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ABSTRACT

In this thesis, we study the asymptotic convergence of the Kirchhoff plate
model as an approximation to the full system of three-dimensional linear elasticity,
considering the cases of soft and of hard simply supported boundary conditions,
and the case of a periodic plate. Specifically we obtain the order of convergence
of the energy norm of the differences between the exact three-dimensional stress
and displacement fields and approximations to them obtained from the Kirchhoff
solution.

We develop a new method of analysis that combines the existing variational
energy method, singular perturbation techniques, and Saint Venant’s principle. By
using this method, we prove that for the hard simply supported plate with smooth
boundary the known global convergence rate of O(t'/?) is sharp. (This is the
rate of convergence of the relative energy norm error.) We also show that when
consideration is restricted to an interior domain, disjoint from the lateral boundary
of the plate, the relative energy norm convergence rate for the hard simply supported
plate increases to O(t). When the same analysis is applied to the soft simply
supported plate, both the global and interior convergence rates are found to be
O(tl/z). The analysis suggests, but does not establish, that these rates are sharp.
These low orders of convergence are in contrast to case of the periodic plate where

we show that second order convergence holds.



1

CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . .. .. ... ... Vi
Chapter One. INTRODUCTION . . . . . . . . . . . . .. ... .. 1
Chapter Two. TOOLS AND METHODS . . . . . . . . . ... ... 8
2.1. The Prager-Synge theorem . . . . . . . . . . . . . . . .. 9

2.2. Expressions for o and R B

- Expressionfore® . . . . . . . . . . . ... .. ... ... 1

- Expression for WK 12

2.3. Convergence rate for a bi-periodic plate . . . . . . . . . . . . 15

2.4. Boundary correctors . . . . . . . . . . . . . . . .. ... 17

- Boundary values to be corrected for the simply supported plates . 18

- Applying the Prager—Synge theorem . . . . . . . . . . . . . . 19

Chapter Three. CONVERGENCE RATES FOR SIMPLY SUPPORTED PLATES 23

3.1. Three-dimensional boundary correctors . . . . . . . . . . . . 24
3.2. Scaling . . . . . ... ... ..o 25
3.3. An auxiliary problem . . . . . . . . . . . . . . . . . . .. 28
3.4. Two separate problems . . . . . . . . . . . . .. .. ... 35
3.5. Saint Venant’s principle . . . . . . . . . . . . . . .. . .. 36

- Exponential decay for Laplace’s equation in a strip . . . . . . . 37

- Exponential decay for two-dimensional elasticity equation in a strip 40

- Energy norm bounds . . . . . . . . . . . . . . . .. . . . 43



3.6. Order estimation for the scaled terms .

- Estimates for ¢
- Estimates for ¢ and p
3.7. L? estimation
3.8. Error estimation
- Expressions of error terms
- Order estimation for  and z
- Global and local estimates for o’

3.9. Convergence results
Chapter Four. SUMMARY .

INDEX OF NOTATIONS
REFERENCES

111
47
47
54
56
61
62
64
71
72

76

79
83



v

ACKNOWLEDGMENTS

I am deeply grateful to Professor Douglas N. Arnold for his encouragement,
guidance and support. A meticulous researcher, he has shown to be an outstanding
supervisor. I could not complete this work without his superb teaching and guidance
for my study and research.

I wish to thank Professors Theodor Krauthammer, Maria-Carme T. Calderer,
Jinchao Xu, and Simon Tavener who kindly agreed to serve on my thesis committee.

I would like to thank Professors Jerry Bona, Ridgway Scott, Jinchao Xu,
and the late William Pritchard for their excellent lectures on applied mathematics.
Thanks also go to Professors Richard S. Falk and Frederic Y.M. Wan for their helpful
discussions and valuable suggestions as my thesis progressed.

My sincere appreciation is extended to all my friends who have made my stay
at Pennsylvania State University very memorable.

This thesis would be impossible without the support of my family. T am deeply
indebted to my parents, my brother and sisters whose love and encouragement have
always supported me, to my parents-in-law who take care of my family and my
daughter Michelle for all these years. My deepest gratitude goes to my wife Minhua

Liu. Her love, understanding, and patience has been my greatest support.



Chapter One

INTRODUCTION

Consider the problem of finding the displacement and stress fields in a three-
dimensional plate which result from loads applied to its top and bottom surfaces.
The theory of linearized elasticity theory determines these fields as the solution of
a boundary value problem posed over the three-dimensional domain. When the
plate is thin, two-dimensional plate models are often used to approximate the three-
dimensional problem. This approach is known as dimensional reduction. The most
popular such model is the Kirchhoff plate model, which determines a scalar field on
the midsection of the plate as the solution to a biharmonic problem. One can then
compute approximations to the three-dimensional displacement and stress fields on
the entire plate from this scalar field. In this thesis we consider the accuracy of
these approximations. Specifically we consider the order with which the error tends
to zero as the plate thickness tends to zero.

Let © C R? be a smoothly bounded domain in the plane and ¢ > 0. We

suppose that the plate occupies the three-dimensional domain
Pl =Q x(-1/2,1/2).

We denote the top and bottom surfaces Q x {t/2} and @ x {—t/2} by Qf and QL

respectively, and the lateral surface 9 x (—t/2,¢/2) by I'". The linearized equations
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of elasticity then require that the displacement field u and the stress field o satisfy

the differential equations

e(u) + (divu)d in P, (1.1)

o =

14+ v 1—2v
dive = 0 in P, (1.2)

where FE is the Young’s modulus, v the Poisson ratio, and é the 3 x 3 identity matrix.

The surface loading is specified by the boundary conditions

on = (0,0,¢4)" on Q% on = (0,0,¢_)" on Q°, (1.3)

where gy : 21 — R are given. We shall only consider the case where the top and
bottom surface loads are equal. Moreover, for convenience, we assume that these
are scaled to be proportional to #*. (This does not lead to any loss of generality,
since the problem is linear and we can simply adapt our results to other scalings.)
Thus we assume that

3 3

¢ ¢
q+(2,y,t/2) = gg(xay), q—(z,y,t/2) = gg(xay) for all (z,y) € Q, (1.4)

where ¢g : 2 — R is a given smooth function.

We shall consider the case of a simply supported plate. Actually we shall
investigate two different boundary conditions on the lateral boundary I' which model
this situation. To describe these boundary conditions we introduce the coordinate
directions gg, 7;, and s at each point of the the lateral boundary. The soft simply

supported plate satisfies

- - —, —

u-es —Ton=nTon=0 on I'. (1.5)

The hard simply supported plate satisfies

—

— - = —
u - 3ZU'8:TLT

on=0  onl" (1.6)



Note that the soft simply supported plate is the more usual boundary condition.
Both the soft simply supported plate problem (1.1)—(1.3), (1.5) and the hard
simply supported plate problem (1.1)—(1.3), (1.6) admit a solution (0',1:). For the
hard simply supported plate, this solution is uniquely determined. For the soft
simply supported plate, it is easy to derive from [9] that the solution is determined

up to addition of an in-plane rigid motion, i.e., a function in the set
R:{E(x,y,z):(a+cy,b—cx,0)|a,b,ceR}. (1.7)

The solution is then rendered unique by imposing the side condition
/PtJ-F:o for all r € R. (1.8)

For the problem just described the Kirchhoff plate model determines a func-

tion w : {2 — R by the biharmonic equation

E
— = _Aw= in 1.
12(1—2)" 09 (1.9)
and the boundary conditions
w =0, nT (1 - v)grad(gradw) + vAwé | n =0 on 0f2. (1.10)

Note that the same boundary conditions (1.10) are used to replace either (1.5) or
(1.6): the distinction between soft and hard simply supported plates vanishes. From
the solution w to (1.9)—(1.10), we may construct approximations Wk to u and o to
o. For example,

2
O'i(l = bz {(1—1/)a—w—l—z/Aw} )

112 Ox?
Explicit expressions are given below in (2.2.2), (2.2.4), and (2.2.6).
In order to discuss the accuracy of the Kirchhoff approximation we introduce

the energy norms for the displacement and for the stress, defined by

ol = [ (a7 e()lsetw). el = [ 4 a



respectively, where

1
Ao — ;”a_%(tm)a, (1.12)
3
o:T= TigTij-
/Pt i;l /Pt Y
Note that when 7 = A~ e(v), ||v|| = |7 &-

The following theorem gives the basic global bound on the error in the Kirch-

hoff approximation.

Theorem 1.1. Let o and u be defined by either the soft simply supported plate
problem (1.1)—(1.4), (1.5), (1.8) or the hard simply supported plate problem (1.1)-
(1.4), (1.6), and let o* and uk be the Kirchhoff approzimations defined by (1.9),
(1.10), (2.2.2), and (2.2.6). Then there exists a constant C depending only on the

domain €2 such that
o — o*|lp + [lu— u®|| < Ct*|lgll2(0)- (1.13)

The interpretation of this theorem is not straightforward. While the constant
C' and the function ¢ are independent of ¢, the three-dimensional solution (0',1:)
depends on t, as do the energy norms || - || and || - ||z. In fact, as we shall see, if g

does not vanish identically, then
et’? <ol = ull < e,

where ¢; and ¢y are positive constants depending on €2 and ¢, but independent of ¢.
Therefore, from Theorem 1.1 we obtain the relative error estimate

k Sk

lo —o"lle | [lu—ul

ol = [

S Cltl/Z

Y

with C’ independent of . Thus the Kirchhoff model gives an O(t'/?) approximation

of the three-dimensional solution, when measured in energy norm. This rather low



rate of convergence is in fact sharp, at least for the hard simply supported plate.

Indeed, as we show below, if ¢ does not vanish identically then
lo —o"[p + lu—ut|| = et?

with ¢ > 0 independent of . Although it does not follow from the analysis below,
it seems very likely that the O(tl/ 2) convergence rate is sharp for the soft simply
supported plate as well.

The solution of the three-dimensional plate problem has a complex boundary
layer when ¢ is small [4], [3], [2], [13], [17], [20], however the Kirchhoff approximation
has no boundary layer whatever. This suggests that poor approximation near the
lateral boundary may be responsible for the low rate of convergence in the energy
norm, and the approximation may be more accurate away from the boundary. In
fact this is true for the hard simply supported plate problem. More precisely, for
P! C P define

ol = [ (A7) ew). Iirlf = [ (Ar)er.

¢] ¢]
Then we have the following interior convergence theorem, proved as Theorem 3.9.5

below.

Theorem 1.2. Let Qg satisfy Qo C Q, and set PE = Qo x (—t/2,t/2). Let (0',1:)
and (crk,ﬁk) be as in Theorem 1.1. Then, in the case of the hard simply supported

plate, there exists a constant C' depending only on the domain and §) such that
lo — o |l z.pg + llu = u*[ll 5y < C¥72||g]l L2(0y. (1.14)

Thus for the hard simply supported plate, the Kirchhoff approximation con-
verges with first order in the energy norm on subdomains bounded away from the

lateral boundary. The proof of this theorem is one of the main results of the thesis.



As we shall see, the same analysis, when applied to the soft simply supported plate,
only gives an interior convergence rate of O(t'/?), i.e., no higher than the global
rate.

Another indication that the boundary layer is in some sense responsible for
the low order of convergence of the Kirchhoff model is obtained by considering a
bi-periodic plate. In Chapter 2 we shall show that in this case the global estimate

(1.13) can be improved to
lo = X[l + llu — || < C+72lg][ 120,

i.e., for the periodic problem (for which there is no boundary layer), the relative
energy error of Kirchhoff approximation is O(#?).

In 1959 Morgenstern [18] proved one of the first convergence results for the
Kirchhoff model. For several boundary conditions, including soft simply supported,
he showed that the relative global energy error tends to zero with the plate thick-
ness. Although he did not discuss the convergence rate, it is not difficult to extend
his arguments to obtain Theorem 1.1, that is, a relative energy error of O(tl/z).
Morgenstern used a variational approach based on the duality of the displacement
energy and the complementary energy (essentially the Prager-Synge theorem). In
1971 Simmonds [21] used the same approach to show that under very special bound-
ary condition, which he termed “regular,” the relative energy error is O(¢?). The
bi-periodic plate may be viewed as a regular boundary value problem. However
most other common boundary conditions, including both soft and hard simply sup-
ported plates (and clamped and free plates as well), are not regular in the sense
of Simmonds. In 1990 Babuska and Pitkaranta [7] also employed the approach
of Morgenstern. They showed that for the hard simply supported Kirchhoff plate,
the convergence rate is O(t'/?) for domains with smooth boundary and that this

rate increases to O(t) for polygonal domains. The first person to discuss interior



convergence rates was Destuynder [11], who considered the global and interior en-
ergy convergence of clamped plate in his thesis. Destuynder’s approach is based on
singular perturbation techniques and Fourier analysis, and is quite different from
Morgenstern’s.

In this thesis we develop a new method of analysis combining the variational
approach of Morgenstern and the singular perturbation techniques of Destuynder.
Saint Venant’s principle also plays an essential role in our approach. We believe
that the resulting analysis gives sharper and clearer results. In particular, the proof
of the sharpness of the global estimate for the hard simply supported plate and
the interior estimate (1.14) are, to the best of our knowledge, new results. Our
approach has some common features with Schwab’s work on dimensional reduction
of the Laplacian on a thin three-dimensional domain [19].

Although we discuss only the Kirchhoff plate in the thesis, the order analysis
for the Kirchhoff plate may help in the study of other plate models. For example,
the Reissner—Mindlin plate is the next simplest two-dimensional plate model, and
is preferred in many applications. The convergence rates for the Reissner—Mindlin
plate can be derived from those of the Kirchhoff plate by using Arnold and Falk’s
results in [2], [3], and [4]. In these papers, they found among other things the gap
between the Kirchhoff plate solution and the Reissner—Mindlin plate solution. The
convergence rates of the Reissner-Mindlin plate can thus be obtained by using a
triangle inequality. In recent years, much work has been on the hierarchical two-
dimensional plate models [1], [5], [20], [19], [6]. The approach we use in this thesis
may also provide a way to explore the convergence rates for those higher order plate

models.



Chapter Two

TOOLS AND METHODS

In this chapter, we introduce the Prager—Synge theorem and discuss its ap-
plication in the plate convergence problems. The theorem provides a tool to find
convergence rates without referring to the three-dimensional exact solution. It thus
avoids the discussion of possible boundary layer complications. For a bi-periodic
loading problem, the theorem can easily be applied to obtain an order O(#?) con-
vergence rate. For the soft and hard simply supported plates, applications of the
theorem to its full advantage is not straightforward. Methods for using the theorem
effectively are discussed.

We write the following notational conventions throughout the thesis. Latin
indices ¢ and j generally range from 1 to 3 while Greek indices o and 3 range from 1
to 2. Unless otherwise stated, Latin letters with superimposed arrows, such as 1_;, are
used to denote vectors in R® and bold Greek letters, such as T, are used to denote
3 x 3 symmetric tensors. Tilde underscored Latin letters, like v stand for vectors in
R? and double tilde underscored Greek letters, like 7, for 2 x 2 symmetric tensors.
When specifications are needed in the equations, to save space, we use soft case for

the soft simply supported plate, and hard case for the hard simply supported plate.

