method and lemma ����
 to bound A	n in the complex strip

S�� �Recall that S� �� fz � C � jIm�z�j � �g��

THEOREM ����� Assume that d � ��� � and �o are circles with radii r and R parametrized by

x�s� � r exp�
�is� and xo�t� � R exp�
�it�� respectively� and that g is a ��periodic real analytic

�




function� Let � be such that g extends analytically to the closed strip S� and let � � � � �� Then

for R su�ciently large �depending only on r and ��� the delta�trigonometric method obtains unique

solutions� Moreover� there exists a positive constant C depending only on � and � such that

jA	n�s�j � CkgkL��S
�
� � s � S� and n � ZZ��

PROOF�

We �rst prove a nice relationship between the Fourier coe�cients of A	n� By lemma 
����	

cA	n�k� � Z �

�

A	n�s� exp��
�iks� ds

�

Z �

�

nX
j��

�j log jx�s�� xo�j�n�j exp��
�iks� ds

�

Z �

�

nX
j��

�j log jr exp�
�is� �R exp�
�ij�n�j exp��
�iks� ds

�

Z �

�

nX
j��

�j

�
logR�Re

�
�X
���

��
�

� r exp�
�is�

R exp�
�ij�n�

����
exp��
�iks� ds

�

Z �

�

nX
j��

�j

�
logR�

X
��ZZ�

��

j�j

� r
R

�j�j
exp�
�i��s � j�n��

�
exp��
�iks� ds�

for all k � ZZ and n � ZZ�� We integrate with respect to s �using the orthogonality of the exponential

functions� to get

cA	n�k� �
���
Pn

j�� �j logR� if k � �	

��
�jkj

�
r
R

�jkjPn
j�� �j exp��
�ikj�n�� if k �� ��

�
�����

De�ne

k� �

� jkj� if k �� �	
��
� logR � if k � ��

Then �
����� becomes

cA	n�k� � ��

k�

� r
R

�jkj nX
j��

�j exp��
�ikj�n� � k � ZZ and n � ZZ�� �
���
�

Consequently	

cA	n�k � qn� �
��


�k � qn��

� r
R

�jk�qnj nX
j��

�j exp��
�i�k � qn�j�n� � k� q � ZZ and n � ZZ��

�
�����

��



Putting �
���
� and �
����� together	 we get

cA	n�k � qn� �
k�

�k � qn��

� r
R

�jk�qnj�jkjcA	n�k� � k� q � ZZ and n � ZZ��

Next	 we seek to bound A	n�s� in S� for all n � ZZ�� Note that

jA	n�s�j � j
X
k�ZZ

cA	n�k� exp�
�iks�j
�
X
k�ZZ

jcA	n�k�jj exp�
�iks�j
�
X
p�	n

X
q�ZZ

jcA	n�p� qn�jj exp�
�i�p � qn�s�j

�
X
p�	n

X
q�ZZ

jcA	n�p�j��� p�
�p� qn��

���� r
R

�jp�qnj�jpj
j exp�
�i�p� qn�s�j� � s � IR�

�
���
�

Later on	 we will choose R to satisfy 
 logR � � so that if k � � then � � jk�j � �� This implies

that
��� p�
�p�qn��

��� � � for all p � �n	 q � ZZ	 and n � ZZ�� Therefore	 for all s � S�	

jA	n�s�j �
X
p�	n

X
q�ZZ

jcA	n�p�j� rR�jp�qnj�jpjj exp�
�jp� qnj��j

�
X
p�	n

jcA	n�p�j exp�
�jpj��nX
q�ZZ

�r exp�
���
R

�jp�qnj�jpjo
�

�
�����

By de�nition of the method	 cA	n�p� � bg�p� for all p � �n� Hence	

jA	n�s�j �
X
p�	n

jbg�p�j exp�
�jpj��nX
q�ZZ

�r exp�
���
R

�jp�qnj�jpjo
� s � S� � �
�����

We now choose R su�ciently large so that r
R exp�
��� � ��
 �and satisfying 
 logR � ���

Then X
q�ZZ

�r exp�
���
R

�jp�qnj�jpj
�
X
q�ZZ

���
�jp�qnj�jpj

� � �



�� ���
�n

� � �



�� ��


� �� � p � �n and n � ZZ��

�
�����

By lemma ����
	 jbg�p�j � exp��
��jpj�kgkL��S
�
� for all p � ZZ� Therefore	 using � � � � �	 we

derive
jA	n�s�j � �

X
p�	n

jbg�p�j exp�
�jpj��
� �kgkL��S

�
�

X
p�	n

exp�
�jpj�� � ���

� �kgkL��S
�
�

X
p�ZZ

exp�
�jpj�� � ���

� CkgkL��S
�
�� � s � S� and n � ZZ��

�
�����

�




where C depends only on � and ��

We now prove the uniqueness result� By �
�����	

Akj �

�
logR� if k � �	

��
�jkj

�
r
R

�jkj
exp��
�ikj�n�� if k �� ��

It is well known that trigonometric vectors are linearly independent� This implies that A is non�

singular and therefore the delta�trigonometric method obtains unique solutions� Q�E�D�

The next theorem states exponential error bounds for the approximate potentials on the bound�

ary of a circular domain� Then we use the maximumprinciple in theorem 
���
 to show exponential

error bounds for the approximate potentials on the entire domain�

THEOREM ����� Assume the same hypotheses as in theorem ����	� Then for su�ciently large

R �depending only on r and ��� there exist positive constants C and � � ��� �� depending only on

� and � such that

j�A	n � g��s�j � C�n � s � ��� ���

PROOF�

Note that

j�A	n � g��s�j �
���X
k�ZZ

�cA	n � bg��k� exp�
�iks����
�
��� X
k��	n

�cA	n � bg��k� exp�
�iks����
�
X
k��	n

����cA	n � bg��k����
�
X
k��	n

n
jcA	n�k�j� jbg�k�jo

�
X
k��	n

n
exp��
�jkj��kA	nkL��S�� � exp��
�jkj��kgkL��S

�
�

o
� � s � ��� ���

��



By theorem 
���
	 �recall that � � � � ��

j�A	n � g��s�j �
X
k��	n

n
C� exp��
�jkj�� � exp��
�jkj��

o
kgkL��S

�
�

� �C� � ��kgkL��S
�
�

X
k��	n

exp��
�jkj��

� �C� � ��kgkL��S
�
� 


X
k�n��

exp��
�k��

� �C� � ��

 exp����n � ����

�� exp��
��� kgkL��S
�
�

� C�n� � s � ��� ���

Q�E�D�

THEOREM ����� Assume the same hypotheses as in theorem ����	� Then for su�ciently large

R �depending only on r and ��� there exist positive constants C and � � ��� �� depending only on

� and � such that

j�u� un��z�j � C�n � z � ��

PROOF� Use theorem 
���� and the maximum principle for harmonic functions� Q�E�D�

��� � Convergence Analysis on a Circular Domain with Numerical Quadrature

We now show that the approximate potentials produced by the delta�trigonometric method con�

verge exponentially on a circular domain with numerical quadrature if the �ctitious circular domain

is su�ciently large� We note that the spline�trigonometric method with trapezoidal quadrature is

the same as the delta�trigonometric method with trapezoidal quadrature	 and therefore	 we continue

to analyze only the delta�trigonometric method� We conjecture that exponential convergence holds

for both methods with numerical quadrature on arbitrary analytic boundaries� In lemma 
�
��	 we

prove that Ae	n is bounded independently of n� Then in theorem 
�
�
	 we show exponential error

bounds for the approximate potentials due to numerical quadrature�

REMARK� For the special case where both boundaries are circles	 Christiansen and Lygung ���

showed that the condition numbers of the matrices produced by the collocation�discretizationmethod

�collocation of the boundary integral equation and discretization of the integral� can be calculated

analytically� Their results showed that the matrices becomes ill�conditioned as n goes to in�nity

or as the �conformal� radius of the larger circle approaches �� In section 
��	 we present results

��



which shows that the matrix condition numbers in the delta�trigonometric method appear to grow

exponentially as n increases� �

REMARK� For the case where a �ctitious boundary is not used	 we derived error bounds for

the delta�trigonometric method without numerical quadrature �section ����� Then we bounded the

perturbation of the matrices and vectors due to numerical integration and used this bound to derive

error bounds for the delta�trigonometric method with numerical quadrature� Note that in section

���	 we were able to bound the errors of the unknown coe�cients due to numerical integration

in ������� because kAk was proportionally bounded to
p
n	 the square root of the numbers of

subintervals �see section ��
�� However this idea fails when using a �ctitious boundary because the

condition numbers of A explode as n increases� In this section	 we use Fourier analysis to bound

Ae	n as we did in section 
��� �

Our next goal is to bound kAe	nkL������ independently of n� As in section 
��	 we note a nice

relationship between the Fourier coe�cients of Ae	� Thus	 we represent Ae	n as a Fourier series

and use this relationship to represent Ae	n in terms of cA	�k� for k � �n� In section 
��	 we usedcA	n�k� � bg�k� for all k � �n� This equation does not hold in the case of numerical quadrature� In

this section	 we show instead that jcAe	n�k�j � jegkj for all k � �n�

LEMMA ����� Assume the same hypothesis as in theorem ����	� Then for su�ciently large R

�depending only on r and ��� there exist positive constants C and � � ��� �� depending only on �

and � such that

jcAe	n�k�j � jegkj � C�k

for all k � �n� Moreover� kAe	nkL������ is bounded independently of n�

��



PROOF�

We �rst bound
c
Ae	n�k� in term of egk� By equation �
��� and lemma 
����	

egk � � eAe��k
�

�

n

nX
p��

nX
j��

e�j log jx�p�n�� xo�j�n�j�k�p�n�

�
�

n

nX
p��

nX
j��

e�j log jr exp�
�ip�n��R exp�
�ij�n�j exp��
�ikp�n�

�
�

n

nX
p��

nX
j��

e�j� logR�Re
n X
��ZZ�

��
��

� r
R

�j�j
exp�
�i��p � j��n�

o�
exp��
�ikp�n�

�
�

n

nX
p��

nX
j��

e�j X
��ZZ

��

��

� r
R

�j�j
exp�
�i��p � j��n� exp��
�ikp�n�

�
�

n

X
��ZZ

nX
j��

e�j��

��

� r
R

�j�j
exp��
�i�j��n�

nX
p��

exp�
�ip�� � k��n�� � k � �n�

Now
nX

p��

exp�
�ip�� � k��n� �

�
n� if � � k�mod�n�	
�� otherwise�

Therefore	

egk � X
��k �mod�n�

nX
j��

e�j��

��

� r
R

�j�j
exp��
�i�j�n� � k � �n�

Also note that

c
Ae	n��� � Z �

�

nX
j��

e�j log jr exp�
�is� �R exp�
�ij�n�j exp��
�i�s� ds

�

Z �

�

nX
j��

e�j X
m�ZZ

��

m�

� r
R

�jmj
exp�
�im�s � j�n�� exp��
�i�s� ds

�
nX
j��

e�j��

��

� r
R

�j�j
exp��
�i�j�n�� � � � ZZ�

This implies that

egk � X
��k �mod�n�

c
Ae	n���

�
n X
��k �mod�n�

k�
��

� r
R

�j�j�jkjoc
Ae	n�k�� � k � �n�

Since R will be chosen so that 
 logR � �	 we know that jk����j � �� By geometric series	

the bracketed quantity in the last equation is bounded� Also note that the terms are all positive

��



and the � � k term equal �� Therefore the bracketed quantity in the last equation belongs to

��� �� � r�R���� � r�R�� for all k � �n and n � ZZ�� Hence	 jcAe	n�k�j � jegkj for all k � �n and

n � ZZ�� In view of the fact that egk is the same as bg�k� calculated with trapezoidal quadrature	 we

use theorem ����
 to get

jcAe	n�k�j � C�jegkj
� C�jegk � bg�k�j� C�jbg�k�j
� C��

n
� �C� exp��
��jkj�kgkL��S

�
�

� C�jkj� � k � �n�

�
�
���

To bound Ae	n we represent it by a Fourier series� Then we use the relationship	

c
Ae	n�k � qn� �

k�
�k � qn��

� r
R

�jk�qnj�jkjc
Ae	n�k� � k� q � ZZ and n � ZZ�

to express Ae	n in term of
c
Ae	n�k� for k � �n� Afterward	 we use �
�
��� to bound Ae	n� �The idea

is the same as in lemma 
���
	 i�e	 �
���
� to �
������� Q�E�D�

THEOREM ����� Assume the same hypothesis as in theorem ����	� Then for su�ciently large

R �depending only on r and ��� there exist positive constants C and � � ��� �� depending only on

� and � such that

j�Ae	n � g��s�j � C�n � s � ��� ���

Moreover�

j�u� eun��z�j � C�n � z � ��

PROOF�

Recall that egk � � eAe��k
�

�

n

nX
j��

e�j nX
p��

log jx�p�n�� xo�j�n�j exp��
�ikp�n�

�
�

n

nX
p��

�Ae	n��p�n� exp��
�ikp�n��
Consequently	 egk is equal to cAe	n�k� with trapezoidal rule� By lemma
�
��	Ae	n and g are bounded
independently of n� Therefore by theorem ����
	X

k�	n

jcAe	n�k�� egkj � C��
n
� �
�
�
�

��



and X
k�	n

jegk � bg�k�j � C��
n
� � �
�
���

By lemma ����
	 X
k��	n

n
jcAe	n�k�j� jbg�k�jo � C
�

n

 � �
�
�
�

Putting �
�
�
� to �
�
�
� together	 we derive

j�Ae	n � g��s�j �
X
k�	n

jcAe	n�k�� bg�k�j� X
k��	n

jcAe	n�k� � bg�k�j
�
X
k�	n

jcAe	n�k�� egkj� X
k�	n

jegk � bg�k�j� X
k��	n

n
jcAe	n�k�j� jbg�k�jo

� C�n� � s � ��� ���

By the maximum principle	

j�u� eun��z�j � C�n � z � ��

Q�E�D�

��� Numerical Results

Program SPLTRG is also able to perform the delta�trigonometric and the spline�trigonometric

methods using a �ctitious boundary� We present results for both methods using di�erent quadrature

rules� Recall that the spline�trigonometric method with trapezoidal quadrature is exactly the same

as the delta�trigonometric method with trapezoidal quadrature� We also present results for the

delta�trigonometric method with trapezoidal quadrature using di�erent radii for the �ctitious circle�

We present the same four examples as in section ��� except we consider only the interior Dirichlet

problem� In many of these examples	 we study the errors on the boundary only� By the maximum

principle	 we know that the errors in the interior are no worse than the maximum errors on the

boundary�

EXAMPLE ����� Ellipse with analytic data

The �rst example involves an elliptic boundary �an analytic boundary� with ideal boundary

data�

Boundary� x��
 � y� � ��
�

��



Data� g � �x�


Exact solution�

u �

����x�
� if �x� y� � ellipse	
�x� w� if �x� y� �� ellipse and x � �	
�x� w� if �x� y� �� ellipse and x � �	

where

w �

s

��x� � y�� � � �

p
�
��x� � y�� � ��� � 
���x�y�



�

For the boundary	 we examine the errors at the quadrature points and at the meshes points

which are between the quadrature points� We �rst examine this problem for both methods using

�	 �	 and � points quadrature� Table �A shows the di�erences in the errors for both methods with

di�erent quadrature rules using R � 
��� There are virtuely no di�erences in the errors when

using di�erent methods and quadrature rules� An analysis of table �A indicates that very fast

convergence rates are obtained for the approximate potentials on the boundary�

TABLE �A� maximum relative errors on the boundary using R � 
��

jue�j jue
j jue�j jue�j jue��j
delta ��pt ����E��� ����E��� 
���E��
 ��

E��� ����E���
delta ��pts 
�
�E��� ��
�E��� ����E��
 ��

E��� ����E���
delta ��pts ����E��� ��

E��� ����E��
 ��
�E��� ����E���
p�c� ��pts 
���E��� ���
E��� ��

E��� ����E��� ����E���
p�c� ��pts ����E��� ����E��� ����E��� ����E��� 
��
E���

Table �B shows the di�erences in CPU time for both methods with di�erent quadrature rules

using R � 
��� It is most e�cient to use delta trial functions with trapezoidal quadrature�

TABLE �B� CPU time

time� time
 time� time� time��

delta ��pt 
�
�� ���
� ��
�� ���
�� ����
�

delta ��pts 
�
�
 ���
� ������ ������ ������

delta ��pts 
���� ����� ����
� 
��
�� 
�����

p�c� ��pts ��

� ���
�� 
����� ������ ������

p�c� ��pts ������ 

���
 ���
�� ������� 
������

��



Table �C shows the maximum relative errors on the boundary for the delta�trigonometric

method with trapezoidal rule using di�erent radii for the �ctitious circle� Note that the errors are

less as R increases� In fact	 for R � ��	 the errors are O������� for n as small as ��

TABLE �C� maximum relative errors on the boundary using delta trial function with trapezoidal

quadrature

R jue�j jue
j jue�j jue�j jue��j
��� 
�

E��� 
���E��� 
���E��� 
���E��� ����E���
��
 
���E��� ����E��� ��
�E��� ����E��
 
���E���
��� 
�
�E��
 
���E��� ����E��
 ���
E��� ����E���

�� ����E��� ����E��� 
���E��
 ��

E��� ����E���
��� ����E��� ��
�E��� 
��
E��� 
�
�E��� 
��
E��

���� ����E��� ��
�E��� 
���E��
 ����E��� 
��
E��

���� ��
�E��� ����E��� 
��
E��� 
���E��
 ����

����� ��
�E��� ����E��
 
���E��� ����E��
 ����

Table �D show the matrix condition numbers for di�erent R�s� Note that the condition numbers

are worse when the �ctitious circle is too near the boundary or too far away� In fact	 they increase

almost as fast as the errors decrease� Thus	 we have signi�cant roundo� errors �as the errors

decrease� and can not expect our errors to be better than ���E � �
�

TABLE �D� matrix condition numbers

R K� K
 K� K� K��

��� ����E��� ��
�E��
 ��
�E��
 ����E��� ��
�E���

��
 ����E��� ����E��� ����E��
 ����E��� ���
E���

��� ����E��� ����E��� ��

E��
 ��
�E��
 ��
�E���


�� ����E��� ���
E��
 ����E��� ����E��
 ����E���

��� ����E��� ����E��
 ����E��
 ����E��� ����E���

���� ����E��� ��

E��� ����E��
 ��
�E��� ����E���

���� ����E��� ����E��
 ����E��� ��

E��� ��
�E���

����� ����E��� ��
�E��
 ����E��� ��
�E��
 ��
�E���

Graph �A shows the relative errors on a line x � 
y� Note that there is no dramatic change in the

�




errors as the line approaches the boundary �as it would be if a �ctitious boundary is not used�� For

this interior Dirichlet problem	 the results are signi�cantly better using a �ctitious boundary than

not using a �ctitious boundary since very fast convergence rates are obtained for the approximate

potentials on the boundary� The most e�cient way to solve this problem numerically is to use the

delta�trigonometric method with trapezoidal quadrature and a very large �ctitious circle �large R��

EXAMPLE ����� Ellipse with di�erent data smoothness

This example involves the same elliptic boundary but with boundary data of di�erent degrees

of smoothness�

Boundary� x��
 � y� � ��
�

Data�

g �

�
���� if x � �
��� � xs� if x � �

for s � �� �� 
� �� 
� �� and �

For this example	 the exact potential is not known� Instead	 the approximate relative errors

are computed by using the approximate potentials for the largest n possible �before the condition

numbers blow up�� We present results using the delta�trigonometric method with trapezoidal

quadrature only� �We note that using the spline�trigonometric method and�or higher quadrature

rules do not change the errors signi�cantly�� Table 
A and 
B show the maximum approximate

relative errors on the boundary for di�erent data smoothness using the delta�trigonometric method

with trapezoidal quadrature with R � 
�� and R � ����	 respectively� The largest n such that the

condition number is less than ���� for R � ���� is �� and for R � 
�� is ��� At this largest n	 we

note that the results are better for R � 
��� Thus	 it is better not to use a �ctitious circle too far

from the true boundary�

TABLE 
A� maximum approximate relative errors on the boundary using delta trial functions with