A complete list of notations is given at the end of the thesis.



Sec 2.1. The Prager—Synge Theorem

To state the theorem, we first define spaces 3 and V' by
Y= {0'|Uij S Lz(Pt),Ui]‘ = 0j; } ,
V = {;|UZ € Hl(Pt),;- g3 =0 and (1.8) holds} soft case, (2.1.1)

- -

V:{;|Ui€H1(Pt),;'g3:U'SZO} hard case.

The weak formulation for the three-dimensional plate is the following:

Find (0',1:) € ¥ x V such that

/(AO'):T—I—/ 6(1:)21’:0 for all T € X,
Pt Pt

Theorem 2.1.1 (Prager—Synge Theorem). Let (0',1:) be the solution to (2.1.2).

) (2.1.2)
4403 —I—/ q-v3 forallv e V.
Qb

t
+

Then for any wEV and any o € X satisfying the following constraint

/ o s(;) = / G+ v3 —I—/ q_vs3 for all ve Vv, (2.1.3)
Pt QY Qt
the following identity holds:

llu = ulll® + o = ol =6 — A e(u)|% (2.1.4)

— —

Proof. Since 0 = A~ 'e(u) and u — ; € V', then
o = [+ A~ e()l/2113 — 6 — A~ e(w)]/211%
:/Pt(a—&)A[O'—A_ e(u)] :/Pt(a—&) ce(u —u)
g+ (us — uz)— /Qt q+(us — us)+ /Qt q—(us — uz)— /Qt q—(us —uz) = 0.

t
+ +
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It follows that

120 — (A e(u) + &)||5 = llo — A e ()]

On the other hand, we have also the following identities:

120 — [0+ A7 ()]l = llo — A e(u)l[; + [l — o5

- 2/Pt(0 —6)Alo — A7 e(u)] = [Jlu—ull® + |lo — %

The equation (2.1.4) then follows. O

Let u be an approximation to w and & to o. The Prager—Synge theorem states
that if the conditions in the theorem are satisfied, then the two errors in the energy
norm can be measured by the difference between the two approximations. The first

condition u € V requires u to satisfy the conditions imposed in V. To interpret the

condition (2.1.3), first note that the equation

/ &:s(;):/ q_|_v3—|—/ q_vs3
pt Q Qt

obviously holds for vER (cf. (1.7)) as well as for v € V. Therefore it holds for all

t
+

smooth compactly supported functions on P?, and so implies that
dive =0 on P! (2.1.5)
Assuming that o € H'(P?'), integrating by parts in (2.1.3), this gives
/ &:5(5):/ (&ﬁ)-#/ (&ﬁ)-5+/ (61) -0
Pt Qt Qt I
for all v € V.

It follows that

on=(0,0,q)T  on QL (2.1.6)
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and

/ (6n)-v=0 forallveV, (2.1.7)
I‘t

Conversely, if ¢ € H'(P?') satisfies (2.1.5)—(2.1.7), then (2.1.3) holds.

The equation (2.1.7) implies that for each component of displacements not
prescribed zero value the corresponding component of traction must be zero. In
other words, o must satisfy the boundary conditions on o. In particular, for the
soft simply supported plate, this condition is specified in (1.5), for the hard simply

supported plate, in (1.6).

Sec 2.2. Expressions for ¢ and u

To apply the Prager—Synge theorem to the Kirchhoff plate convergence prob-
lems, o and ; should be constructed from the Kirchhoff plate solution w. However,
as we shall see later, explicit expressions constructed from w may fail to satisfy
the boundary conditions required by the theorem. Then boundary correctors are

introduced to offset the undesired boundary values. Thus we will take

—

k_l_o,c7 u:uk—l—uc,

=0

k

where 0¥ and u* are explicit approximations constructed from w, and o€ and u°

are boundary correctors.

Expression for o%. Let o be the three-dimensional stress field. The upper left
2 x 2 submatrix (043) of o represents in-plane stress. For the Kirchhoff plate the

in-plane stress is expressed by

E
—ﬁ (1 —v)grad (gradw) + vAwd| .
— o ~ ~
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Thus let

056 = _ B (1 —v)grad (gradw) + vAwd| . (2.2.1)
(1—1v?) ~ ~ ~

We would like o* to satisfy as many conditions of (2.1.5)-(2.1.7) as possible. One
observes that dive* = 0 and o*n = (0,0,¢4)T on Q! can be obtained through
determining X, from 056 and then determining o33 from oX;. Thus o* has the

following expression:

Ez 0% w
ok = T3 {(1—1/)8?—|—1/Aw} ;
Ez 0% w
oX, = T3 {(1—y)w—l—z/Aw} )
t? 42
0}3(3 = =9 3 - i 9
2 12
(2.2.2)
K Ez J*w

012__1—|—1/8:Jcay7

K E i 5\ 0Aw
BTy \4 7 ) or

B (L) 08w
BT Ton oy \4 T ) oy

This ok satisfies (2.1.5) and (2.1.6). However, it may not satisfy (2.1.7).

Therefore later we shall define o€ such that

dive® =0 in P!,
on =0 on Qf UQL, (2.2.3)
/(aCﬁ)-Ez—/(akﬁ)-E for all v € V.

It It

Then 6 = o* + ¢ satisfies all the conditions of the Prager-Synge theorem on the

stress field.

Expression for u*. The construction for u* is made such that HA_ls(Jk) —o¥||p

is of sufficiently high order.
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Morgenstern [18], and Babuska and Pitkdranta [7] essentially used the same
expressions for uk. We shall use a slight modified version of their expression. We

denote it by um.

u™ = —zgradw, u™-e3=w+

(2.2.4)

where u™ stands for (ul",u").

From (2.2.4) and (2.2.2), a direct computation shows that there exists a con-

stant C' independent of ¢ such that
A e(u™) — o"||g < Ct**||g|| L2cq)- (2.2.5)

The last inequality follows from the standard regularity results for the biharmonic
equation (1.9). See [7] for details. This um may not satisty the boundary conditions
imposed in V. Thus it is necessary to define ¢ so that ; _— + w¢ € V can be
used in the Prager—Synge theorem.

Simmonds [21] studied a more sophisticated expression for uk. We shall use

a slightly modified version of his expression. Denote it by w.
2t? v 1 23 1 v
= — d — | = - - — | == = dA
IV “erd w+{1—y<24 4>+1—1/<3 6)} Bracaw,

1/(1222 — tz)Aw
u(1—v)

Uy = W+

where u® stands for (uf,u$)?.

~

Lemma 2.2.1. Let 0% and u* be defined in (2.2.2) and (2.2.6) respectively, w the
Kirchhoff plate solution, g the scaled traction in (1.4). Then there exists a constant

C' independent of t such that

HA_IE(US) — O'kHE S Ct7/2HwHH4(Q) S Ct7/2HgHL2(Q). (2.2.7)
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Proof. Define 1_;5 by

us = —zgradw, u§ = uj. (2.2.8)

Then a direct computation shows that

{A‘ls(JS)} =k {A‘ls(us)} =0 (2.2.9)

Moreover,

{A_ls(ﬁs)} =aks. (2.2.10)

By (2.2.8), (2.2.9), and (2.2.10) the inequality (2.2.7) follows from a simple compu-

tation and the triangle inequality. [

The expression for u™ s simpler than that for 1:5, and is good for some
convergence rate estimation. However, when higher convergence rates are possible,
the expression for w* is needed to obtain a higher order approximation like sharper
results. Depending on the applications, one can choose which to use. For example,
in the next section we shall use u® since the convergence rate for a bi-periodic plate
is high, while in the next chapter, we shall use u™ since the convergence rate finally
turns out to be low and «™ allows a simpler expression.

In addition to (2.2.5) or (2.2.7), for simply supported plates, since by (1.10)
w = 0 on 0F2, then

/ u™ = u® = (0,0,tw)” = 0. (2.2.11)
I

While the estimation (2.2.5) and (2.2.7) holds for Morgenstern’s expression and
Simmonds’s expression respectively, only our modified versions satisfy both (2.2.5)
and (2.2.11) or both (2.2.7) and (2.2.11). The equation (2.2.11) will be an essential
condition in our three-dimensional boundary value corrector discussion. Once again
k

u may not satisfy the required boundary condition, and we require a boundary

S
corrector uC.
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Sec 2.3. Convergence Rate for a Bi-periodic Plate

k and

In this section, we consider a bi-periodic plate. When the expressions o
u* are employed, the Prager—Synge theorem leads to the global convergence rate of
O(t?).

For the bi-periodic plate, let £ be the unit square (0,1) x (0,1). Define 3 by
(2.1.1), and

. . , ¢ ¢
V:{v|UiEHl(Pt),U(O,y,z):v(l,y,z), for all O<y<1,—§<z<§,

v(x,0,z)=v(x,1,z), fora110<:1;<1,—§<2<§ and/ sz}.
P! (2.3.1)

Suppose that ¢ satisfies
9(0,y) =g(1,y), forall 0 <y <1,

g(x,0) = g(x,1), forall 0 < 2 < 1,

/gzO.
Q

Then the weak formulation (2.1.2) determines the solution (o, 1:) uniquely.

The requirement (2.1.7) corresponds to the following bi-periodic condition:

(o-n)(0,y,2) =—(o-n)(1,y,2) forall0<y<1l, —= <2< <,
2 2

. } ; ° (232)
(o -n)(z,0,2) = —(o-n)(z,1,2) forall 0 <z <1, 5 <<y

We now check that in this special case o satisfies the conditions in (2.3.2)
and u® satisfies the conditions in (2.3.1).
The corresponding Kirchhoff plate finds the unique solution w € ﬁger(ﬁ) to

the equation (1.9) where

- v v
2 _ 2 _ - —
Hper(Q) - {U € H (Q)|U(07y) - U(lvy)v 8:1; (Ovy) - ax(lvy)v 0 < Y < 17
v v
v(x,0) =v(z,1), a—x(x,O) = a—x(x,l), 0<z<l, /Qv = 0}.
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By using the weak formulation for (1.9) and integrating by parts, it is easy
to check that

(grad gradw)(0,y) = (grad grad w)(1,y) forall 0 <y <1,
(grad gradw)(z,0) = (grad gradw)(z,1) forall 0 < < 1,
(grad Aw)(0,y) = (grad Aw)(1,y) forall 0 <y <1,

(grad Aw)(z,0) = (grad Aw)(z, 1) forall 0 < < 1.

By (2.2.1), (2.2.2) and (2.2.6), the components of a* and «* are all linear combina-

ow 0
tions of w, —w, —w, Aw, gradAw. Thus,
ox’ Oy ~
k~ k.~ ¢ ¢
(o*n)(0,y,z) = —(o"n)(1,y, 2) forall 0 <y <1, —3 <z < 3
(o*n)(x,0,2) = —(o*n)(z, 1, 2) forall 0 < < 1, 5 <#<3
u*(0,y,2) = u’(l,y, 2), for a110<y<1,—§<2< 3
, , ¢ ¢
u(2,0,2) = u’(x, 1, 2) for a110<:1;<1,—§<2< 3"

Moreover, by (2.2.6) and the fact that [, w = 0, it is easy to check that

u® = 0.
Pt

Thus, the conditions in (2.3.2) and (2.3.1) are all satisfied. Hence a* and W can
be used directly in the Prager—Synge theorem with boundary corrector ¢ = 0 and

W =0, By (2.2.7), we obtain the following result for the bi-periodic plate.

Theorem 2.3.1. Let (0',1:) be the solution to (2.1.2), (ak,JS) be constructed in
(2.2.2) and (2.2.6) from the Kirchhoff plate solution. Then there exists a constant

C' independent of t such that

o — X5 + [|lu—u®|| < Ct72||g]r2(q).
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Corollary 2.3.2. Let (0',1:) be same as in Theorem 8.2.1. Then there exists a

constant C independent of t such that

o)l + [llull < Ct72||gl r2(0)-

Proof. From (2.2.2) and (2.2.6), it is easy to see that
o1 + ]l < CE72||g]| L2 -

The corollary then follows from Theorem 2.2.1 immediately. O
From Theorem 2.2.1 and Corollary 2.2.2, the convergence rate follows.

Theorem 2.3.3. Under the conditions of Theorem 2.2.1. The global convergence
rate for the periodic plate is O(t*). That is, there exists a constant C' independent

of t such that
lo — ¥l lu— |

ol = [

< Ct2.

Note that if we replace w by W™ in this section, all the analysis holds, except

that the convergence rate we can obtain is of order O(t), which is not sharp.

Sec 2.4. Boundary Correctors

The easy application of the Prager—Synge theorem and high convergence rate
of the bi-periodic plate in section 2.3 is a rare exception. For most boundary value
problems, possible boundary layers of the three-dimensional solution make it im-
possible to use a* and um (or 1:5) directly in the Prager—Synge theorem. Boundary

correctors are usually necessary.
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Boundary values to be corrected for the simply supported plates. We
compare the boundary conditions on the three-dimensional solution (o, 1:) with the
corresponding values of (ak,ﬁm), or (crk,JS). Then we find the boundary values
that need to be corrected.

By (1.5) and (1.6), the boundary values imposed on the lateral side I' are

- - —, —

U-e3 =S on=n'’

on =20 soft case,

1:'63ZU'8:TL on—20 hard case.
By (1.10), the simply supported Kirchhoff plate solution satisfies

w =0, nT (1 — v)grad(gradw) + vAwd| n =0 on 0f2.

~ ~

Thus (2.2.1), on the lateral side T,

-,

sTokn = ZST(Tglzxdgradw)n,
TR (2.4.1)
nTokn =0,
where
E
T;: m (1 —y);—l—z/tr;g .
By (2.2.4), on the lateral side I',
- 122% — ¢2
g gy = Y2 = 0)
24(1 —v) (2.4.2)

where s = (s1,82,0), s = (s1,82), n = (n1,n2,0), n = (n1,n2). By (2.2.6), on the

lateral side I',

(2.4.3)
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The nonzero values on the right hand side of (2.4.1) and (2.4.2) or (2.4.1) and (2.4.3)
are the values to be corrected by the boundary correctors o¢ and e
From now on we shall use u* for either «™ or «*. All the discussion applies

to both of them. Define the following functions on I'':
1 Tk k7 T _k
?h;; =—u‘-e3, hgy=-u‘-s, f=—-s o'n. (2.4.4)

We will see the reason for scaling hg in section 3.2. Since the variable z, whose range
is [—t/2,t/2], is an order O(t) term, hj is of order O(#*) pointwise, h; is either zero

or order O(#*) pointwise, and f is of order O(t) pointwise.

Applying the Prager—Synge theorem. We will take & = o*40° and w = uk

in the Prager—Synge theorem. By the theorem,

llu = (15 +u)[1? + o = (o + o°)||% = A e(u* +u°) — (o5 + o) |14

<2 A e(uC) — o°||% + 2| A e(uk) — o2

The term HA_ls(Jk) — o%||% is bounded by either (2.2.5) or (2.2.7). Thus by the

triangle inequality,

Il — ]l < V2I AT e(u) — 0%l + V2] AT e(u¥) — o[ + [[Juc]|

<V2) AT e(u) — 0|l + V2IAT e(u¥) — 0|5 + [l (2.4.5)
and
lle =¥l > —V2 A e(u) — 0| p — V2| A e(u®) = ¥ + [lu°]|
> V2 AT e(uf) — 0% p — V2| AT e(u®) — ¥l + [[ul]]. (2.4.6)
Likewise,

lo — oX||p < V2| A7 e(uf) — 0|5 + V2| AT e(uX) — o8|l + lo||m,  (2.4.7)
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and
llo — o[l > —v2[| A7 e(u) — 0%l — V2| A" e(u*) — 0¥l + [[o¢| . (2.4.8)

A similar approach can be used to obtain energy estimates on a subdomain

P, Since

k k

|||_) ~k < - - ¢ ~c < - - ~c ¢
u—ulp < flu—u —uflp + [ufllpy < llu—u =l + [lul 2

then
llw — u | pe < V2I[A7 e(uf) — 0|5 + V2 A e(u®) — o8| g + [u| o2
(2.4.9)

llu = u¥llpg = =V2I A e(u) = 0|5 = V2| AT e(u) = || + [[u]| -
(2.4.10)

Or,
lo — o llp,pg < V2A e(u) = 0%z + V2IAT e(u) — X & + [lo°|| e
(2.4.11)

lo = 0¥l py > —V2[| A7 e(u®) — o°|[p — V2| AT e(u") — oX||5 + 6% 2,5y
(2.4.12)

In either [7] or [18], o and u are considered separately. HA_ls(JC) —o|g
and |||1:C||| are found to be of the same order O(t?). Although this leads to a global
convergence rate of O(tl/z), this approach does not establish the sharpness of the
convergence rate. Moreover, it cannot be used to obtain higher interior convergence
rates.

We notice the simple fact that it is desirable to find ¢ and ¢ such that the
order of HA_ls(JC) — o°||g is higher than |||1:C||| or ||o¢||g for global estimation,
and higher than |||1:C|||pct) or ||o€| g p: for interior estimation, so that the orders of
|A e(u*) — o*|| g and ||o°| g or orders of A~ e(u*) — 0¥||p and ||o°|| 5 p || & can

be compared. This leads us to seek the following:

A 'e(u®) =0 =0 in P'. (2.4.13)
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Recall that o° must satisfy the conditions in (2.2.3). Then the equations in
(2.4.13) and (2.2.3) determine (o, JC) as the solution to a three-dimensional plate

problem. This problem consists of the differential equation
dive® =0 in P', (2.4.14)
the boundary condition on the top and bottom surfaces
on=0 onQ,UQ, (2.4.15)

and on the lateral boundary I'?, the boundary values to be corrected are imposed.

For the soft simply supported plate, they are

uc 23 = %hz; on I'!,
sTotn = I on I'!, (2.4.16)
nTan =0 on I'.
For the hard simply supported plate, they are
ue - 23 = ;h3 onI',
w-s=h, onl (2.4.17)

nTon =0 on I'*.
These boundary values are specified in(2.4.2) or (2.4.3). Finally, for the soft simply

supported plate, we need to impose the side condition

/;c.;:_/ 7 forallreR.
Pt Pt

Since u¥ is odd in 2, by (1.7), the right hand side of this condition becomes

/ wor=0  forallreR. (2.4.18)
Pt

The equations (2.4.13)—(2.4.15), (2.4.16), and (2.4.18) uniquely determine the bound-
ary corrector (o°, JC) for the soft simply supported plate, and the equations (2.4.13)—
(2.4.15), and (2.4.17) uniquely determines the boundary corrector (O'C,JC) for the
hard simply supported plate.

The following theorem explains how the three-dimensional boundary corrector

affects the error estimation.
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Theorem 2.4.1. Let (0',1:) be the solution to (1.1)—(1.4), (1.5) or to (1.1)—(1.4),
(1.6), 0% as in (2.2.2), u* as in (2.2.6), (0°,u) as in (2.4.13)-(2.4.15), (2.4.16),,
and (2.4.18), or as in (2.4.13)—(2.4.15), and (2.4.17). Then there exists a constant

C' independent of t such that

2v2)|0¢ | — V2| A e(u) — 0| < [lu — u¥||| + |l — o ||

< 2v2)j0% ||k + V2||A" e(u€) — 0| .

Moreover, let Pt be an interior domain of the plate,

220 g, py — V2| AT e(u®) — 0|5 < llu — uX[llp + llo — ol o.p
) (2.4.19)
< 030 g + VEIAT () — o1
Proof. The inequality for the global estimation follows from (2.4.5)—(2.4.8) and
(2.4.13). The inequality for the local estimation follows from (2.4.9)—(2.4.12) and

(2.4.13). O

Note that the right hand side of (2.4.19) are to be used together with (2.2.5) or
(2.2.7), depending on whether uk = u™ or u¥ = u°. As we shall see in chapter 3, the
order of ||o°||g and |[o°||g pt do not exceed O(t°/%). Thus the global and interior
convergence rates are determined by the order of ||o¢||g and ||| g pt respectively.

The orders of these terms are not easy to estimate. It is the main work in the next

chapter.
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Chapter Three

CONVERGENCE RATES FOR SIMPLY SUPPORTED PLATES

In this chapter, we estimate the asymptotic orders of the boundary value
correctors, and derive the convergence rates for the simply supported plates. It is
found that for the hard simply supported plate with smooth boundary, the global
convergence rate of O(t'/?) is sharp, and the interior convergence rate is O(t), while
for the soft simply supported plate both the global and interior convergence rates
are O(t'/?).

The analysis in this chapter uses asymptotic methods employed by Destuyn-
der and Ciarlet [11], [10]. Destuynder discussed convergence rates for the hard
clamped plate, while we treat the cases of soft and hard simply supported plates.
However, instead of correcting the boundary values arising from the second asymp-
totic expansion term in Destuynder’s analysis, we correct the boundary values aris-
ing from the application of Prager—Synge theorem. Initiated by the work of Toupin
[22] and Wan [16], [15], [14], our analysis also use the Saint Venant’s principle, which
makes the analysis clearer.

Following the approaches in [11], we organize this chapter as follows. In
section 3.1, we recall the three-dimensional boundary corrector and its related prop-
erties. In section 3.2, a set of scalings is used to fix the plate thickness, and assign
appropriate orders to the components of the displacement and the stress. In section
3.3, an auxiliary problem on a neighborhood of the lateral boundary of the plate is

defined. The solution to this problem will agree with the scaled boundary corrector
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to the lowest order as that of o!. To facilitate the discussion, a boundary-fitted
coordinate system is used. In section 3.4, the auxiliary problem is decoupled into
one two-dimensional Laplace-like problem and one two-dimensional elasticity-like
problem with variable 6 as a parameter. In section 3.5, 3.6, and 3.7, we analyze the
two problems using Saint Venant’s principle and find the orders of the solutions in
various norms. In section 3.8, we estimate the difference between the solution to the
auxiliary problem and o!. In section 3.9, we obtain the order estimations about o°
from the results in the section 3.8. Finally in Theorem 2.4.1, the convergence rate

results follows.

Sec 3.1. Three-dimensional Boundary Correctors

As discussed in Section 2.4, the boundary corrector (¢, JC) is the solution of
a three-dimensional elasticity problem. The differential equations and plate domain
are the same as the original three-dimensional plate problem, but the boundary
conditions are different. There is no surface loading on the top and bottom surfaces
QL and QL, but nonzero data is given on the lateral boundary T'*. Specifically

—

(o, u®) solves

Ao = e(u”) in P,
dive® = 0 in P! (3.1.1)
oc’n=20 on Q) UQL.

In view of (2.4.16), (2.4.17), (2.4.1), and (2.4.2) or (2.4.3), the boundary conditions

imposed on I'! can be written as follows:

— — —, — — — 1
nTo‘n =0, slon=/f, u-es=—hs soft case,

(3.1.2)
nTon =0, u-s=h, u-e5= ?h3 hard case,
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where hy and hz and f are defined in (2.4.4). Note the following facts which follow
from Section 2.4.

(1) All three functions hs, hs, and f are determined by the first, second, and
third order derivatives of the Kirchhoff plate solution w.

(2) The functions h, and f are odd functions of z while hj is an even function
of z.

(3) The function hj is of order O(¢*) pointwise, hy is either zero or of order
O(#*) pointwise, and f is of order O(t) pointwise.

(4) The integrals of hg, hs, and f with respect to z ranging from —¢/2 to t/2
vanish identically.

The weak formulation for (3.1.1) and (3.1.2) is the following:

Find (o°, JC) such that ¢ satisfies the boundary conditions in (3.1.2) and
/ AO’C2T—/ s(ﬁc):T:0 for all T € X,
Pt Pt

L. (3.1.3)
/ o e(v) = { ({F fv-s) soft case forallv e V.
Pt

hard case
where the displacement variable space V' and stress field space ¥ are given in (2.1.1).
For (3.1.3) to be equivalent to (3.1.1) and (3.1.2), it is necessary for (3.1.3)

to hold for 17 € R. That is
Fr-s)=0  forallreR. (3.1.4)
I‘t

Since r - s is independent of z for any r e R, (3.1.4) holds.

Sec 3.2. Scaling

Following Ciarlet [10] and Destuynder [11], we scale the dependent and inde-
pendent variables. The coordinate variables x, y, z are scaled to x1, x9 and x3 as
follows:

z
=T, r2=y, I3 = (3.2.1)
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Thus the plate domain P? is scaled to P = §2 x (—1/2,1/2). Denote the top surface
of P by Q4 and bottom surface of P by Q_.
The displacement and the stress are scaled as follows:
1

oop(t1, @2, 73) = oG g(x1, 10, ta3), ohg(w1,@2,23) = ;Ugg(iﬁlywzatws)a

o33 (w1, 29, 73) = t—2053($17$27t$3)7 ug (@1, 29, w3) = ug (w1, w2, tas),

ub(xy, w0, 23) = tu§(zy, xo, trz). (3.2.2)

The boundary data becomes

hi(xy, w2, 23) = hy(wr, 22, tas), hi(zy, 2, 23) = hs(xy, 22, tas),
(3.2.3)

fiar, 22, 23) = f(ar, 22, tas).
With this scaling, ut- 23 assumes the value 1% on I'. This is the reason for the factor
of 1/t in (3.1.2).

With such scalings, the spaces V., ¥ become V!, X7:
Y= {r|r; € L*(P).7ij =7ji } |

V= {;|UZ e H! (P),;- 23 =0onl, (1.8) holds} soft case, (3.2.4)
Vt:{;|UiEHl(P),;-g;;:;-;:OonT} hard case.
The scaled corrector (o, u_;f) is the solution to the following problem:
dive! =0 in P,
L (3.2.5)
o'n=0 on Q4 UQ_.
with the following lateral boundary conditions:
nToln = 0, sTaln = ft, ul - 23 = hl  soft case,
L o o (3.2.6)
nTaln =0, wu'-s=n! wu' -e3=~h., hard case,
where the components of o’ in (3.2.5) and (3.2.6) are as follows:
025 _ E autﬁ N oul, . 2v Ju’y . ia_ué 5us|
2(14v) |Oxq Oxg 1—2v \Oxzx 12 0z3
o= B Ouy i Ou (3.2.7)
al 2(1 4+ v)t?2 \dzo  Oxz )’

¢ F Oul . v Oul L f oul,
733 = (I+wv)t* [Oxs 1 —2v \Oxs 02 ’
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Lemma 3.2.1. The problem (3.2.5)—(3.2.7) has the weak formulation:
Find (O't,u_;f) such that ul satisfies the boundary conditions in (3.2.6), and

(O't,u_;f) satisfies the following equations:

ao(a!,T) +t*ax(o’, 7) + tray (o', T) + b(T, u_;f) =0, foralTeX

- -5 4 . (3.2.8)
b(at,v) = fF Fi(v-s) soft case for allv e V1,
0 hard case
where .
ol r) = [ (o = o bon)on
14+ v v
osto'.r) = [ [0t rs = Loyt oy )]
o (3.2.9)

1 14+ v v
;/PtAO':T:/P{{ 5 a;ﬁ—E<a£V—|—tZU§3>} 5aﬁT;ﬁ

14+ v v
U§3 — E <0'ZN + tza§3>} T§3} .

Collecting the like power terms of ¢, we obtain

1
i / Ao 1 = ao(crt,Tt) + tzaz(o'tﬂ't) + t4a4(0't77't)7
Pt

where ag, ay and a4 are given by (3.2.9). Let o and v scale to ot and vt according

%/Pta:s(;):/Pat:s(v_%).

to (3.2.1), we obtain



28

Finally, we have

1 F(0-5) = /f

Using 7 and v instead of 7! and v! for simplicity. The lemma then follows from

(3.1.3). O

Sec 3.3. An Auxiliary Problem

Our goal now is to obtain asymptotic estimates for the scaled corrector func-
tions o' and u!. Because this is too difficult to do directly, in this section we shall
introduce a simplified auxiliary problem for which, as we shall see later, the asymp-
totic behavior is the same to the lowest order.

In order to define the auxiliary problem, we need to introduce boundary-fitted
coordinates in a neighborhood of the lateral boundary I'. Let L be a positive number
less than half the smallest radius of curvature of 02, and let ) be the subset of P
consisting of points within distance L of T". If ;(9) is a parameterization of the curve

0%) x {0} by arclength, then the mapping
(6:8.73) = 2(6) — én + w365

defines a diffeomorphism of Q := (0,L) x R/S x (=1/2,1/2) onto Q). Here S is the
arclength of 9Q and R /S denotes the real numbers modulo S.

The boundary of Q consists of the top and bottom surfaces ¥+ := Q N Q,
the outer lateral boundary I', and the inner lateral boundary I';,. These have simple

expressions in boundary-fitted coordinates:

T = (0,L) x R/S x {#+1/2},

~

['= {0} xR/S x (—1/2,1/2), D ={L} xR/S x (=1/2,1/2).
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If :;3 € @, we denote by z the corresponding point in Q If f is a function on Q) we

define the associated function on Q by

flx) = f(z).
The vector fields n and s can be extended from T to all of @ by assigning to
each point of ) the value of these vector fields at the unique point of I' nearest the
given point. In terms of boundary-fitted coordinates, n and s are extended from the
surface £ = 0 by taking them to be independent of £. It is easy to check that

00 B Se o0& B
Ore 1—€¢/R(0) Oza

—MNe =12,

and
of _0f 08 of o of _ of

Brn D00z, " oedr. “TV% B ony

Change of variable in integration gives

/sz/QfJ:/_ll/; /OS/OL FJ dedodzs. (3.3.1)

where J =1 — £/ R(8) is the Jacobi determinant. In the sequel we shall usually omit
the circumflex from the notation and rely on the context to distinguish between the
functions f and f

From the boundary-fitted coordinate system we have an orthogonal frame
(—7;, g, :;3) defined at each point of (). We shall use this frame to express vector and

tensor fields. Thus if v is a vector field defined on (), we can write

—

v = —v,Nn + vss + v3e3

where

Vp = —V-N, Vs=U0-8, U3=70-e€3. (3.3.2)
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Similarly, if 7 is a symmetric tensor field on @), then

- = - =,

T = TnnnnT—l—Tns(;ﬁT—l—ﬁgT) +T33;gT+Tn3(7;g§+g37;T) —|—T33(;g;{—|—gggT) +T33e3€s
(3.3.3)
where

— — —, — —, —

Tpn =N TN, Tps=25 TN, Tes =25 TS,

— — —, — —, —

Tpy — N~ TE3z, Ts3 — 8§ Tegz, T33 = €3 T€3.

Next we restate the differential equations (3.2.5), (3.2.7) determining the

scaled boundary corrector in terms of boundary-fitted coordinates. Using the fact

that . . L . .
on _0s o On_ s 05 m
o6 9¢ 7 98 R 09 R
we get
dol . 1 dol . . dol s _0
3 1-¢/R 06 Ovs
dol . L 1 dot, L doly _ 0
3 1—-¢/R 06 Oxs
dol, 1 Joly  Ooly _ 0
3 1—-¢/R 06 Oxs 7
and
¢ B 28uf1_|_ 2v 8uf1+lau§+ 1 8u§_i .
T TS0ty |06 1-20| 06 o  1-¢/R\00 R )|

F oul, 1

ul, o,
T (T4 ) [ag T ¢/R) (ae *E%)]’
. E {1/ <8u§ t28u2> 1—v <8u§ 1 t)]
T S U ol—20) [Z\oes T 0¢ ) TT—¢/R\ 8 R")|’

. E Oul N Oul,
T3 T 91+ )2 \ 06 | Ous )’

t

E Oul . 1 Oul
758 = 31+ )2 \Oxs  1-€/R 00 )’

. E(l1-v) 8u§+ 2y 8uf1_|_ 1 8u§_i .
78T ) 1—20)tt \Ous  1-v |06  1-6R\0960 R'™)|[
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To define the auxiliary problem, we alter these differential equations, by sup-

pressing terms that arise from differentiation with respect to 8. Thus we shall define

a tensor field p and a vector field ; on () satisfying

E(l1-v) v Oys 5 OYn
W":(1+yxy—mw2<1—yam*” ag)’
__E 9y
Pre =51+ 1) 9¢°
B Ev Oys 5 OYn,
m“‘u+mu—2mﬁ<mg tag)’
E 8y3 ayn
p“:2u+mﬁ<ag+aa>’
__E 9y
Ps3 = 2(1 + v)t? Ox3’

E(l1-v)

_ Jys
P55 = 14 )(1 — 20)th \ D

and
Opnn
o€
Opns
o€
8pn3
o€

The boundary conditions on p and ; are

Pn3 =0, Ps3 =0, P33 =0

Pan =0, psn=—f, p=nhs

Pnn = 07 Ys = h37 Ys = h3

t2v Oy,
3.3.4
+1—ua§>’ (3.3.4)
aan _ 07
81}3
aPSS
=0 3.3.5
o : (3.3.5)
Ipss _ g,
81}3
on Ut U v,
on I'y soft case,
on I'y hard case, (3.3.6)
on 'y,

Yn =0, pns =0, y3 is constant

/ Pn3 = 0.
I'p

We will discuss the existence and uniqueness of the problem in the next section.
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The solution (p, ;) satisfies a weak formulation which we will use in Section 3.8

in the error analysis. For this purpose we introduces the following spaces.

Yo = {7l € L*Q),7ij = 7ji } . (3.3.7)
Vo = {;|Ul € Hl(Q), ;-23 =0 onTy, 1_;-7;:0, ;-23 = constant onTL}
soft case,

VQ:{;Mi c HY(Q), v- 23:1_;-;:0 only, 17-7;:0, v- g3ZCOIlStaIlt onTL}

hard case.

Lemma 3.3.1. Let (p,g) be a solution to (3.3.4)—(3.3.6). Then (p,g) € X3 X
[HY(Q)]?, Jsatisﬁes (3.3.6) on o UT', and

AQ(p,m) + 12 A (p,7) + t* AL (p,7) + B9(r,y) = 0 for all T € X¢, (3.3.8)

- ty-s t -
Bp,v) = { ({Ff (ves) soft case for all v € Vi, (3.3.9)

hard case

where

14+ v v _
- Fa __I/I/(Sa aJl

( B Pag E'O ﬁ)Tﬁ )
_|_

1+ v v _
A?(Pﬂ')Z/ [( E )PasTas—E(PssTouFTSSPuu)}J L
Q
1
AélQ(va) :/ EIO337_33J )
Q
- v v dvs v
B¢ — S T Rtk ST el
(1,v) /Q T o6 + T o6 —|—T3a€ +T38$3
81)3 8U3 1
3 —— — ) 3.1
+7 3 +T338:1;3> J (3.3.10)

Proof. Multiply the three equations in (3.3.5) by v,, vs, and vz, respectively, and
integrate over (). Integrating by parts and using the boundary conditions in (3.3.6)
gives (3.3.9).
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Associate to a tensor g the scaled version
Pnn = Hnny,  Hns = fns,  flss = Hss,
[in3 = tlin3, flss = tles, [isz =t (i3s3

Further, define a tensor v = 'y(&) by

_ 9yn _ L9y, _ 1 (% Oyn
= The e T e T i\ 0 T Oy )
= iays = i% =0
T8 T oy O3’ T O3’ Jes =
Then
Ag)(p,r) + tZAZQ(p,T) + t4A4Q(p,T) = / Ap - 7J 7
Q
and

BO(r.y) = /Q i) T,

(The fourth order tensor A is given in (1.12)). Therefore the equation (3.3.6) holds
if and only if Ap = 'y(&) This last equation follows directly from the definition of

these tensors. [
Note that AiQ differs from a; in two ways: restriction of the domain to () and
multiplication of J~!, If we let y¢ be the characteristic function of ), then

A%(Jp,T) = ai(xop, 7)., 1=0,24. (3.3.11)

Note also that B?(r, 1;) differs from b(r, 1;) in three ways: restriction of the domain

to @), suppression of terms involving tangential derivatives, and multiplication of

J~1. In fact,

B —»)_/ %—I- 81)3_'_ 1 8vn+i L %
XQT,v) = o Tnn 85 Tns 85 1—€/R 00 Rvs Tns 85

+ %+ av5_|_ 1 dvs + %_i + %
T ey U\ 0, 1—¢/R06 )\ a8 T R") T 0u,
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Thus, let

. ]_ ]_ avn ]_ _’_’T _’_’T avs ]_ _’_’T
ﬁ_1—yRL<%*UfQWS+m>+<%_R%>”

10ys ~ ~p ==
59 (cas” + se?)] ,
then i1t follows that
BﬁQﬁj;):Z(XQTﬁD——/‘T:ﬂ. (3.3.12)
Q

Substitute (3.3.4) into (3.3.5), (3.3.6), we obtain explicitly the following differential

equations and boundary conditions in terms of only the displacement variables:

9%y 9%y 9%y .
2 . n . no_
21— v) &2 * Ox30¢ +(1—2v) Oz 0 in@
9%ys3 5, 0%yn 9 9%y .
J— _— p— . -1
2(1 —v) 822 + ¢ 206 +t°(1 — 2v) a¢2 0 in @, (3.3.13)
2 2
t2ay3+ay8:0 in Q.

0¢? Oz
with the following boundary condition on top and bottom surfaces:

ayi’) ayn

— =0 UASUR O
26 1 ouy on !
Vtz ayn ayS _
=0 vtuUw
1—v 85 * 81'3 on ’
u: _ on T U,
81}3
On the lateral boundary I'g, the boundary conditions are as follows:
OYn v Oys Oy 2(14v)
t? =0 =h =—-———f ft
o¢ + 1~ 1 Ous y Y3 3, o¢ 5 f;  soft case
t? Oy + v_ Oys =0 =h = h,: hard case
o¢ 1—vdxs Y3 = 08y e =

On the lateral boundary I'y, the boundary conditions are as follows:

=0, ys is constant on 'y,

(3.3.14)
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Sec 3.4. Two Separate Problems

The problem in (3.3.13)—(3.3.14) has derivatives with respect to only the vari-
ables £ and x3. This indicates that the variable 6 can be treated as a parameter. Thus
we discuss the problem in the two-dimensional domain wg = (0, L)x(—1/2,1/2)x{6}
for every 6. For simplicity we write w instead of wg. In the following discussion,
although bounds derived for the unknown variables on the domain w seem to depend
on #, such dependence is continuous. As the domain of 8 is a compact set, all such
bounds are actually independent of 6. From this this section on, we denote y, by
¥, ys by ¢, and yz by .

We denote by ~* the horizontal segment (0,L) x {£1/2}, and by ~, the
vertical segment {a} x (=1/2,1/2) for 0 < o < L.

It is easy to see that the equations in (3.3.13)—(3.3.14) decouple into two
problems.

The first problem relates to a Laplace equation on w, and determines ¢:

2 .

t 8—52 —|— a—xg = 0 m w,

a_qb =0 on vyt U~T,

81}3

g_? _0 on 1. (3.4.1)
2(1

g—? = —%f on vp; soft case,

¢ = hs on vp; hard case.

In the soft case, we add the following condition to guarantee that the solution is

unique:

/wqb: . (3.4.2)
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For soft simply supported plate, the compatibility condition is f% f=0.

The second problem relates to a plane elasticity system, and determines

and -
2t2(1—u)%+ aizgg +(1—2u)g% —0 in w,
2(1 — )Zié‘ﬂ%iﬁgﬂ%—b)%:() in w,
2
g—’g %)3 , 1ij2—?+§7’”‘3:0 on v+ U~y
¥ =0, pis constant on 4z,

3 3
/ (a—’g + a—i) — 0. (3.4.3)
YL

It is easy to see that either (3.4.1) or (3.4.3) has a unique solution.

We need to find the orders of ¢, ¥, u and components of p in several norms.
The following space is equipped with a norm that treats partial derivatives along
different directions separately:
1/2

HS’O(w) = {v:wHRM(-,y)EHS(O,L),/

—1/2

o, e 0,1y dy < o0 } :

Sec 3.5. Saint Venant’s Principle

In this section we discuss Saint Venant’s principle for Laplace’s equation
and the elasticity equations in a two-dimensional strip. Saint Venant’s principle
describes that under certain conditions, the effect of nonzero boundary data decay
quickly away from the boundary. [22], [12], [16], [15], [14].

We also derive bounds for some energy norms. Results obtained in this section

will be used in later estimation. The notation is independent of the previous sections.
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For any numbers 7y < rg let w,, ,, denote the rectangle (ry,ry) x (—=1/2,1/2).
For r > 0 we use the simpler notation w, in place of wp,. Also we denote by ~,

the vertical segment {r} x (—1/2,1/2), and by vF the horizontal segments (0,7) x
{£1/2}.
Exponential decay for Laplace’s equation in a strip. In this subsection we

consider Laplace’s equation

Au=0 in w,, (3.5.1)

subject to the homogeneous Neumann boundary condition

0
L0 on v,F U~ U~ (3.5.2)
on

on three sides of the strip. On the fourth side we impose either the Dirichlet condition

(the hard case)
u=nh on Yo (3.5.3)

or the Neumann condition (the soft case) (the soft case)

Ou

9 =9 on o, (3.5.4)

where ¢ is a given function on =y of mean value zero:

/ g=0. (3.5.5)

In the case of the Neumann condition, we also normalize the solution by imposing

the condition

/w u=0. (3.5.6)

Given g satisfying (3.5.5), there is clearly a unique solution u to (3.5.1), (3.5.2), and
either (3.5.3) or (3.5.4) and (3.5.6). Note that, in view of (3.5.5), equation (3.5.6)
holds in both cases. The main result of this subsection is the following exponential

decay result.
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Theorem 3.5.1. Let r > 0 and let u: w, — R be the unique solution to one of the

boundary value problems described above. Then

/ lgrad u|? < e~ Ara=m) / lgrad u? for all 0 < ry <ry <r.

r2,T T,

Here )\ 1s the constant 8772/(4772 +1).

Before turning to the proof, we establish some simple lemmas. The following

standard result may be derived from a Fourier series expansion.

Lemma 3.5.2. Let g € HY(I) where I is an interval of length 1 and suppose that

1
lg)* < —/Ig’l2
/I 472 T

(where the prime denotes differentiation along I).

fIg = 0. Then

Next we show that the solution u has mean value zero on every vertical seg-

ment.

Lemma 3.5.3. Let r and v be as in Theorem 38.5.1. Then

/u:()
Ve

for all0 < s <.

Proof. From (3.5.1), Green’s theorem, and (3.5.2) we have

Ou Ou
/ws 7 ! /aws 7 an RE] an

Define v(x,y) = x. Again applying (3.5.1), Green’s theorem, and (3.5.2), we get

O:/(UAu—uAv):/ (vg—u—ug—v>:—/ ug—vz/u— u.
We Ow, n n Ows n Yo RE]

The lemma follows from this equality and (3.5.6). O
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We now turn to the proof of Theorem 3.5.1.

Proof. For 0 < s < r, let E(s) = qu lgradu|?, so E : (0,7) — R is positive and
decreasing.

From (3.5.1), Green’s theorem, and (3.5.2) we have

ou u 1 1
ESZ/ u—z/u—é—/IU|2+—/
( ) aws,r an RE] an 2 Ve 2 RE

where we have used the arithmetic-geometric mean inequality in the last step. In

2
Ou
n

a_ )

view of Lemma 3.5.3 we may apply Lemma 3.5.2 to get

11 )
E(S) < <§‘|‘ 8?) /ys |g£adu| R

or

E(s) < —=E'(s).

Rewriting this as E'(s)/E(s) < —\, integrating from r; to rg, and exponentiating
then gives

E(rqy) < e_)‘(”_rl)E(rl)
as desired. O

Note that from Lemmas 2 and 3 we easily obtain the estimate

1
lull7zqe. ) < WHng&d ullf2(w, )

Therefore we obtain exponential decay of the H' norm as a corollary of Theo-

rem 3.5.1.

Theorem 3.5.4. Under the conditions of Theorem 5.5.1

1
HUHfm(%yr) < (1 + W) e_)‘(”_rl)/ |g1"NaLdu|2 for all0 <ry <ry <.

1>



Exponential decay for two-dimensional elasticity equation in
A be a symmetric positive definite tensor on symmetric 2 X 2 matrices

the following two-dimensional elasticity equations in this subsection:

On the other side we impose

uw-n =0, wu-s isconstant on v,
/ ston =0
T

Define the space for displacement
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a strip. Let

. We consider

(3.5.7)

(3.5.8)

(3.5.9)

(3.5.10)

(3.5.11)

Vh:{UEHl(Qr)|v-3:hon’yo,v-n:0,v-3isconstanton’yr}.

~

The weak formulation of (3.5.7)—(3.5.11) is the following:

Find v € V, such that

/ [Ae(u)] 1 e(v)=0 for all v € V.
Q, ~R ~o

(3.5.12)

Note that { [ [Ae(u)] : E(u)}l/z is a norm on Vg, so the equation (3.5.12) has

a unique solution. The main result of this subsection is the following exponential

decay result.
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Theorem 3.5.5. Letr > 0 and let u € V', be the unique solution to (3.5.12). Then

there exist positive constants A and C' independent of r such that

|g|2 < CG—A(T’z—”l)/ |g|2 forallry >0, +1<ry <,

r2,T Wry,

/ |g(g)|2 < C'e_)‘(”_rl)/ |g(g)|2 forallry >0, r1 +1<ry <.

r2,T T,

Before turning to the proof, we establish a simple lemma and corollary.

Lemma 3.5.6. Let (o, u) be the solution to (3.5.7)~(3.5.11). Then

~

~ R~

/gn:(), /ynTan:O for all 0 < s <.
RE ~ RE

Proof. First,let v = (0,1). From Green’s theorem, (3.5.8), (3.5.9), and (3.5.11), for

any 0 < s < r, we obtain

0:/ g:g(v):/ (Un)-v—/ (diva)-v:/ sTon. (3.5.13)
w ~oo~ s, - ~ ws, ~ R ~ v o

8,7

Next, let v = (1,0). From Green’s theorem, (3.5.8), (3.5.9) and (3.5.10), for any

0 < s <r, we obtain

0:/ (v):/ (Un)-v—/(diva)-v:/nTan.
we ~ dw, P w, TR e R

Finally take v = (y, —x). From Green’s theorem, (3.5.8), (3.5.9) and (3.5.10), for

&S]
{om

any 0 < s <r, we obtain

The last equality follows from (3.5.13). O
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Corollary 3.5.7. If (0, u) solves (3.5.7)~(3.5.11), then

~

~
InAaV) ~

/(Un)-m:() for all0 <s<r, forallmeN,
-

where N'={a+by,c—bx|a,bjce R}, O

We now turn to the proof of Theorem 3.5.5.

so=

For each s > 0, denote by N the space of rigid motions in the domain Ws ot1 =

Proof. We set

S|

(s,s +1) x (=1/2,1/2). It is well known that any rigid motion takes the form
(a 4+ cy,b — cx) for some constants a, b, ¢, and so N is a space of dimension 3.
When s < r — 1 fixed, let u be such that v — u € N, and u is orthogonal to A, in

L*(ws 541). It follows from Korn’s inequality that there is a constant C independent

LY E
Ws s 41 ~ Ws s 41 ~

s+1
Q(s):/ E(p)dp forall 0 <s<r-—1.

of r and s such that
(u) ]

Let

From Green’s theorem, (3.5.8), (3.5.9), (3.5.11) and Corollary 3.5.7, for any s, we

s+1 s+1 s+1
Q(s):/ / o:e(u)= / (Un)-u:/ / (on)-u
s w ~oR s FpYUYr o ~ s % e ~

»,r

1 1
<5 [ (gPruf)scf e[ gizw
2 Ws s 41 ~ ~ Ws s 41 ~ /\ Wi, s ~ ~

where \ is some positive constant. On the other hand,

have
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Thus,

Rewriting this as Q'(s)/Q(s) < —A, integrating from r; to re, and exponentiating

then gives
Q(r) < e_)‘(”_rl)Q(rl) forall 0 <r; <ry <pr—1.
Note that E(s) is a decreasing function, so
E(s+1)<Q(s) < E(s) forall 0<s<r—1.
It follows that
E(rqy) < e)‘e_)‘(”_“)E(rl) forall i >0,r +1<ry <r.

The theorem follows easily. O

Energy norm bounds. In this subsection, we show that the energy norm of the
solution to either the Laplace equation or the elasticity equations can be bounded

in terms of the lateral boundary data on ~ uniformly in r.

Theorem 3.5.8. Let u, h, g satisfy (3.5.1)~(3.5.6). There exist constants Cq, Cs

independent of r > 1 such that

CIHQHH—U?(VO) < HuHHl(w,,) < CZHgHH—1/2(,YO) soft case,

CthHHl/2(’Yo) S HuHH1(wT) S CQHhHHl/2(,YO) hard case.

Proof. We first prove the lower bounds. For the hard case, since u = h on ~g, by

trace theorem, there exists a positive constant C] independent of r such that

1Bl zr1s2(0) < Crllellzr oy < Clllell e, )
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For the soft case, since Ju/0n = f and Au = 0, then there exists a positive constant

C7 independent of r such that

[Fli=1r2(40) < Clllull g1y < Crllullar(w,)-

The lower bounds then follow by taking C; =

= 1/C{. We now prove the upper
bounds. First consider the hard case.

/ |gradu|2:/ uau _ uau :/ hau‘
™ ow, On o on v on
Let w € H'(w;) be such that

Aw =10

Ow _
5, =V on v Uy,

n wy,

w=h

on Yo,

w=20 on v

It follows from a standard regularity result that

lelliriceon) < Colltll sy

Thus, we have the following bound:

ou ou ou
dulZa = | BEL = [ W& = o dw - grad
lgradul|zz, ) e T ) /amwan /w gradw - gradu
< Jwll o llgrad ul[ 12w,y < Col|bl[ ey lgrad ull 2., ) -

It follows that
HgiaduHLz(wT) S CQH}LHHUQ(W). (3.5.14)

Similar arguments hold for the soft case:

/ grad ul? Ju / Ju /
radu —_— U = —_— U = qu.
W ~ dw, an ~o an ~o
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Let w € H'(w1) be such that

Aw =10 n wi,
ow _
8—n:0 on v U~y U,
ow

— = on
on g 70,

/ w=70

It follows from a standard regularity result that

w1 () < Callgll=1/2,70-

Thus, we have the following bound:

ow ow
d 22 —_= —u —_= —_— = - = d N d
ngNa ullz2er) Louan Vouan /8w1 “on /wl S

< llgrad ull g2y 1012 o) < Collgrad ull (o)

Il =172(50) -
It follows that
ngNaduHLz(wr) S CQHQHH—1/2(,YO). (3515)

From Lemma 3.5.2, f% u = 0 for all s € [0,r], thus

!\uH%z(%):/ / |u|2§02/ / grad ul®. (3.5.16)
0 Vs 0 RE]

The upper bounds then follows from (3.5.14), (3.5.15) and (3.5.16). O
Theorem 3.5.9. Let h, o, and u satisfy (3.5.7)-(3.5.11). Then there exist con-

stants C'y and Cy independent of r > 1 such that

CillPllmar2(yg) < llgllzzw < Collbllmirz(),

Cillhl 17200y < (0l 2200) < Collbll 2oy
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Proof. We first prove the lower bounds. Since uy = h on ~g, by the trace theorem

and Korn’s inequality, there exists a constant C{ independent r such that

1Bl 720y < Cillwallm ) < Crmin(lle (w)llz2 (o) [19]122(0))

< Crmin([lg (w)ll 2w,y 1]l 2200)):

The lower bounds then follow by taking C; = 1/C]. Now we prove the upper bounds.
By (3.5.8)-(3.5.11), dive = 0 in w,, on = 0 on yEuUAT, nTgn = 0 on 7, and
J. (on)-u =0. Then we have

TS~

HQH2L2(W,,) < (O, o E(g) = Cz/ itggh. (3.5.17)
~ wr T Yoo
Let w be such that
- T = AE(IB) in wy,
d;vz = 9 n wi,
=0 on~y Uy,
QTQQ 0 on 0. (3.5.18)
wes = h on 7o,
w = 9 on 7vj.
Then
el ony < Calllparzcoe (3.5.19)

Then by (3.5.17), (3.5.10), (3.5.11), (3.5.18) and (3.5.19), we obtain the following
bound:

Iz < C: [

Yo

sTonh = Cz/ ST(Un)(w c8) = Cz/ (on)-w
~ R Bwl

~ ~
~ o~ ~ ~ InAaV) ~

Yo

= Cz/ g :e(w) < CollgllL2wpllwllm ) < CollgllLzwn 1Pl iz

The upper bounds then follow. [
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Lemma 3.5.10. Let u € V, be the unique solution to (3.5.12). If h is an even

function in x3, then uy 1s an odd function in x3 and us 1s an even function in 3.

Proof. Define uy(z,y) = —ui(x, —y) and uz(x,y) = uz(x, —y). It is easy to check
that (u1,uz) is also a solution to (3.5.12). By uniqueness of the solution, u; = u;

and us = us. Hence uy is an odd function in y and uy is an even function in y. 0O

Sec 3.6. Order Estimation for the Scaled Terms

In this section, we estimate the orders of the solutions to (3.4.1) and (3.4.3)

by using the results of Section 3.5.

Estimates for ¢. Consider the solution ¢ to (3.4.1) and define v on w,, where
r =L/t by
u(x,xs) = P(ta, x3). (3.6.1)

The u satisfies (3.5.1)—(3.5.4) with
h(07x3):h8(07x3)7 g(o,$3):2t(1—|—l/)/Ef(0,$3)

The following result therefore follows from Theorem 3.5.8.

Theorem 3.6.1. Let L > 0,0 <t <1, hy € H'?(y) or f € H™ 2 () given,
and ¢ the solution to (3.4.1). Then there exist constants C1, Cy independent of t

such that

9

¢

< CQtS/ZHfHH_l/z(%) soft case,
0

|2

2wy 119812
< C’gtl/zﬂthHuz(%) hard case.

9¢
3/2
Cit / HfHH_l/Q(Vo) < HQbHLQ(w) + H@ —I—tH

L2(w) L2(w)

0
C tl/z hs 1/2 < 2(0) T || =—
1 1Pl ras (vo0) = 9l z (w) O
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Theorem 3.6.2. Let ¢ be the solution to (3.4.1), or (3.4.1) and (3.4.2). For all
0<a< L letw, =w\ws. Then there exist positive constants \ and C independent
of t such that

d¢ d¢
1ol L2(@0) + || 77 +tl 57
07312, N19€ 112G,
< C’t3/26_)‘a/2tHfHH_uz(VO) soft case,
9o d¢
1ol c2(@0) + || 77 +tl 57
07312, N19€ 112G,

< Ctl/ze_)‘a/ztﬂhsHH1/2(VO) hard case.

Proof. We choose ry =0, ro = a/t, and r = L/t in Theorem 3.5.4, to get

s S 0 [ lgradu

Wit
Making the change of variables in (3.6.1), this becomes

06 06
16, + H— =

2 2

2
L2(@q) w

The right hand side can be bounded by Lemma 3.6.1 and the result follows. O

2 06

0¢
‘|‘@

2
+1 o€

L2 (@a)

81}3

Before deriving several consequences of the exponential decay properties, we

prove three calculus lemmas.

Lemma 3.6.3. Let L > 0, f:[0,L] — R. Suppose there exist K >0, p > 0, and
~ > 0 such that

I 1/2
(/ |f|2) < Ke oH for ally < a < L. (3.6.2)

Then

L 2
/ |f] < ‘ 1K/,L_1/2e_a“ for allv <a <L, (3.6.3)

e —

2
L L 4
/ (/ |f|> S . PR forally Sa S L (364)
o I3 € —

L
/ §2|f|2 < C’Kz/,fze_za” for allv <a <L, (3.6.5)
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where C' = e* > 2 (i + [ap] + 1) €72, [ap)] is the largest integer less than or equal
to ap.

Proof. Fix any o € [0,L], let I,, = [nu~',(n + 1)~ '] N[, L]. By (3.6.2), for all

S o S L?
In

[Lu]

I 1/2
/ |f|2> SI(ﬂ—l/Z Z e
~

max(np=",7)

[Lu]

/|f| p /|f|< *”nz

[ap]
[Lu]
SM—l/z Z (

n=[ap] n=[ap]
< K/,L_l/2 Z e~ "= K/,L_l/ze_[a“] Z e "
n=[ap] n=0
o2
< — RKpMPemon,
e—1
This establish (3.6.3).
Let
L
g(6) = /5 ]
By (3.6.3),
g(6) < Kp='Pemtt, 4 <e<L

Thus, for v < o < L,

L L 62 2 1 62 9
/ lg|? d¢ S/ ( 1) K2 tem26mde < = 51 ( 1) K2e—20m,
a a € — e —
which is (3.6.4).
Finally, for v < a < L,

L [Lu] [Lu]
/ eip =y / CUE < Y (nt1) / I
o n=fau] * n n=[as] "

[Lu] L [Lu]
D VI RN ST DELRE
n=[au] max(na~! n=[au]
,2 —2 Z i + O‘/l _I_l —2¢ < Kz/,ﬁze_za“ez Z(l + [O‘/l] + 1)26 2
=0 =0

This proves (3.6.5).



50

Lemma 3.6.4. Suppose that the hypotheses of Lemma 8.6.3 hold with v =t and

=M/ (2t) for some positive t, \, and that

I 1/2
/|f|2 <K.
0
2~ A/2 9
2 /2
/|f| ( 1\K+1)At |

Then

2 2
L L 4-—X 2—\/2
e 2 e 2
< | —= 41 | K%
/0 (/5 |f|> = (e—1)2A2+<6_1\/:+> e

/£2|f|2 (oo 1) e

where C' =32 €2(i 4+ [\/2] + 1)%e™ %,

Proof. Taking oo =t in (3.6.3) gives

/2=

/ |f \/:t12 2
1/2

/|f|<t1/2 (/ |f|2> < Kt'/2

The inequality (3.6.6) then follows.

Moreover,

By (3.6.4) with the same choice o = ¢,

L/ L 2 ot A
J (/5 'f') SE AN

Moreover by (3.6.6),

F(fa) <[ ([o) =(E2070) e

The inequality (3.6.7) then follows.

(3.6.6)

(3.6.7)

(3.6.8)



Finally by (3.6.5),
L 4 \
2 2 2 E 2 —
/t EIfP < CR? e,
where C' = Y72 €2(i + [\/2] 4+ 1)?e7%". Moreover,

1 1
/ Ef? < 12 / FIE < K22
0 0

The inequality (3.6.8) then follows. O

Lemma 3.6.5. Let L >0, 0<t < L, and o :w — R be g1

51

ven. Set Wy = w\waq.

Suppose that there exist constants \, M > 0, and s € R independent of t such that

o]l r2(@n) < Mtie=e?t for allt < o < L, and for a = 0. (3.6.9)

Then there exists a constant C' independent of t such that

o]l (@) < C M#sH1/2e—Aa/2t forallt <a <L, (3.6.10)

L
/ o] d¢
5 LQ(G}Q)

ol nr(w) < CMtst1/2,
< CMtst

L
/ o] d¢
3 L2(w)

1€l 2y < CMETTE,

Proof. We apply Lemmas 3.6.3 and 3.6.4. Let

< O Mt e—Aa/2 forallt <a <L, (3.6.11)

(3.6.12)
(3.6.13)

(3.6.14)

1/2 1/2 \
f(g):</ |U(§,:1;3)|2d:1;3> , K = Mt°, aiove v =t. (3.6.15)

—1/2

By (3.6.9), we obtain

I 1/2
(/ |f|2> = |lol|r2(@n) < Mise=re/2t = [{eman

I 1/2
(/ |f|2> = |lof|z2() < K.
0

forall v <o <L,
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Thus, the conditions of Lemma 3.6.3 and 3.6.4 are satisfied. By (3.6.3), (3.6.15) and

Cauchy’s inequality, we obtain

L 1/2 L
lollsay = / / e / | < OV
o —1/2 o

< C MpsH /2= Aa/2t forallt <a <L,

which is (3.6.10).

Moreover, by (3.6.6) and Cauchy’s inequality,
L
lollprw) < / If| < CKt'/? < Cjwts—i—l/z7
0

so (3.6.12) holds.
To show (3.6.11), take any v € L?*(Qq) with |[v]/z2(z,) = 1. By Cauchy’s

inequality and (3.6.4), we obtain

/—11//22 /aL </5L (o a)l dC) o(€, w3) dédas
- /QL /; /_11//22 |0(C, 23)|0(€, 23) dasdCdE

L L 1/2 1/2 1/2 1/2
2 2
§/a {/5 (/_1/2 lo(C,xs) d:z;;;) dC] (/_1/2 |v] d:z;;;) d¢
L L 2 12
/ ( / |f|dC> d&] < CKplemon
@ 13

= O Mt e/ forallt<a < L.

<

This shows (3.6.11).
Similarly, but using (3.6.7) instead of (3.6.4), we get

/_11//22 /OL (/j |0(C,x3)|dC> (€, ws) dédrs < /OL (/j |f|d§)

< CKt < CMtsT

9 1/2
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ie., (3.6.13).
Finally, take any v € L?(w) with ||v]|z2(w) = 1. By Cauchy’s inequality and
(3.6.8), we obtain

L p1/2 I 1/2 NN 1/2
| o= 5(/ |a|2> (/ |v|2) ¢
o J-1/2 0 —1/2 —1/2
I 1/2
gC(/ §2f2> < CKt=CMtH,
0

showing (3.6.14) and completing the lemma. O

Theorem 3.6.6. Let L >0,0<t <1, he H'/?(yy), f € H'/?(~) given, and ¢
the solution to (3.4.1). Then there exists a constant C independent of t such that
(1) In the soft case

< Ct5/2HfHH—1/2(70)7

0¢
1£0] 2wy + H%)T
3 L2(w) (3.6.16)

olea

9

L2 (w)

.

T H
H=vo(w) (3.6.17)

Oy

H=10(w)

(2) In the hard case

< Ct3/2Hh8HH1/2(’Yo)7

99
leollzeo + €50
3 L2(w) (3.6.18)

otlea

9

L2(w)

2], e

T H
H19(0) (3.6.19)

dzs

H=1.9(w)

Proof. For 0 < o < L, let Wy = w\wqy. Consider first the hard case. By Theorem

3.6.2, there exist positive constants A, C; independent of ¢ such that
&l 1220y < C1t1/26_)‘a/2tHhSHHl/z(VO) forall 0 < a < L.

Thus may take 0 = ¢, s = 1/2, and M = C||hs||1/2(4y) in Lemma 3.6.5. Then the
desired bound on the first term on the left hand side of (3.6.18) follows immediately
from (3.6.14).
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Next take any w € H'%(w) with w(0,235) = w(L,23) = 0 and ||w|[ g0 = 1.

We obtain

/_11/; /Owwdgdxg _ /_11/; /OL ( /5 M) %0 g, < /;qﬁ

The desired bound on the first term on the left hand side of (3.6.19) follows immedi-

L2 (w)

ately from (3.6.11). We have thus bounded the first terms on the left hand sides of
(3.6.18) and (3.6.19). Identical argumentation gives the same bounds for remaining

terms, and the soft case may be treated in the same way. 0O

Estimates for ¢ and p.
Consider the solution (¢, 1) to (3.4.3) and define (uq,uz2) on w,, where r =

L/t, by

¢(€7$3) = %ul(t_lgvx?))? /J(f,l’;;) = _uz(t_1€7x3)‘ (3620)

Then (uy, ug) satisfies (3.5.7)—(3.5.11) with h(0, x3) = h3(0, 23). The following result

then follows from Theorem 3.5.9.

Theorem 3.6.7. Let L >0, 0 <t <1, and hy € H'/?(~o) be given, and let (1, 1)
be the solution to (3.4.3). Then there exist constants Cy1 and Cy independent of t
such that

_ _|_ _
af L2(w) ‘ 81'3 85

< Cztl/z Hh3HH1/2('yo)'

Cut' || hs || griragayy < 12

L2(w) H Oy L2(w)
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Theorem 3.6.8. Let L >0, 0 <t <1, and hy € H'/?(~o) be given, and let (1, 1)
be the solution to (3.4.3). For 0 < a < L let o = w\wqa. Then there exist constants
A and C independent of t such that

IR o P

ER L2(o) Oz 0| 125, O3 {125,
< Ctl/ze_)‘a/ZtthHHl/z(%) for allt < a < L.

Proof. We choose ry = 0, ro = a/t, and r = L/t in Theorem 3.5.5, to get for all

|
/Wa/t,L/t

Making the change of variables in (3.6.20), this becomes

t<a<l,

() < Cem?e/! /

Wit

{om
{om

().

8;/) o H
af L2(wa) 81‘3 af L2(wa) a$3 LQ(WQ)
< Ce—)\a/t +4 8_7#) _I_t a¢ H
o¢ L2(w) Oxs 85 L2(w) Oxs L2(w)

The right hand side can be bounded by Theorem 3.6.7 and the result follows. O

Theorem 3.6.9. Let L >0, 0 <t <1, and hy € H'/?(~o) be given, and let (1, 1)

be the solution to (3.4.3). Then there exists a constant C independent of t such that

o o
8 PO L Coit ] I o IR P
L2(w) 3 L2(w) 322w (3.6.21)
des —H H < 2Rl p11r2 -
HH 10(w) ‘ Ous 10wy 11973 | -0 (3.6.22)

Proof. First, we bound the first term on the left hand side of (3.6.21). By Lemma
3.6.8 and Theorem 3.6.7, there exist positive constants A and C; independent of ¢
such that

< C’lt_3/26_)‘a/2tHh3HHl/z(%) forall t < a < L, and for a = 0.

|2

12(%a)
(3.6.23)
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Then we let 0 = 0v/9¢, s = —3/2, and M = Ci||hs]| g1/2(4,) in Lemma 3.6.5, and
from (3.6.14) we obtain

< Ct Y2 hs | 1oy
L2(w)

I

3
as desired.

Given any w € H"%(w) with w(0,23) = w(L,23) = 0 and |[w]|gr.00) = 1,

/_1/2/ Y o deday = /_1/2/ ( 5 ) g@g dedus.

Then by (3.6.11),

1/2 L La¢ aw
—d( | — dédzx C
/_// <5 oC C) pg s =

The desired bound on the first term of (3.6.22) then follows. The bounds on the

Loy

o

S Ct_l/thz;HHl/Q(’Yo)'
L2 (w)

other terms of (3.6.21) and (3.6.22) can be shown in the same way. 0O

Sec 3.7. L? Estimation

In the previous section we obtained bounds on certain derivatives of ¢ and
p. In this section, we estimate the order of 4| 72(.) and ||1]|z2(w). The result will

be used in the next section.

Theorem 3.7.1. Let hs € Hl/z(’yo) an even function of xs with f% hs =0, and
let (¢, 1) be the solution to (3.4.3). Then

18]l 22wy < Ct Y20 hs | miiagrgys itllzz) < Cllhsllaiiagyy)-

Proof. By (3.4.3) ¥ =0 on ~. Thus

- /5 (& 3)
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In view of (3.6.23) we may apply Lemma 3.6.5 to get

L
I (C, _
[Pl 22(w) = H/ % <Ct 1/2Hh3HH1/2(’YO)'
3

L2 (w)

Next we prove the estimate for p. Let

1/2
gy — .
= [ NICSID -

p B (& ) = p(€ xs) — pM(9).

By Theorem 3.6.7,

o

< CHY2| s || g12m .-
81'3 = H 3HH /2(~0)

L2 (w)

Since f% p?) =0 for all 0 < ¢ < L, then

ou®
81}3

op

1/2
Bos < CHP|hs|l oy (3.7.2)

L2(w)

12y < € H

=¢|

L2(w)

It remains to bound px") in L?*(w). By Lemma 3.5.10 and (3.6.20), ¢ is an odd

function in a3, and so ¥ (£,0) = 0. Therefore, we have the identity

[T e vae= [N a7
st = [ gheman= [T (5 L) enan— [ Fies)an

(3.7.3)
Let

dpM

PO as) = ¥(&ma) +oa—gp

(€). (3.7.4)

Then by (3.7.3) and (3.7.1), we obtain

m_ [T[(om a¢>_am%]
o= (G o) - %] (375)

Recall the expression for p in (3.3.4) and the equations (3.3.5) and (3.3.6). In




particular, for any fixed value s of the arclength coordinate, we have

apnn aan

=0 1
o€ s \ n w,
Opnz | Ops3 —0 nw
85 81}3 ’ ’
pn3 =0, p33=0 on ’7+U’7_7
Pnn = 07 U= h3 on %o,
(1 = constant, ¥ =10 on g,

/ Pn3 = 0.
I'p

By Lemma 3.5.6 and (3.6.20) and (3.3.4),

/ T3Pnn = 0.
I'p

Take any v = v(£) € H?(0, L) with v(0) = 0. Then

dv d*v
~ v 0 0
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(3.7.6)

Furthermore, by the boundary values of p,n, pn3, psz on Ow, and the facts that

v(0) = 0, —x30dv/0d¢ is linear, and v is constant on I'z, we obtain
—~ (p P dv , , o
0= di nn n3 —T3—= — _ / nn n3 : —ry—
/w ~ <Pn3 ,033> ( Udf ) A\ pns pas g Udf
dv )
Pnn  Pn3 — T3 — _ d_U
+/<9w |:<10n3 ,033>2] ( vd£> /wl’3,0nnd£2,

)

where (Tl\vf = 0f/0¢ 4+ 0f /Ox3. Since {dzv/alf2 € H*(0,L)|v(0) = 0} = L*(0, L),

it follows that
1/2
/ 23pnn =0 for all € € [0, L].

—1/2

From the expression of pp, in (3.3.4) this implies

/”2 xsa—@”:—é/”z ra Dt
1/2 o€ t2(1 —v) —1/2 Oz

(3.7.7)
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Now we differentiate both sides of (3.7.4) with respect to ¢, multiply by x5 and

integrate from —1/2 to 1/2 in a3 direction. Thus,

1 d2p 12 gy 12y
- :/ T3 dl’3—/ $3—d$3

12 dg¢? —12 0¢ —12 O (3.78)
/1/2 o) N v o J o
= x X X
—1/2 ’ 85 tz(l—l/) 381’3 »
where we used (3.7.7) in the last step.
Now f = flﬁz hs = 0. That is
pM(0) = 0. (3.7.9)
By (3.7.6) and the expression of p,3 in (3.3.4), v» = 0 on v, and
9
-|— = 0.
~I 81'3 85
Thus
op
L)
PRES
That is
au
gg (L) =0. (3.7.10)

From (3.7.8), (3.7.9), and (3.7.10) we can compute p1):

o (1) y 9

p(E) = v o

12/ / /_1/2 |: (777!1?3) + t2(1 _ 1/) 6;1;3 (7’],1’3) dx3d77d<=
(3.7.11)

By Theorem 3.6.7 and

Now we consider the term

fo fL f 1/2 3011/ 93 I
Lemma 3.6.9, there exist positive constants A, C' independent of ¢ such that

< Ctl/ze_)‘a/ztHh3HH1/2(VO) for all t <o < L and for a = 0.

Hal’S L2(%4)

Then by (3.6.11) and (3.6.13), we obtain

s

o

< CtS/Ze_Aa/ZtthHHl/z(%) for all t < a < L and for a = 0.
81}3

L2 (@a)
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Thus by (3.6.12) in Lemma 3.6.5, we obtain

K

By (3.7.6) ¢» = 0 on ~z, and by (3.7.10) du') /dé = 0 on ~z. Then by (3.7.4) we

op

< _—
C 81}3

L2(w)

< Cthsl| grase(yg)-  (3.7.12)
L (w)

51?3—
—1/2 1’3

obtain

p =0 on ~vr,.

Thus by (3.7.5)

/ / /_1/2 ¢<1> /_1/2 /¢<1><x3
/—1/2 / [/o (a_“rg—i)_”(2)(5’$3>+/~‘(2)(07w3)

By (3.7.2),
0

By (3.7.6) t = hs on ~o. By (3.7.9) ™ =0 on 9. Then pu? =y — 4™ = hy on

(3.7.13)

< Ctl/th3HH1/2(VO)'
L2 (w)

~o. Thus

150, 23) | 20wy < CliPsll2(v0) < CliPsllzrr2(0)-

By Lemma 3.6.8 and 3.6.7, there exist positive constants A, C' independent of ¢ such
that

< Ct_l/ze_)‘a/thhSHH1/2(70) for all t < a < L and for a = 0.

3+
L2(@q)

81'3 85

Then by (3.6.12) in Lemma 3.6.5,

/ou 0

4 v
R < Clhs]| sz (ay- 7.14.
‘/ (Z+22)| =l (37.14)

L2(w)
By (3.7.13)—(3.7.14), we obtain
8;/) (1)
< Chsllrasz(ay- (3.7.15)
—1/2 L2(w)
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By (3.7.11), (3.7.12), and (3.7.15), we obtain

16PN 22wy < ClRs | 120

Together with (3.7.2), this gives the desired bound on p. O

Sec 3.8. Error Estimation

In this section, we estimate the orders of ||| 12(p)y and ||o!|[2(p,), Where !
is the scaled boundary corrector in (3.2.8).

The order estimation depends on the results we have obtained about ¥, u
and ¢. By (3.3.2), (3.3.3) and (3.3.4), we recover p and ; from ¢, p and ¢. Let
X(€) be a cutoff function that assumes the value one in a neighborhood of the lateral
boundary with width of L/2, and the value zero outside @). Let p = px and ; = Jx.
Then (p, ;) is defined on the entire domain P. Decompose the three-dimensional
boundary corrector (at,ﬁt) as (n,;) + (ﬁ,;). It follows directly from (3.2.8) and
(3.2.9) that (n, ;) is the solution to the following problem:

Find (n,;) € X! x V! such that

ao(m,7) + t*as (m, 7) + tras(n, 7) + b(7, 2)
—_ {ao(ﬁ,r) +2ay(p, ) + tras(p, ) + b(r,g)|  for all T € B,
- { Jr ft(; : ;) — b(ﬁ,;) soft case

(3.8.1)

b(n,v) = for all v € V°.

—b(p, 1;) hard case

For any 7 € X, Jr|g € X, where J = 1 — {/R is the Jacobi determinant in
(3.3.1). For any v e Ve, ;: X; € Vg. Moreover X; —vonT. Thus, from (3.3.8)
and (3.3.9),

AL(p, Jr) +12AS (p. J7) + t* A% (p, JT) +BQ(JT,§) =0 forall TeX,

— t _)- o —
BC(p,yv) = { ({Ff (v-s) soft case for all v € V3.

hard case

(3.8.2)
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By (3.8.1) and (3.8.2), we obtain
ao(m,7) + az(n,7) + tay(n,7) + b(r,w)
= = [a0(p, ™)+ Fas(p, 1) + tas(p, ) + b, )|
+48 (p, TT) + £ 48 (p, TT) + 1142 (p, JT)+ BT, y)|

for all T € X7,

—

b(n,v) = —b(p,v) + B(p, ) for all v € V',
(3.8.3)

—

We shall obtain the necessary bounds on (7, z) from (3.8.3).

Expressions of error terms. Since p and ; vanish outside the domain @), then
the right hand side expressions of (3.8.3) are all integration expressions over the

region (). Recall that fQ f= fi{z/z fOS fOL fJ for any function f. We can write

ao(n,7) + 2as(n,7) + tas(n, 7) + b(T,w) = — / (LW +L® 4+ L@ 7,
Q
Mm@z—/A4w@%%Nm£%%Nmﬁ%%N@J%
Q

where

/ LY r =ao(p, 1)+ t2ay(p,7) + t*as(p, T)
Q

- {Ag?(p, Jr) + 1249 (p, Jr) + A% (p, T 7] | (3.8.4)
/ L@ r = b(T,;) — [ T s(g), (3.8.5)
Q Q
/ L® 7= / r:ely) — B9(Jr,y), (3.8.6)
Q Q
M :e(v) = b(p,v) — / p:e(v), (3.8.7)
Q Q
(NW 3y = /Qp te(v) — B(Jp,v), (3.8.8)
(N® ) = B?(Jp,v) — B9(p,v), (3.8.9)

(N®),3) = B(p, ) — BY(p, ). (3.8.10)
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By (3.3.11),

ai(p, ) = ai(xop,T) = AZ (p, JT).
Thus by (3.8.4)

/ LY r=A0(p—p,Jr)+12A(p—p, JT)+t*A%(p—p, 7).  (3.8.11)
Q

/L<2>:r:/r:s(§—§).
Q Q

= —

L =¢(y —y). (3.8.12)

From (3.8.5), we obtain

Thus

From (3.8.6) and (3.3.12), we obtain
L= [ (Cw + ¢> (ns" + sn”)

1-¢/R 00 (3.5.13)
+ a_qb_i _HT_|_18_/”L( + T) -
2 R 556" +ae)|
From (3.8.7), we obtain
[ M@= [ (p-p):elo)
Q Q
Thus

M=p—p (3.8.14)

From (3.8.8) and (3.3.12), we obtain

N //// CLT S PPN T B
12 Jo Pns Rvs Pss Ds R P3s a0 |-

(3.8.15)
From (3.8.9) and the definition of B? in (3.3.10), we obtain
(N 3y = BQ(Jp,v) — B?(p,v / / / (,onn%%
) ) ) ‘1/2 0 o0 ¢ (3.8.16)
Vs U3 Un V3
ns ~~ n n e} d d9d
+p o Jr,f)sa5 +,03a +,03a +'03383> {dBdxs.

From (3.8.10) and (3.3.10),

S L
- g d
(N®.v) = B2((1 - x)p,v) - / / / e (punvn + pusvs + pusvs) dEdddes.
/e ‘ (3.8.17)
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Order estimation for 1 and 2. We define a t-dependent norm on X! by

1/2
= llfe = Z HTa/3H2L2(P) + t? Z HTa3H2L2(p) + t4HT33H2L2(P)
o, a
The dual norm is given by
1/2
/ 2 1 2 1 2
llmlll; = Z nasllzz2p) + ) Z [Maslz2cp) + t_4H7733HL2(P)
a,B a
On V' define
[o]le = llle(v)ll:-
Denote the dual norm as || - ||;. By Korn’s inequality, || - ||; defines a norm on V.

We also define |||7|||¢,p, similarly by restricting the domain to Py. Note that

| R < IR
P
Theorem 3.8.1. Let F € (X' ||| - |ll:) and G € (VL] - ||¢)" be given, and let

(0',1:) € X' x V' the solution to the following problem:

ao(n, T) + tPax(n, ) + tras(n, 7) + b(T,J) =(F, 1) forallTecX!

b(n,v) = (G, v) forallv e V.

Here a; and b are defined in (3.2.8). Then there exists a constant C independent of

t such that

limllle + Nlulle < CUNFE + NG -
where a; and b are defined in (3.2.8).

Proof. Let

Ale, 1) = ao(o,7) +t?az(o, 7) + tlas(e,7) forall o, 7€ X",
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Note that A is symmetric. and
Alr,7) = 1117 for all 7 € 7.

Furthermore, for any ve Vi let o € X' be defined by

OaX = 5aA(U)7 Ow3 = t—2€a3(U), 033 = t—4€33(U)-
Then
blo,v) = [leflv]

The theorem then follows from Brezzi’s theorem [8]. O

The following corollary is immediate.

Corollary 3.8.2. Let LW, L® L® M, NY N® and N® be as in (3.8.4)-
(3.8.10), and let n, : satisfy (3.8.1). Then there is a constant C independent of t

such that

Il + I=11 < € (Z LG+ AL+ !\N(i)!\i> : (3.8.18)

We first show that some of the terms on the right hand side of (3.8.18) have

negative exponential orders.

Lemma 3.8.3. Let Py be an interior domain of P (i.e. Py = Qo x (=1/2,1/2)
with Qo C Q), and let p be defined in (3.3.4). Then there exist positive constants
Cq and Cy such that

Cre™ (| fllu=172(30) + sl irzgoy)  soft case,

lollz2(Pong) <
( ) 016_02/7?(”}@”[{1/2(70) + Hh3HH1/2(’Yo)) hard case.

Proof. By the expression of p in (3.3.4), the lemma follows from Theorems 3.6.2
and 3.6.8. O
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Corollary 3.8.4. Let L, M, and N®) be as in (3.8.4), (3.8.7) and (3.8.10)

respectively. Then there exists positive constants Cy, Cy such that

L7+ 1M+ N

< Cle_CQ/t(HfHH_l/Q(’Yo) + Hh3HH1/2('yo)) SOft case,
- Cle_CQ/t(HhSHHl/Q(’yO) —|— Hh3HH1/2('yo)) hard case.

Proof. Let Py = {:; eP| dist(:;,T) > L/Q} be an interior domain of P. Then

lp = pllz2@) = x = Dell2(rone)-

The corollary follows from (3.8.11), (3.8.14), (3.8.17), and Lemma 3.8.3. O
Lemma 3.8.5. Let N® be as in (3.8.9). Then there exists a constant C indepen-
dent of t such that

C <t3/2HfHH—1/2(70) + t_1/2Hh3HH1/2(VO)> soft case,

C <t Hh5HH1/2(’yo) —|—t Hh3HH1/2(’Yo)> hard case.

Proof. By (3.8.16),
NP < Clliépll

By the expression for p in (3.3.4) and Theorems 3.6.6 and 3.6.9,

[€pnnllz2(Q) + [€pnsllz2(@) + [IEpssIL2(q) + t[Epnsllz2(q) + tEpssllra(q)

_I_t2H€ H { C<t3/2"fHH—1/2(,YO) +t_1/2"h3HH1/2(’YO)> SOft case,
p3sllr2(Q) i
¢ <t1/2HhSHH1/2(VO) t1 1/2Hh3HH1/2(VO)> hard case.

The left hand side of this inequality is equivalent to ||[£p]||¢, the lemma follows. O

Now we estimate || L||, ||| L®]||;. First we notice that the following identity:

—_— 4+ — ne; + esn

SN Y, L S N 2 TR N
T YA )
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Thus, by (3.8.12), we obtain

@ _ Goap 100wy g 1 (O Y e
L' =(x — ){aé_ +28§(n8 + sn )—I— af—l_a:z:g (nes + esn’)

a — —»
+_M€3€3 + L(3):|
81}3

]_ — -, - =
5 {;/)nn + qb( Ty sn )—I— 5/1(716? + egnT)} )
(3.8.19)
From Theorems 3.6.2 and 3.6.8 there exist positive constants C; and C5 independent

of t such that

% 00z L om0 (G )
1 —x)=r (== Fl1—) (=4 ==
H( )85 L2(w) ( )85 L2(w) ( ) 9 Oz L2(w)
0¢ H ou
+ (1= )= + -

H( Vg, o (1 =X~ o (3.8.20)
C’le_c2/t(HfHH_1/2(70) + thHHl/z(%)) soft case,
Cle_CQ/t(HthHlﬁ(»yO) + Hh3HH1/2('yo)) hard case.

By (3.8.19),
1 oo = -
o= DEO I+ G [+ G0l + 5T 4 G+ Eai®)| I
e 1
< L1 + d_g [l +llollrz) + S llkllezco
. o0 (3.8.21)
< C Mz + 19l + Fllkllzz(o) + H@
L2(Q)
0 0
s - Wk
2 110912

Together this shows that || L(?)]|} is bounded by the right hand sides of (3.8.20) and
(3.8.21).
Notice that bound for ||L(®]|} is also given in (3.8.21). Therefore we have the

following estimates.

Lemma 3.8.6. Let L, L®) be as in (3.8.5), (3.8.6) respectively. Then there
exists a constant C independent of t such that

C( 3/2HfHH1/2(F ) +1t 1Hh3HH3/2(FO)> Soft case,

L+ L <
! ! <t1/2Hh8HH3/2(Fo) —|—t Hh3HH3/2(Fo)> hard case.
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Proof. By Theorems 3.6.1 and 3.7.1, we obtain

1
[l +12llez) + S llkllrzce

- C <t3/2HfHH—1/2(70) + t_th;;HHl/z(%)) soft case, (3.8.22)
- C<t1/2Hh8HH1/2(70) —I_t_th3HH1/2(’yo)> hard case.

Since 6 enters as a parameter, and the bound in (3.8.22) is independent of 6, then

5], *] b
W2y 1112g) 1190112
h
C | 3/2 H 4+t 1 % soft case,
H-1/2(Ty) 90 |l gr1/2(r)
h h
C /2 g 1 % hard case.
99 |l sr2ry) 99 1l 1s2r)

(3.8.23)
The lemma follows from (3.8.22) and (3.8.23)

Finally, we estimate || N||’.

Lemma 3.8.7. Let N be as in (3.8.8). Then there exists a constant C indepen-

dent of t such that

1 2 1
INW); < C (2N flrarzroy + ¢ sl grarzcrg)) soft case,
C <t 1/2Hh8HH3/2(F0) +t- 1Hh3HH3/2(FO)> hard case.

Proof. From (3.8.15),

ov 1 ov 1 ov
(1) n Vs - s
N /_1/2/0 / |:,0ns ( Rvs> + Pss ( By R) + p3s 89:| .

(3.8.24)
First, we consider the first term of the right hand side of (3.8.24). By (3.3.4) and

vy, 1 -
/ / / pns( Evs>§CHPnsHL2<Q)HUHt
—1/2

- C’tl/szHH_uz(%)HUHt soft case,
B C’t_l/thsHHuz(%)H;Ht hard case.

Theorem 3.6.1,

(3.8.25)
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Next, by (3.2.4) v3 =0 on I'g, and so yvs = 0 on I'o UT'z. Thus,

/_1/2/ / '083 89 /_1/2/ / o [xvs + (1 = x)vs]

aPSS aPSS
< Ines o d9+H(1—X) o512
/0 H 90 || -1.0u) e 99 |20 @
Ops Ops
(H Vs =% )Hvsum@
H=1.9(w) L2(Q)
Cl/2 Fll g2 17 soft case,
_ S a6l -
Ct_l/thSHHg/z(Fo)Hth hard case.

The last inequality follows from (3.3.4) and Theorems 3.6.2, 3.6.6.

Finally, we consider the second term of the right hand side of (3.8.24):

/—1/2/ / 'O”<avs - ”")
/—1/2/ / o /_1/2/ / R

1 L
,5(9,:1;3) = Z/O pss(gvevxi%)dg'

(3.8.27)

Define

We have the following inequalities.

L 1
—PssUn = / / / /083 - Un / / / —PUn
/_1/2/0 / R ~1/2 f
51
§/ E/ / (Pss = P)on + Cllpll 2@)llonll 22(@)

1/2 Jo
S 1 1/2 L avn

-1/2J0 3

C 2 all 2
o + Clipll 2@ llvnll2(@)
L
/ (,033—,5)
3

/£ C(pee =)

S
1 N
<Cc /[ = lvnllzrow) | 49+ Cllpll L2y llvnllr2(q)
L2(w)

IA

vl mrow) + 12l z2(@) [vnllz2(0)

C ‘
L2 (w)
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+ 1Al 22wy | V]l (3.8.28)
12(w)

_|_

<
L2 (w)

L L
A T A
¢ ¢

By (3.3.4),
FEv

2O
(14 v)(1 —2v)t2 <8:1;3 1 ag) (3.8.29)

By (3.8.29), Theorems 3.6.7 and 3.6.8, there exist positive constants C' and A

Pss =

such that

| pssllr2(@n) < C’t_3/26_)‘a/2tHh3HHl/z(%), forallt <a <L, and a = 0.
(3.8.30)

By (3.8.30) and Lemma 3.6.5,
< Ot 2| hg 1720

L
/ Pss
¢ L2(w)

1612wy < Ct D3l 172409 (3.8.31)
L
J:
3

It follows from (3.8.28) and (3.8.31) that

1/2 S L 1 .
/ / / Epssvn S Ct_th3HH1/2(’yo)HUHt‘ (3832)
—-1/2J0 0

The same argument as above leads to

/ //ap88v5<0t1
—1/2Jo

From (3.8.27), (3.8.32) and (3.8.33), we obtain

1/2 S 4L v 1 o
«\ 26 J < Ct7 ]| gy 3.8.34
/_1/2/0 /0 P (69 1-¢ /R R — g) 123l a2yl Ht ( )

The lemma then follows from (3.8.25), (3.8.26) and (3.8.34). O

S Ct_l Hh3 HHl/Q('YO)'
L2(w)

Ohs
00

[wlle < Ct7HRsll sz ]l

H1/2(FO)
(3.8.33)
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Theorem 3.8.8. Let (n,;) be as in (3.8.1), 0 <t < 1. Then

¢ (tl/szHHl/2(Fo) +¢7! Hh3HH3/2(FO)> soft case,

llalle + 1121 <
C <t_1/2Hh8HH3/2(Fo) + t_th3HH3/2(FO)> hard case.

Proof. By Corollary 3.8.2, the theorem follows from Corollary 3.8.4, Lemma 3.8.5,

3.8.6, and 3.8.7. O
Global and local estimates for o!.

Theorem 3.8.9. Let o' be the solution to (3.2.8). Then there exists a constant C

independent of t such that

llot |l < { C (21 Fllsrzqrgy + 122 lhsll sz soft case,

~ L O P hallmsrzgy + 172 sl msrag))  hard case. (3. 35)
llo*[lle,p, < { C (2 llsrzrgy + 1 IRsl srzrg)) soft case,

T C Y Rl gsie gy + T Bl gerzr,))  hard case(s g 36)

Moreover, for the hard simply supported plate there exists another positive constant

C' independent of t such that

llo e > € (#72 llg112() + 7> sl 173050 ) - (3.8.37)

Proof. By the definition of 1,

o' =n+p. (3.8.38)

By (3.3.4), Theorem 3.6.1 and 3.6.7, there exist positive constants C; and Cy such
that

Co (P + 1Ml ) < el

S CQ <t1/2 HfHH_l/Q('yO) + t_3/2 Hh3HH1/2(’Yo)> solt case,

(3.8.39)

Co (2 haliragy + P hslinrz ) < el

S CQ <t_1/2Hh3HH1/2(’yo) + t_3/2Hh3HH1/2(’yo)> hard case.
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It is easy to see that there exist also constants C] and C} independent of ¢ such that

Cillxeell: < llell < Cillxeell: (3.8.40)

Using the triangle inequality, (3.8.35) and (3.8.37) follows from (3.8.38), (3.8.39),
(3.8.40) and Theorem 3.8.8.
For the interior estimates, by Lemma 3.8.3, there exists positive constants C

and C5 such that

1ol < { Crem /! (HJCHH—“Q(%) Hh3HH3/2('yo)> soft case,
t,PO - _
Crem @/t <Hh$HH1/2('YO) Hh3HH1/2(VO)> hard case.

Thus the order of ||pagsl|l¢,p, is of the same order as that of |||n||¢,»,. The inequality
(3.8.36) then follows from Theorem 3.8.8. O

Sec 3.9. Convergence Results

We return to the domain P! and discuss the order of the three-dimensional
boundary corrector (¢, JC) defined in (3.1.1). Note that uS corrects the boundary
value of Jk, which can be either u™ or «® in (2.4.2) or (2.4.3) respectively. As we

shall see, Theorem 3.8.10 implies that the orders of ||oc|[z2(pt) and [|o¢| r2(pr) do

not exceed O(t5/2). Thus «* = u™ is a more appropriate choice. If we choose

—

uk = 1:5, we will get the same order estimates but to bound the term ||hs|| /2,

by (2.4.3), we need more regularity assumption on the data ¢:

1hsllzrsr2rg) < CE 0l o) < CE gl a)-

where w is the Kirchhoff plate solution, ¢ the scaled loading of the three-dimensional

plate. Both w and ¢ are independent of t.
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Now, with uk = Jm, by (2.4.2),
hy = 0. (3.9.1)

By (2.4.2) and the trace theorem, there exists a constant C' independent of ¢ such

that

17l grerzroy + N Flgrreo) < CElwl maay < CE gl r2q)-
We now give bounds using data ¢ instead of hj, hy, and f.
Theorem 3.9.1. Let (O'C,JC) be the solution to (3.1.1) and (3.1.2), 0 < ¢ < 1.
Then there exists a constant C' independent of t such that

locl|e < Ct?||gllL20).

and
Ct*\ gl 20 soft case,

ol < {

Moreover, for the hard simply supported plate, there exits a constant C' independent

Ct5/2HgHL2(Q) hard case,

of t such that

€|l > C'¢||gll L2(a)-

Proof. The theorem follows from the definitions of || - ||g and || - ||g pr in (1.11),

Theorem 3.8.9, (3.9.1), and the scalings in (3.2.1) and (3.2.2). O

Now with the order of the boundary correctors known, we derive the conver-

gence results introduced in the first chapter.

Theorem 3.9.2. Let o and u be defined by either the soft simply supported plate
problem (1.1)—(1.4), (1.5), (1.8) or the hard simply supported plate problem (1.1)-

(1.4), (1.6), and let o* and uk be the Kirchhoff approzimations defined by (1.9),



74

(1.10), (2.2.2), and (2.2.6). Then there exists a constant C depending only on the

domain € such that
lo = 0|l + 7 — @)l < C# gl p2(on.

Moreover, for the hard simply supported plate there exits another constant C' de-

pending only on the domain 2 such that

e =l + llo — &[> C" gl L2(g)-

Proof. The theorem follows from Theorem 2.4.1, the scaling in (3.2.1), and Theorem

3.9.1. O

By (2.2.2) and (2.2.6), it is easy to see that there exists constants Cq and Cy

such that

Cit*|lgll 2y < luXll + ol e < Cot*/?|lg]lr2(a). (3.9.2)
Thus, we have the following result.

Theorem 3.9.3. Let o, w be the same as in Theorem 8.9.2. Then there eists

positive constants C7 and Cy independent of t such that

it lgllzzqay < llall + oz < Cot*llgll a)-

Proof. The result follows immediately from Theorem 3.9.2 and (3.9.2). O

From Theorem 3.9.2 and 3.9.3, the following convergence result immediately

follows.
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Theorem 3.9.4. The global convergence rate for both the soft and hard simply

k

supported plate s O(tl/z). More precisely, let o, 1:, o*, and u* be as in Theorem

3.9.2. Then there 1s a constant C' independent of t such that

“Ii

llee = lo — ¥l

[ ol e

< Ct'/?,

Moreover, for the hard simply supported plate the convergence rate of O(tl/z) 18
sharp, 1.e., there exists a positive constant C' independent of t such that

“Ii

llee = lo — ¥l

- Z Cltl/z‘
|l o)z

It is very likely that the O(tl/ 2) convergence rate is sharp for the soft simply
supported plate as well. For that plate, since the orders of the boundary data hs and
f are O(t*) and O(t) respectively, then by Theorem 3.8.8, the order of ||n|[12(p) is
O(t3/?), which is the same as that of ||p||z2(p). Thus our analysis fails to determine
the order of ||o!||z2(py = ||p + Nl 12(p). However, by (3.8.1), it is highly unlikely
that all the lowest order terms of p can cancel out with all the lowest order terms of
n. Thus our conjecture is that ||o||z2(p) is still of order O(#3/2) for the soft simply
supported plate. If that conjecture is true, then the O(tl/z) global convergence rate

is sharp for the soft simply supported plate.

Theorem 3.9.5. The interior convergence rate for the soft simply supported plate
is O(t'/%), and for the hard simply supported plate is O(t). More precisely, Let o,

k Wk be as in Theorem 3.9.2. Then there exists a constant C independent of t

u, o
such that
llu =¥l g + llo = o8| 2.5y < CHlgllr2(0) soft case,

i = u*[lpe + lo — o || pr < Ct¥/2|\gll 120y hard case.
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Chapter Four

SUMMARY

In this thesis we analyzed the accuracy of the Kirchhoff plate model as an
approximation to the full system of three-dimensional linear elasticity, considering
the cases of soft and of hard simply supported boundary conditions. The key results
were energy norm estimates for this approximation, both global and restricted to an
interior subdomain disjoint from the lateral boundary. In some cases we were able
to prove the sharpness of our estimates.

The Kirchhoff plate solution is a scalar function defined on the midsurface of
the plate. From this function we constructed approximations to the displacement
and to the stress. These approximations are 3-vector-valued and 3 x 3-tensor-valued
functions defined on the three-dimensional plate domain. Specifically we introduced
modifications of expressions which had been developed earlier by Morgenstern and
by Simmonds. Simmonds’s expression is more accurate in some situations, but
requires more regularity than Morgenstern’s. Our modifications affect neither the
accuracy nor the regularity, but were introduced to simplify the error analysis.

Note that the Kirchhoff model does not distinguish between the hard and soft
simply supported plates: the same approximation is obtained for both. In fact the
simply supported Kirchhoff plate is closer to the hard simply supported plate than
to the more physically relevant soft simply supported plate. This is reflected in
the final results, which give higher order interior convergence in the hard simply

supported case.
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The basis of the error analysis is the Prager—Synge theorem. Since neither of
the approximations satisfy the lateral boundary conditions required by that theorem,
a boundary corrector was introduced. Unlike in previous work, we defined the
boundary corrector as the solution of a three-dimensional elasticity problem. The
analysis then reduced to determining global and interior energy norm bounds on the
boundary corrector. Our approach to this problem was strongly influenced by the
work of Destuynder, but includes new elements as well, especially the explicit use
of boundary-fitted coordinates and of Saint Venant’s principle.

Since the asymptotic analysis of the three-dimensional problem defining the
boundary corrector is too difficult, we first consider a simplified auxiliary problem
which (it turns out) has similar asymptotic behavior. This auxiliary problem is
obtained from the three-dimensional problem by restricting to a neighborhood of
the lateral boundary of the plate, using boundary-fitted coordinates, neglecting the
derivatives with respect to the tangential direction, and suppressing the Jacobian
which arises from the change of coordinates. The auxiliary problem then decoupled
into a two-dimensional Laplace-like problem and a two-dimensional elasticity-like
problem, both parameterized by the tangential coordinate variable. Exponential de-
cay properties of the solutions of these two problems were then obtained in the spirit
of Saint Venant’s principle, and from these properties we determined the global and
interior orders of the solution to the auxiliary problem. Next we bounded the global
energy norm of the difference between the three-dimensional boundary corrector and
the solution to the auxiliary problem. Finally we combined these results to obtain
the global and interior energy norm bounds for the boundary corrector.

With this approach we have proved that the known global convergence rate of
O(t'/?) for the hard simply supported plate with smooth boundary is sharp. (This
is the rate of convergence of the relative energy norm error.) We have also derived

the interior convergence rate of O(t) for hard simply supported plate. To the best of
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our knowledge, both of these results are new. The same analysis applied to the soft
simply supported plate gives both global and interior convergence rates of O(tl/z).
Our analysis strongly suggests, although does not definitively prove, that both these
convergence rates are sharp as well.

The low orders of convergence in these results contrast with the second order
convergence which we established for a periodic plate. This difference suggests the
effect of boundary layers in determining the accuracy of the Kirchhoff model.

An interesting area for future investigation is the accuracy of the Reissner—
Mindlin plate model. While estimates for the error in the Reissner—Mindlin model as
an approximation to three-dimensional elasticity can be obtained using the results
here and known results for the difference between the Reissner—Mindlin approxima-
tion and the Kirchhoff approximation, it may be possible to obtain sharper results in
some cases by applying the approach here directly to the Reissner—Mindlin model.
In particular it would be interesting to know whether the Reissner—-Mindlin model
can be used to obtain interior convergence of higher than O(#'/?) for the soft simply

supported plate.
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INDEX OF NOTATIONS

Vectors in R? are denoted by Latin letters with arrows: 1:, v. Vectors in R?
are denoted by Latin letters with under-tildes: u, v, Tensors in R**? are denoted
by bold Greek letters: o, p, T, and tensors in R2*? by Greek letters with double
under-tildes: 7, 6. When used as indices, i and j range from 1 to 3 and «a, 3, v

range from 1 to 2.

The following notations are presented in the approximate order of their ap-

pearance.
pt three-dimensional plate domain

t plate thickness

Q midsurface of P!, P =Q x (—1/2,1/2)

QL top surface of P*, Q) =Q x {1/2}
918 bottom surface of P, Q1 = Q x {-1/2}

It lateral boundary of P?

o three-dimensional stress tensor: o : P! s R3%3

u three-dimensional displacement vector: w: Pl RS
E Young’s modulus

v Poisson’s ratio

) 3 x 3 identity matrix

1 2 x 2 identity matrix

q+ vertical surface traction density at the top surface

q— vertical surface traction density at the bottom surface

g scaled vertical surface traction density at the top and bottom surfaces
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unit vector, directed upward

unit normal vector to the lateral boundary, directed outward

unit in-plane tangential vector to the lateral boundary, directed counter-
clockwise

space of in-plane rigid motions

solution to the Kirchhoff plate equation

compliance tensor, relating three-dimensional strain to three-dimensional
stress

Kirchhoff plate approximation to three-dimensional stress

Kirchhoff plate approximation to u

interior subdomain of P': Qg x (—t/2,t/2)

{7lm € L2(PY). mij = 7ji |

subspace of { 1;| v; € HY(PY) }; cf. (2.1.1)

energy norm on

energy norm on V'

approximation to o (used in Prager—Synge theorem)

approximation to u (used in Prager—Synge theorem)

k

boundary corrector for o*: k

o —o0

boundary corrector for u*

ik

Laplacian

(3-vector) gradient of a scalar function
(scalar) divergence of a vector function
(3-vector) divergence of a 3 x 3 tensor
(2-vector) gradient of a scalar function

(2 x 2 tensor) gradient of a 2-vector function

modification of Morgenstern’s approximation to u

modification of Simmonds’s approximation to u



hs

TTLTL
TTLS

TSS

Tn3

733

vertical displacement on lateral boundary to be corrected
tangential displacement on lateral boundary to be corrected
tangential traction on lateral boundary to be corrected
scaling of P, P =Q x (—1/2,1/2)

top surface of P, Q4 = Q x {1/2}

bottom surface of P, Q_ =Q x {—1/2}

lateral boundary of P

scaling of ¢, o' : P s R3*3

{T | 7i; € L*(P), 1ij = Tji }

subspace of { 1;| v; € H'(P) }; cf. (3.2.4)

bilinear forms for the scaled problem; cf. (3.2.8)—(3.2.9)
independent variable in the direction of “n

independent variable in the direction of s

ST TS

—TLTT€3

—, —

STT€3

el res

arclength of 0

a constant less than half the smallest radius of curvature on 02
subset of P consisting of points within distance L of T’

QNQy

QNQ_

inner lateral boundary of ()

81
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R radius of curvature on 0€; R = R()

J Jacobi determinant of transformation to the boundary-fitted coordinate sys-
tem
p,g solution to auxiliary problem of ()

Yo {rlm € LXQ), mij =15 }

Vo subspace of { 1;| v; € HY(Q) }; cf. (3.3.7)

X0 characteristic function of ()

AiQ, B@®bilinear form for the auxiliary problem; cf. (3.3.8)-(3.3.10)
At horizontal segment (0, L) x {+1/2}

Yo vertical segment {a} x (=1/2,1/2)

Wry r, Tectangle (rq,7ry) x (=1/2,1/2)

Wy rectangle (0,r) x (=1/2,1/2)

Y, ¢, p notations for y,, ys, ys respectively

b% cutoff function supported in (), equal to 1 near T’
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