��



trapezoidal quadrature and R � 
��

s jue
j jue�j jue�j jue��j
� 
���E��� ����E��� ���
E��� ����E���

� ����E��� 
���E��
 
��
E��
 ����E��



 ���
E��
 ����E��
 
���E��� ����E���

� 
�
�E��
 ����E��� 
��
E��
 ����E��



 ����E��
 ����E��� ����E��
 
���E���

� ���
E��� ����E��� ����E��
 ���
E���

� ���
E��� ����E��� 
���E��
 
���E���

TABLE 
B� maximum approximate relative errors on the boundary using delta trial functions with

trapezoidal quadrature and R � ����

s jue�j jue
j jue�j jue�j
� ��
�E��� ���
E��� ���
E��� ����E���
� 
��
E��� ����E��� ���
E��
 ��
�E��


 
��
E��� ����E��
 
��
E��
 ����E���
� ���
E��� ��
�E��
 ����E��
 ����E��


 ����E��
 ����E��
 ����E��� ����E��

� 
���E��
 ���
E��� ����E��� ���
E��

� ����E��
 
���E��� ����E��� ����E��


The matrix condition numbers are the same as in example 
����� Graph 
A and 
B shows the

relative errors on the line x � 
y for s � �� �� � � � � �� Again note that there is no signi�cant change

in the errors as the line approaches the boundary�

For this example	 the results are slightly better using a smaller radius because the singularities

in the potential is approximated better� For the interior points	 it is better not to use a �ctitious

boundary� For the boundary points	 it is better to use a �ctitious boundary�

EXAMPLE ����� Rectangle with ideal data

The third example involves a boundary with corners	 but the boundary data is linear�

�




Domain� ������ ����	 ������ ����

Data� g � �x�


The exact solution is known in the interior region only and coincides with the formula given for

the data g� Table �A shows the maximum relative errors on the boundary for both methods using

di�erent quadrature rules with R � 
��� All the results are quite good	 i�e�	 errors are O�����
� for

n � ��� However	 there are virtually no improvement in the errors when higher quadrature rules

are used�

TABLE �A� maximum relative errors on the boundary using R � 
��

jue�j jue
j jue�j jue�j jue��j
delta ��pt ����E��� ����E��� 
���E��� ���
E��� 
���E���
delta ��pts ���
E��� 
���E��� ��

E��� ����E��� ����E���
delta ��pts ��
�E��� 
���E��� ����E��� ����E��� ��
�E���
p�c� ��pts ����E��
 ��
�E��� ����E��
 
���E��� ���
E���
p�c� ��pts ���
E��
 ����E��� ����E��
 
�
�E��� ����E��


The next table shows the maximum relative errors on the boundary for di�erent size �ctitious

circles� Note that the errors are smaller as R increases�

TABLE �B� maximum relative errors on the boundary using delta trial functions with trapezoidal

quadrature

R jue�j jue
j jue�j jue�j jue��j
��� 
���E��� 
���E��� ��
�E��
 
�

E��� ����

��
 
���E��� 
���E��� ��
�E��
 
�

E��� ����

��� ����E��� ��
�E��� ����E��� 
���E��� 
���E��



�� ����E��� ����E��� 
���E��� ���
E��� 
���E���

��� ����E��� 
���E��� ����E��
 ���
E��� ����E���

���� ����E��� 
�
�E��� 
���E��� ���
E��
 ����

���� ��
�E��� 
���E��
 ����E��� ��
�E��� ����

����� ��
�E��� 
�
�E��
 
���E��� 
�
�E��� ����

��



Table �C shows the matrix condition numbers� As in example ���	 the condition numbers grow

almost as fast as the errors decrease�

TABLE �C� matrix condition numbers using delta trial functions with trapezoidal quadrature

R K� K
 K� K� K��

��� ����E��� ��

E��� ��
�E��� ��

E��� ��
�E���

��
 ����E��� ��

E��� ��
�E��� ��

E��� ��
�E���

��� ����E��� ����E��
 ����E��� ����E��� ��
�E���


�� ����E��� ��

E��
 ���
E��� ����E��� ����E���

��� ����E��� ����E��� ����E��� ��
�E��� ��
�E���

���� ����E��� ����E��� ����E��� ����E��� ����E���

���� ����E��� ���
E��
 ����E��� ����E��� ����E���

����� ����E��� ����E��
 ����E��� ��
�E��
 ����E�
�

Graph �A shows the relative errors on the line x � y� Note that the results are very nice and

the errors remain small at the boundary�

For this problem	 it is best to let R be large� It is remarkable that very fast convergence was

obtained even though the boundary has corners� Thus	 it is worthwhile using a �ctitious boundary�

EXAMPLE ����� Wedge with analytic data

The last example involves an wedge�shaped domain� The potential possesses a singularity at

the corner of the domain�

Interior Domain� �in polar coordinate� � � r � �	 � � 
 � 
���

Data� g � ��� � r�	� sin�
��
�

The exact solution is known in the interior region only and coincides with the formula given

for the data g�

Table 
A shows the maximum relative errors on the boundary for both methods using di�erent

quadrature rules and R � 
��� Note that there are virtually no di�erences in the errors for di�erent

quadrature rules� Overall	 the results are only fair�

��



TABLE 
A� maximum relative errors on the boundary using R � 
��

jue�j jue
j jue�j jue�j jue��j
delta ��pt ����E��� ����E��� ���
E��� ����E��
 ����E��


delta ��pts ����E��� ����E��� 
�
�E��� 
���E��� ����E��


delta ��pts ����E��� ����E��� 
�
�E��� 
���E��� ����E��


p�c� ��pts ����E��� ����E��� ����E��� ����E��� 
���E��


p�c� ��pts ����E��� ���
E��� ����E��� ����E��� ����E��


Table 
B shows the maximum relative errors on the boundary using the delta trial functions

with trapezoidal quadrature for di�erent radii for the �ctitious circle� Note that the errors did not

improve very much as R becomes large� Again the results are only fair�

TABLE 
B� maximum relative errors on the boundary using delta trial functions with trapezoidal

quadrature

R jue�j jue
j jue�j jue�j jue��j
��
 ��
�E��� ��

E��� 
���E��� ����E��� ���
E���

��� 
��
E��� ��
�E��� 
���E��� ����E��
 ����E���


�� ����E��� ����E��� ���
E��� ����E��
 ����E��


��� ����E��� ����E��� ���
E��� ����E��� 
���E��


���� ����E��� ����E��� ����E��� ���
E��� ����E��


���� ���
E��� ����E��� ����E��� ��

E��� ����

����� ����E��� ����E��� ��
�E��� ����E��� ����

The last table shows the matrix condition numbers� Again	 the condition numbers grow faster

as n increases� We also noted that the condition numbers are worse if the �ctitious circle is too

close to the true boundary or too far away�

��



TABLE 
C� matrix condition numbers using delta trial functions with trapezoidal quadrature

R K� K
 K� K� K��

��
 ����E��� ����E��
 ���
E��
 ����E��� ����E���

��� ����E��� ����E��� ����E��
 ���
E��� ��

E���


�� ����E��� ����E��� ����E��� ����E��� ����E���

��� ����E��� ��
�E��
 ����E��� ��

E��� ����E���

���� ����E��� ���
E��
 ����E��
 ���
E��� ����E���

���� ����E��� ���
E��� ����E��� ����E��� ����E���

����� ����E��� ����E��
 ���
E��� ����E��� ���
E���

Graph 
A shows the relative errors on the line x � 
y� Note that there is no signi�cant changes

as the line approaches the boundary� For this example	 the results are not so good because of the

singularity of the data�

Considering both methods and di�erent quadrature rules	 we see that the delta�trigonometric

method with trapezoidal quadrature works the best� We need to consider when a �ctitious bound�

ary should be used� If the data is smooth	 then using a �ctitious boundary obtains very rapid

convergence on the boundary as well as in the interior� �Recall that in section ���	 we obtain rapid

convergence at points away from the boundary only�� If the data is bad	 then using a �ctitious

boundary obtains better results on the boundary	 but worse results in the interior� It turns out that

the �ctitious boundary should not be too far from the true boundary� If the �ctitious boundary is

used	 then there are no signi�cant di�erences between the errors on the boundary and the errors in

the interior� �In section ���	 we saw signi�cant changes in the errors as we approach the boundary��

��



�� Appendix

In this section	 we de�ne the conformal radius and discuss some of its basic properties in

relation to the single�layer potential representation� In particular	 we explain why the conformal

radius of � should not be equal to � in ���
�� We begin with the Riemann mapping theorem and a

corollary� Then we present a theorem which states that solving the Dirichlet problem is equivalent

to solving the single�layer potential problem using the restriction formulation �de�ned in section

��� Afterward	 we present a theorem which states that if the conformal radius of � is not equal to �

then solving the Dirichlet problem is equivalent to solving the single�layer potential problem using

the scaling formulation �de�ned in section ���

For the next two theorems	 let B���� be the open unit ball centered at the origin and let � be an

a simply�connected open set with analytic boundary �� Also let Bc
���� and �

c be the corresponding

open exterior regions� We identify IR� with the complex plane C�

THEOREM ��� �Riemann mapping theorem� Let zo � � be arbitrary� Then there exists a unique

conformal mapping S � �� B���� such that S�zo� � � and S��zo� � ��

PROOF� See for example	 B� Choudhay ��	 chapter � and appendix I�� Q�E�D�

COROLLARY ��� There exists a unique positive number a and conformal mapping T � �c �
Bc
���� such that T �z� � a��z�� � O�jzj���� as jzj � 
� The number a is called the conformal

radius of ��

PROOF�

Let s�z� � z�jzj� and de�ne �� � fs�z�
���z � �cg � f�g so that �� is a bounded simply�

connected region in IR�� Then by theorem ���	 there exists a mapping S � �� � B���� such that

S��� � � and S���� � �� Hence	 T �z� � s�S�s�z��� is a conformal mapping of �c onto Bc
�����

By Taylor theorem	 S�y� � S��� � yS�����O�jy�j� � yS���� �O�jy�j� as y � �� This implies

�




that

T �z� �
S�s�z��

jS�s�z��j�

�
s�z�S���� � O�js�z��j�

js�z�j�S����� � O�js�z�
j�

�
�z�jzj��S���� � O���jzj��
���jzj��S����� � O���jzj
�

�
z �O���

S����

as jzj � 
� This shows that T has the desired form with a � S����� Uniqueness follow from the

uniqueness of the conformal map �theorem ����� Q�E�D�

REMARK� If � is a circle	 then the conformal radius is the usual radius� If �� � f
z
��� z � �g for

some 
 � � then the conformal radius of �� is 
 times the conformal radius of ��

We now state a uniqueness theorem for solving the single�layer potential problem using the

restriction formulation �de�ned in section ���

THEOREM ��� Given �g� ����H������� IR�� there exists a unique pair ��� c� � �H�������� IR�

such that

g�z� �

Z
�
��y� log jz � yj d�y � c � z � �

and

� �

Z
�

��y� d�y�

Moreover� if � is C�� then the relation �g� �� � ��� c� is an isomorphism from �H������� IR� to

�H�������� IR��

PROOF� See M�N� LeRoux ���� Q�E�D�

We now de�ne the operator

A���z� ��

Z
�
��y� log jz � yj d�y�

The next theorem explains an important property of A�� In particular	 we show that the conformal

radius of � should not be � when we use the scaling formulation�

��



THEOREM ��� Assume that � is C�� The following are equivalent


�� A� � H�������� H������ is an isomorphism�


� There does not exist a �o � H������� such that A��o � � on � and
R
�
�o d�y � ��

�� The conformal radius of � does not equal ��

PROOF�

It is obvious that �� implies 
�� Suppose �� is not true	 i�e�	 A� is not an isomorphism�

Then there exists a nonzero � such that A�� � �� There are two possibilities	
R
�� d�y � � orR

�� d�y �� �� For the �rst case	 A�� � � implies that ��� �� solves ����� and ���
� with data

�f� �� � ��� ��� We also know that ��� �� solves ����� and ���
� with data �f� �� � ��� ��� By the

uniqueness result in theorem ���	 this is a contradiction� For the second case	 set � � ���
R
�� d�y�

so that
R
� � � �� This contradicts 
�� Therefore 
� implies ���

We now prove �� implies 
�� Suppose that 
� is not true	 i�e�	 there exists a �o � H������� such

that A��o � � on � and
R
��o � �� First	 note that u�z� � log jzj solves the exterior homogeneous

Dirchlet problem on Bc
����	 i�e�	

�u � � on Bc
�����

u� � � on �B�����

Let T be the ���	 onto	 conformal mapping as de�ned in theorem ��
� De�ne u��z� � log jT �z�j�
Then

�u� � � on �c�

u��z� � log jzj � log jaj� O��� as jzj � 
�

u� � � on ��

Also de�ne u��z� �
R
� log jz � yj�o�y� d�y� Then A��o � � on � implies

�u� � � on �c�

u��z� � log jzj�O��� as jzj � 
�

u� � � on ��

Therefore u� � u� is harmonic	 bounded and vanishes on �� Hence u� � u�	 which implies

log jaj � �	 i�e�	 a � �� This contradicts ��� This proves that �� implies 
��

��



Finally suppose that �� is not true	 i�e�	 that a � �� Then u� satis�es

�u� � � on �c�

u��z� � log jzj�O��� as jzj � 
�

u� � � on ��

Now there exists ��� c� such that A��� c � � and
R
�� d�y � �� De�ne

u
�z� �

Z
�

log jz � yj��y� d�y � c�

Then

�u
 � � on �c�

u
�z� � log jzj� c� O�jzj��� as jzj � 
�

u
 � � on ��

Hence	 u� � u
 and therefore c � �	 which contradicts 
�� Therefore	 
� implies ��� Q�E�D�

��



�� References

�� K�E� AKTINSON	 An Introduction to Numerical Analysis� Wiley	 New York	 �����


� D�N� ARNOLD	 "A Spline�Trigonometric Galerkin Method and an Exponentially Convergent

Boundary Integral Method	# Math� Comp�	 v� 
�	 n� ��
	 ����	 pp� ��������

�� D�N� ARNOLD and W�L� WENDLAND	 "On the Asymptotic Convergence of Collocation

Methods	# Math� Comput�	 v� 
�	 ����	 pp� �
������


� D�N� ARNOLD and W�L� WENDLAND	 "The Convergence of Spline�Collocation for Strongly

Elliptic Equations on Curves	# Numer� Math�	 v� 
�	 Fasc� �	 ����	 pp� �����
��

�� A� AZIZ and B� KELLOGG	 "Finite Element Analysis of a Scattering Problem	#Math� Comp�	

v� ��	 ����	 pp� 
���
�
�

�� A� BOGOMOLNY	 "Fundamental Solutions Method for Elliptic Boundary Value Problems	#

SIAM J� Numer� Anal�	 v� 

	 n� 
	 ����	 pp� �

�����

�� S� CHRISTIANSEN	 "On Two Methods for Elimination of Non�Unique Solutions of an Integral

Equation with Logarithmic Kernel	# Applicable Analysis	 v� ��	 ���
	 pp� ����

�� S� CHRISTIANSEN and LYNGBY	 "Condition Number of Matrices Derived fromTwo Classes

of Integral Equations#	 Math� Meth� Appl� Sci�	 v� �	 ����	 pp� ��
���
�

�� P�J� DAVIS and P� RABINOWITZ	 Methods of Numerical Integration� Academic Press	 New

York	 �����

��� G� DEMEY	 "Integral Equations for Potential Problems with the Source Function not located

on the Boundary	# Computers and Structures	 v� �	 ����	 pp� ��������

��� G� FAIRWEATHER and R�L� JOHNSTON	 "The Method of Fundamental Solutions for Prob�

lems in Potential Theory	# Treatment of Integral Equations by Numerical Methods� C�T�H�

Baker and G�F� Miller	 eds�	 Academic Press	 New York	 ���
�

�
� W� FREEDEN and H� KERSTEN	 "A Constructive Approximation Theorem for the Oblique

Derivative Problem in Potential Theory	# Math� Meth� Appl� Sci�	 v� �	 ����	 pp� ��
���
�

��� P� HENRICI	 "Fast Fourier Methods in Computational Complex Analysis	# SIAM Rev�	 v� ��	

����	 pp� 
����
��

�
� G�C� HSIAO	 P� KOPP	 and W�L� WENDLAND	 "A Galerkin Collocation Method for some

Integral Equations of the First Kind	# Computing	 v� 
�	 ����	 pp� ���

��



��� G�C� HSIAO	 P� KOPP	 and W�L�WENDLAND	 "Some Applications of a Galerkin�Collocation

Method for Boundary Integral Equations of the First Kind	# Math� Meth� in Appl� Sci�	 v� �	

���
	 pp� 
���

��� V�D� KUPRADZE and M�A� ALEKSIDZE	 "The Method of Functional Equations for the

Approximate Solution of Certain Boundary Value Problems	# U�S�S�R� Comp� Math� and

Math� Phys�	 v� 
	 ���
	 pp��
��
��

��� M�N� LEROUX	"Methode D�Elements Finis pour la Resolution Numerique de Problemes Ex�

terieurs en Dimension 
#	 R�A�I�R�O� Numerical Analysis	 v� ��	 n �	 ����	 p� 
�����

��� R� MATHON and R�L� JOHNSTON	 "The Approximate Solution of Elliptic Boundary�Value

Problems by Fundamental Solutions	# SIAM J� Numer� Anal�	 v� �
	 ����	 pp� ��������

��� I� LUSIKKA	 K� RUOTSALAINEN	 and J� SARANEN	 "Numerical Implementation of the

Boundary Element Method with Point�Source Approximation of the Potential	# Eng� Anal�	 v�

�	 n� �	 ����	 pp� �

�����


�� W� MCLEAN	 "A Spectral Galerkin Method for a Boundary Integral Equation	# Math� Comp�	

v� 
�	 n� ���	 ����	 pp� ��������


�� S� PR$OSSDORF and A� RATHSFELD	 "A Spline Collocation Method for Singular Integral

Equations with Piecewise Continuous Coe�cients	# Integral Equations Oper� Theory	 v� �	

���
	 pp� ��������



� S� PR$OSSDORF and A� RATHSFELD	 "On Spline Galerkin Methods for Singular Integral

Equations with Piecewise Continuous Coe�cients	# To appear in Numer� Math�


�� S� PR$OSSDORF and G� SCHMIDT	 "A Finite Element Collocation Method for Singular In�

tegral Equation	# Math� Nachr�	 v� ���	 ����	 pp� ������



� S� PR$OSSDORF and G� SCHMIDT	 "A Finite Element Collocation Method for Systems of

Singular Integral Equations	# Preprint P�MATH�
����	 Institut f$ur Mathematik	 Akademie

der Wissenschaften der DDR	 Berlin �����


�� K� RUOTSALAINEN and J� SARANEN	 "Some Boundary Element Methods Using Dirac�s

Distributions as Trialfunctions	# Manucript


�� E�B� SAFF and A�D� SNIDER	 Fundamentals of Complex Analysis for Mathematics� Science�

and Engineering� Prentice�Hall	 Inc�	 New Jersey	 �����

��




�� J� SARANEN and W�L�WENDLAND	 "On the Asymptotic Convergence of ColllocationMeth�

ods with Spline Functions of Even Degree	# Math� Comp�	 v� 
�	 ����	 pp� �������


�� G� SCHMIDT	 "On Spline Collocation Methods for Boundary Integral Equations in the Plane	#

Math� Meth� Appl� Sci�	 v� �	 n� �	 �����

��


