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ABSTRACT

In this thesis� we study the asymptotic convergence of the Kirchho� plate

model as an approximation to the full system of three�dimensional linear elasticity�

considering the cases of soft and of hard simply supported boundary conditions�

and the case of a periodic plate� Speci�cally we obtain the order of convergence

of the energy norm of the di�erences between the exact three�dimensional stress

and displacement �elds and approximations to them obtained from the Kirchho�

solution�

We develop a new method of analysis that combines the existing variational

energy method� singular perturbation techniques� and Saint Venant�s principle� By

using this method� we prove that for the hard simply supported plate with smooth

boundary the known global convergence rate of O	t���
 is sharp� 	This is the

rate of convergence of the relative energy norm error�
 We also show that when

consideration is restricted to an interior domain� disjoint from the lateral boundary

of the plate� the relative energy norm convergence rate for the hard simply supported

plate increases to O	t
� When the same analysis is applied to the soft simply

supported plate� both the global and interior convergence rates are found to be

O	t���
� The analysis suggests� but does not establish� that these rates are sharp�

These low orders of convergence are in contrast to case of the periodic plate where

we show that second order convergence holds�
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Chapter One

INTRODUCTION

Consider the problem of �nding the displacement and stress �elds in a three�

dimensional plate which result from loads applied to its top and bottom surfaces�

The theory of linearized elasticity theory determines these �elds as the solution of

a boundary value problem posed over the three�dimensional domain� When the

plate is thin� two�dimensional plate models are often used to approximate the three�

dimensional problem� This approach is known as dimensional reduction� The most

popular such model is the Kirchho� plate model� which determines a scalar �eld on

the midsection of the plate as the solution to a biharmonic problem� One can then

compute approximations to the three�dimensional displacement and stress �elds on

the entire plate from this scalar �eld� In this thesis we consider the accuracy of

these approximations� Speci�cally we consider the order with which the error tends

to zero as the plate thickness tends to zero�

Let � � R
� be a smoothly bounded domain in the plane and t � �� We

suppose that the plate occupies the three�dimensional domain

P t � �� 	����� ���
�

We denote the top and bottom surfaces �� ft��g and � � f�t��g by �t
� and �t

�

respectively� and the lateral surface ���	�t��� t��
 by �t� The linearized equations
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of elasticity then require that the displacement �eld �u and the stress �eld � satisfy

the di�erential equations

� �
E

� � 	

�
�	�u
 �

	

�� �	
	div �u
 �

�
in P t� 	���


�div� � �� in P t� 	���


where E is the Young�s modulus� 	 the Poisson ratio� and � the ��� identity matrix�

The surface loading is speci�ed by the boundary conditions

��n � 	�� �� q�

T on �t

�� ��n � 	�� �� q�

T on �t

�� 	���


where q� � �� � R are given� We shall only consider the case where the top and

bottom surface loads are equal� Moreover� for convenience� we assume that these

are scaled to be proportional to t�� 	This does not lead to any loss of generality�

since the problem is linear and we can simply adapt our results to other scalings�


Thus we assume that

q�	x� y� t��
 �
t�

�
g	x� y
� q�	x� y� t��
 �

t�

�
g	x� y
 for all 	x� y
 � �� 	���


where g � �� R is a given smooth function�

We shall consider the case of a simply supported plate� Actually we shall

investigate two di�erent boundary conditions on the lateral boundary �t whichmodel

this situation� To describe these boundary conditions we introduce the coordinate

directions �e�� �n� and �s at each point of the the lateral boundary� The soft simply

supported plate satis�es

�u ��e� � �sT��n � �nT��n � � on �t� 	���


The hard simply supported plate satis�es

�u ��e� � �u ��s � �nT��n � � on �t� 	���




�

Note that the soft simply supported plate is the more usual boundary condition�

Both the soft simply supported plate problem 	���
�	���
� 	���
 and the hard

simply supported plate problem 	���
�	���
� 	���
 admit a solution 	�� �u
� For the

hard simply supported plate� this solution is uniquely determined� For the soft

simply supported plate� it is easy to derive from ��� that the solution is determined

up to addition of an in�plane rigid motion� i�e�� a function in the set

R �
n
�v	x� y� z
 � 	a � cy� b� cx� �
 j a� b� c � R

o
� 	���


The solution is then rendered unique by imposing the side conditionZ
P t

�u ��r � � for all �r � R� 	���


For the problem just described the Kirchho� plate model determines a func�

tion w � �� R by the biharmonic equation

E

��	�� 	�

��w � g in �� 	���


and the boundary conditions

w � �� n
�

T
h
	� � 	
grad

�
	grad
�

w
 � 	�w

�

i
n
�
� � on ��� 	����


Note that the same boundary conditions 	����
 are used to replace either 	���
 or

	���
� the distinction between soft and hard simply supported plates vanishes� From

the solution w to 	���
�	����
� we may construct approximations �uk to �u and �k to

�� For example�

�k�� � � Ez

�� 	�

�
	�� 	


��w

�x�
� 	�w

�
�

Explicit expressions are given below in 	�����
� 	�����
� and 	�����
�

In order to discuss the accuracy of the Kirchho� approximation we introduce

the energy norms for the displacement and for the stress� de�ned by

jjjvjjj� �
Z
P t

�A���	v
� � �	v
� k�k�E �

Z
P t

	A� 
 � � � 	����




�

respectively� where

A� �
� � 	

E
� � 	

E
	tr�
�� 	����
Z

P t

� � � �
�X

i�j��

Z
P t

�ij�ij �

Note that when � � A���	v
� jjjvjjj � k�kE�
The following theorem gives the basic global bound on the error in the Kirch�

ho� approximation�

Theorem ���� Let � and �u be de�ned by either the soft simply supported plate

problem 	���
�	���
� 	���
� 	���
 or the hard simply supported plate problem 	���
�

	���
� 	���
� and let �k and �uk be the Kirchho� approximations de�ned by 	���
�

	����
� 	�����
� and 	�����
� Then there exists a constant C depending only on the

domain � such that

k� � �kkE � jjj�u� �ukjjj � Ct�kgkL����� 	����


The interpretation of this theorem is not straightforward� While the constant

C and the function g are independent of t� the three�dimensional solution 	�� �u


depends on t� as do the energy norms jjj � jjj and k � kE� In fact� as we shall see� if g

does not vanish identically� then

c�t
��� � k�kE � jjj�ujjj � c�t

����

where c� and c� are positive constants depending on � and g� but independent of t�

Therefore� from Theorem ��� we obtain the relative error estimate

k� � �kkE
k�kE �

jjj�u� �ukjjj
jjj�ujjj

� C �t����

with C � independent of t� Thus the Kirchho� model gives an O	t���
 approximation

of the three�dimensional solution� when measured in energy norm� This rather low
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rate of convergence is in fact sharp� at least for the hard simply supported plate�

Indeed� as we show below� if g does not vanish identically then

k� � �kkE � jjj�u� �ukjjj � ct�

with c � � independent of t� Although it does not follow from the analysis below�

it seems very likely that the O	t���
 convergence rate is sharp for the soft simply

supported plate as well�

The solution of the three�dimensional plate problem has a complex boundary

layer when t is small ���� ���� ���� ����� ����� ����� however the Kirchho� approximation

has no boundary layer whatever� This suggests that poor approximation near the

lateral boundary may be responsible for the low rate of convergence in the energy

norm� and the approximation may be more accurate away from the boundary� In

fact this is true for the hard simply supported plate problem� More precisely� for

P t
� � P t de�ne

jjjvjjj�P t
�
�

Z
P t
�

�A���	v
� � �	v
� k�k�E�P t
�
�

Z
P t
�

	A� 
 � � �

Then we have the following interior convergence theorem� proved as Theorem �����

below�

Theorem ���� Let �� satisfy ��� � �� and set P t
� � �� � 	�t��� t��
� Let 	�� �u


and 	�k� �uk
 be as in Theorem ���� Then� in the case of the hard simply supported

plate� there exists a constant C depending only on the domain and � such that

k� � �kkE�P t
�
� jjj�u� �ukjjjP t

�
� Ct	��kgkL����� 	����


Thus for the hard simply supported plate� the Kirchho� approximation con�

verges with �rst order in the energy norm on subdomains bounded away from the

lateral boundary� The proof of this theorem is one of the main results of the thesis�
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As we shall see� the same analysis� when applied to the soft simply supported plate�

only gives an interior convergence rate of O	t���
� i�e�� no higher than the global

rate�

Another indication that the boundary layer is in some sense responsible for

the low order of convergence of the Kirchho� model is obtained by considering a

bi�periodic plate� In Chapter � we shall show that in this case the global estimate

	����
 can be improved to

k� � �kkE � jjj�u� �ukjjj � Ct
��kgkL�����

i�e�� for the periodic problem 	for which there is no boundary layer
� the relative

energy error of Kirchho� approximation is O	t�
�

In ���� Morgenstern ���� proved one of the �rst convergence results for the

Kirchho� model� For several boundary conditions� including soft simply supported�

he showed that the relative global energy error tends to zero with the plate thick�

ness� Although he did not discuss the convergence rate� it is not di�cult to extend

his arguments to obtain Theorem ���� that is� a relative energy error of O	t���
�

Morgenstern used a variational approach based on the duality of the displacement

energy and the complementary energy 	essentially the Prager�Synge theorem
� In

���� Simmonds ���� used the same approach to show that under very special bound�

ary condition� which he termed �regular�� the relative energy error is O	t�
� The

bi�periodic plate may be viewed as a regular boundary value problem� However

most other common boundary conditions� including both soft and hard simply sup�

ported plates 	and clamped and free plates as well
� are not regular in the sense

of Simmonds� In ���� Babu ska and Pitk!aranta ��� also employed the approach

of Morgenstern� They showed that for the hard simply supported Kirchho� plate�

the convergence rate is O	t���
 for domains with smooth boundary and that this

rate increases to O	t
 for polygonal domains� The �rst person to discuss interior
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convergence rates was Destuynder ����� who considered the global and interior en�

ergy convergence of clamped plate in his thesis� Destuynder�s approach is based on

singular perturbation techniques and Fourier analysis� and is quite di�erent from

Morgenstern�s�

In this thesis we develop a new method of analysis combining the variational

approach of Morgenstern and the singular perturbation techniques of Destuynder�

Saint Venant�s principle also plays an essential role in our approach� We believe

that the resulting analysis gives sharper and clearer results� In particular� the proof

of the sharpness of the global estimate for the hard simply supported plate and

the interior estimate 	����
 are� to the best of our knowledge� new results� Our

approach has some common features with Schwab�s work on dimensional reduction

of the Laplacian on a thin three�dimensional domain �����

Although we discuss only the Kirchho� plate in the thesis� the order analysis

for the Kirchho� plate may help in the study of other plate models� For example�

the Reissner�Mindlin plate is the next simplest two�dimensional plate model� and

is preferred in many applications� The convergence rates for the Reissner�Mindlin

plate can be derived from those of the Kirchho� plate by using Arnold and Falk�s

results in ���� ���� and ���� In these papers� they found among other things the gap

between the Kirchho� plate solution and the Reissner�Mindlin plate solution� The

convergence rates of the Reissner�Mindlin plate can thus be obtained by using a

triangle inequality� In recent years� much work has been on the hierarchical two�

dimensional plate models ���� ���� ����� ����� ���� The approach we use in this thesis

may also provide a way to explore the convergence rates for those higher order plate

models�



�

Chapter Two

TOOLS AND METHODS

In this chapter� we introduce the Prager�Synge theorem and discuss its ap�

plication in the plate convergence problems� The theorem provides a tool to �nd

convergence rates without referring to the three�dimensional exact solution� It thus

avoids the discussion of possible boundary layer complications� For a bi�periodic

loading problem� the theorem can easily be applied to obtain an order O	t�
 con�

vergence rate� For the soft and hard simply supported plates� applications of the

theorem to its full advantage is not straightforward� Methods for using the theorem

e�ectively are discussed�

We write the following notational conventions throughout the thesis� Latin

indices i and j generally range from � to � while Greek indices  and � range from �

to �� Unless otherwise stated� Latin letters with superimposed arrows� such as �v� are

used to denote vectors in R� and bold Greek letters� such as � � are used to denote

�� � symmetric tensors� Tilde underscored Latin letters� like v
�
stand for vectors in

R
� and double tilde underscored Greek letters� like �

�
� for �� � symmetric tensors�

When speci�cations are needed in the equations� to save space� we use soft case for

the soft simply supported plate� and hard case for the hard simply supported plate�

A complete list of notations is given at the end of the thesis�
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Sec ���� The Prager�Synge Theorem

To state the theorem� we �rst de�ne spaces 	 and V by

	 �
�
� j�ij � L�	P t
� �ij � �ji

�
�

V �
n
�v j vi � H�	P t
��v ��e� � � and 	���
 holds

o
soft case�

V �
n
�v j vi � H�	P t
��v ��e� � �v ��s � �

o
hard case�

	�����


The weak formulation for the three�dimensional plate is the following�

Find 	�� �u
 � 	� V such thatZ
P t

	A�
 � � �

Z
P t

�	�u
 � � � � for all � � 	�Z
P t

�	�v
 � � �

Z
�t
�

q�v� �

Z
�t
�

q�v� for all �v � V �
	�����


Theorem ����� 
Prager�Synge Theorem�� Let 	���u
 be the solution to 	�����
�

Then for any
�u � V and any � � 	 satisfying the following constraintZ
P t

� � �	�v
 �

Z
�t
�

q�v� �

Z
�t
�

q�v� for all �v � V � 	�����


the following identity holds�

jjj�u� �ujjj� � k� � �k�E � k� �A���	
�u
k�E � 	�����


Proof� Since � � A���	�u
 and �u� �u � V � then

k� � � � �A���	
�u
���k�E � k� � �A���	

�u
���k�E
�

Z
P t

	� � �
A�� �A���	
�u
� �

Z
P t

	� � �
 � �	u � u


�

Z
�t
�

q�	u� � u�
�
Z
�t
�

q�	u� � u�
�

Z
�t
�

q�	u� � u�
�
Z
�t
�

q�	u� � u�
 � ��



�	

It follows that

k�� � 	A���	
�u
 � �
k�E � k� �A���	

�u
k�E �

On the other hand� we have also the following identities�

k�� � � � �A���	
�u
�k�E � k� �A���	

�u
k�E � k� � �k�E
� �

Z
P t

	� � �
A�� �A���	
�u
� � jjj�u� �ujjj� � k� � �k�E�

The equation 	�����
 then follows� �

Let
�u be an approximation to �u and � to �� The Prager�Synge theorem states

that if the conditions in the theorem are satis�ed� then the two errors in the energy

norm can be measured by the di�erence between the two approximations� The �rst

condition
�u � V requires

�u to satisfy the conditions imposed in V � To interpret the

condition 	�����
� �rst note that the equation

Z
P t

� � �	�v
 �

Z
�t
�

q�v� �

Z
�t
�

q�v�

obviously holds for �v � R 	cf� 	���

 as well as for �v � V � Therefore it holds for all

smooth compactly supported functions on P t� and so implies that

�div� � �� on P t� 	�����


Assuming that � �H�	P t
� integrating by parts in 	�����
� this gives

Z
P t

� � �	�v
 �

Z
�t
�

	��n
 � �v �
Z
�t
�

	��n
 � �v �
Z
�t
	��n
 � �v

for all �v � V �

It follows that

��n � 	�� �� q�

T on �t

�� 	�����




��

and Z
�t
	��n
 � �v � � for all �v � V � 	�����


Conversely� if � �H�	P t
 satis�es 	�����
�	�����
� then 	�����
 holds�

The equation 	�����
 implies that for each component of displacements not

prescribed zero value the corresponding component of traction must be zero� In

other words� � must satisfy the boundary conditions on �� In particular� for the

soft simply supported plate� this condition is speci�ed in 	���
� for the hard simply

supported plate� in 	���
�

Sec ���� Expressions for � and
�u

To apply the Prager�Synge theorem to the Kirchho� plate convergence prob�

lems� � and
�u should be constructed from the Kirchho� plate solution w� However�

as we shall see later� explicit expressions constructed from w may fail to satisfy

the boundary conditions required by the theorem� Then boundary correctors are

introduced to o�set the undesired boundary values� Thus we will take

� � �k � �c�
�u � �uk � �uc�

where �k and �uk are explicit approximations constructed from w� and �c and �uc

are boundary correctors�

Expression for �k� Let � be the three�dimensional stress �eld� The upper left

� � � submatrix 	���
 of � represents in�plane stress� For the Kirchho� plate the

in�plane stress is expressed by

� Ez

	�� 	�


h
	� � 	
grad

�
	grad
�

w
 � 	�w

�

i
�



��

Thus let

�k�� � � Ez

	�� 	�


h
	�� 	
grad

�
	grad
�

w
 � 	�w

�

i
� 	�����


We would like �k to satisfy as many conditions of 	�����
�	�����
 as possible� One

observes that �div�k � �� and �k�n � 	�� �� q�
T on �t
� can be obtained through

determining �k�� from �k�� and then determining ��� from �k��� Thus �k has the

following expression�

�k�� � � Ez

�� 	�

�
	�� 	


��w

�x�
� 	�w

�
�

�k�� � � Ez

�� 	�

�
	�� 	


��w

�y�
� 	�w

�
�

�k�� �
zt�g

�

�
�� �z�

t�

�
�

�k�� � � Ez

� � 	

��w

�x�y
�

�k�� � � E

�	�� 	�


�
t�

�
� z�

�
��w

�x
�

�k�� � � E

�	�� 	�


�
t�

�
� z�

�
��w

�y
�

	�����


This �k satis�es 	�����
 and 	�����
� However� it may not satisfy 	�����
�

Therefore later we shall de�ne �c such that

�div�c � �� in P t�

�c�n � �� on �t
� 	 �t

��Z
�t
	�c�n
 � �v � �

Z
�t
	�k�n
 � �v for all �v � V �

	�����


Then � � �k � �c satis�es all the conditions of the Prager�Synge theorem on the

stress �eld�

Expression for �uk� The construction for �uk is made such that kA���	�uk
��kkE
is of su�ciently high order�



��

Morgenstern ����� and Babu ska and Pitk!aranta ��� essentially used the same

expressions for �uk� We shall use a slight modi�ed version of their expression� We

denote it by �um�

u
�

m � �z grad
�

w� �um ��e� � w �
		��z� � t�


��	�� 	

�w� 	�����


where u
�

m stands for 	um� � u
m
� 
�

From 	�����
 and 	�����
� a direct computation shows that there exists a con�

stant C independent of t such that

kA���	�um
 � �kkE � Ct	��kgkL����� 	�����


The last inequality follows from the standard regularity results for the biharmonic

equation 	���
� See ��� for details� This �um may not satisfy the boundary conditions

imposed in V � Thus it is necessary to de�ne �uc so that
�u � �um � �uc � V can be

used in the Prager�Synge theorem�

Simmonds ���� studied a more sophisticated expression for �uk� We shall use

a slightly modi�ed version of his expression� Denote it by �us�

u
�

s � �zgrad
�

w �

�
zt�

�� 	

�
	

��
� �

�

�
�

z�

�� 	

�
�

�
� 	

�

��
grad
�

�w�

us� � w �
		��z� � t�


��	�� 	

�w�

	�����


where u
�

s stands for 	us�� u
s
�

T �

Lemma ������ Let �k and �us be de�ned in 	�����
 and 	�����
 respectively� w the

Kirchho� plate solution� g the scaled traction in 	���
� Then there exists a constant

C independent of t such that

kA���	�us
� �kkE � Ct
��kwkH���� � Ct
��kgkL����� 	�����




��

Proof� De�ne
��us by

�u
�

s � �zgrad
�

w� �us� � us�� 	�����


Then a direct computation shows that

h
A���	

��us

i
��

� �k���
h
A���	

��us

i
��

� �� 	�����


Moreover� h
A���	�us


i
��

� �k��� 	������


By 	�����
� 	�����
� and 	������
 the inequality 	�����
 follows from a simple compu�

tation and the triangle inequality� �

The expression for �um is simpler than that for �us� and is good for some

convergence rate estimation� However� when higher convergence rates are possible�

the expression for �us is needed to obtain a higher order approximation like sharper

results� Depending on the applications� one can choose which to use� For example�

in the next section we shall use �us since the convergence rate for a bi�periodic plate

is high� while in the next chapter� we shall use �um since the convergence rate �nally

turns out to be low and �um allows a simpler expression�

In addition to 	�����
 or 	�����
� for simply supported plates� since by 	����


w � � on ��� then Z
�t

�um � �us � 	�� �� tw
T � ��� 	������


While the estimation 	�����
 and 	�����
 holds for Morgenstern�s expression and

Simmonds�s expression respectively� only our modi�ed versions satisfy both 	�����


and 	������
 or both 	�����
 and 	������
� The equation 	������
 will be an essential

condition in our three�dimensional boundary value corrector discussion� Once again

�uk may not satisfy the required boundary condition� and we require a boundary

corrector �uc�



��

Sec ���� Convergence Rate for a Bi�periodic Plate

In this section� we consider a bi�periodic plate� When the expressions �k and

�us are employed� the Prager�Synge theorem leads to the global convergence rate of

O	t�
�

For the bi�periodic plate� let � be the unit square 	�� �
� 	�� �
� De�ne 	 by

	�����
� and

V �

�
�v j vi�H�	P t
��v	�� y� z
��v	�� y� z
� for all ��y���� t

�
�z�

t

�
�

�v	x� �� z
��v	x� �� z
� for all ��x���� t

�
�z�

t

�
and

Z
P t

�v���

�
�

	�����


Suppose that g satis�es

g	�� y
 � g	�� y
� for all � � y � ��

g	x� �
 � g	x� �
� for all � � x � ��Z
�

g � ��

Then the weak formulation 	�����
 determines the solution 	�� �u
 uniquely�

The requirement 	�����
 corresponds to the following bi�periodic condition�

	� � �n
	�� y� z
 � �	� � �n
	�� y� z
 for all � � y � �� � t

�
� z �

t

�
�

	� � �n
	x� �� z
 � �	� � �n
	x� �� z
 for all � � x � �� � t

�
� z �

t

�
�

	�����


We now check that in this special case �k satis�es the conditions in 	�����


and �us satis�es the conditions in 	�����
�

The corresponding Kirchho� plate �nds the unique solution w � "H�
per	�
 to

the equation 	���
 where

"H�
per	�
 �

�
v � H�	�
 j v	�� y
 � v	�� y
�

�v

�x
	�� y
 �

�v

�x
	�� y
� � � y � ��

v	x� �
 � v	x� �
�
�v

�x
	x� �
 �

�v

�x
	x� �
� � � x � ��

Z
�

v � �

�
�



��

By using the weak formulation for 	���
 and integrating by parts� it is easy

to check that

	grad
�

grad
�

w
	�� y
 � 	grad
�

grad
�

w
	�� y
 for all � � y � ��

	grad
�

grad
�

w
	x� �
 � 	grad
�

grad
�

w
	x� �
 for all � � x � ��

	grad
�

�w
	�� y
 � 	grad
�

�w
	�� y
 for all � � y � ��

	grad
�

�w
	x� �
 � 	grad
�

�w
	x� �
 for all � � x � ��

By 	�����
� 	�����
 and 	�����
� the components of �k and �us are all linear combina�

tions of w�
�w

�x
�
�w

�y
� �w� grad

�
�w� Thus�

	�k�n
	�� y� z
 � �	�k�n
	�� y� z
 for all � � y � �� � t

�
� z �

t

�
�

	�k�n
	x� �� z
 � �	�k�n
	x� �� z
 for all � � x � �� � t

�
� z �

t

�
�

�us	�� y� z
 � �us	�� y� z
� for all � � y � �� � t

�
� z �

t

�
�

�us	x� �� z
 � �us	x� �� z
 for all � � x � �� � t

�
� z �

t

�
�

Moreover� by 	�����
 and the fact that
R
�
w � �� it is easy to check thatZ

P t

�us � ���

Thus� the conditions in 	�����
 and 	�����
 are all satis�ed� Hence �k and �us can

be used directly in the Prager�Synge theorem with boundary corrector �c �  and

�us � ��� By 	�����
� we obtain the following result for the bi�periodic plate�

Theorem ������ Let 	�� �u
 be the solution to 	�����
� 	�k� �us
 be constructed in

	�����
 and 	�����
 from the Kirchho� plate solution� Then there exists a constant

C independent of t such that

k� � �kkE � jjj�u� �usjjj � Ct
��kgkL�����

�



��

Corollary ������ Let 	�� �u
 be same as in Theorem ������ Then there exists a

constant C independent of t such that

k�kE � jjj�ujjj � Ct���kgkL�����

Proof� From 	�����
 and 	�����
� it is easy to see that

k�kkE � jjj�usjjj � Ct���kgkL�����

The corollary then follows from Theorem ����� immediately� �

From Theorem ����� and Corollary ������ the convergence rate follows�

Theorem ������ Under the conditions of Theorem ������ The global convergence

rate for the periodic plate is O	t�
� That is� there exists a constant C independent

of t such that

k� � �kkE
k�kE �

jjj�u� �usjjj
jjj�ujjj

� Ct��

�

Note that if we replace �us by �um in this section� all the analysis holds� except

that the convergence rate we can obtain is of order O	t
� which is not sharp�

Sec ���� Boundary Correctors

The easy application of the Prager�Synge theorem and high convergence rate

of the bi�periodic plate in section ��� is a rare exception� For most boundary value

problems� possible boundary layers of the three�dimensional solution make it im�

possible to use �k and �um 	or �us
 directly in the Prager�Synge theorem� Boundary

correctors are usually necessary�



��

Boundary values to be corrected for the simply supported plates� We

compare the boundary conditions on the three�dimensional solution 	�� �u
 with the

corresponding values of 	�k� �um
� or 	�k� �us
� Then we �nd the boundary values

that need to be corrected�

By 	���
 and 	���
� the boundary values imposed on the lateral side �t are

�u ��e� � �sT��n � �nT��n � � soft case�

�u ��e� � �u ��s � �nT��n � � hard case�

By 	����
� the simply supported Kirchho� plate solution satis�es

w � �� n
�

T
h
	�� 	
grad

�
	grad
�

w
 � 	�w

�

i
n
�
� � on ���

Thus 	�����
� on the lateral side �t�

�sT�k�n � zs
�

T 	Tgrad
�

grad
�

w
n
�
�

�nT�k�n � ��
	�����


where

T �
�
�

E

	�� 	�


h
	� � 	
�

�
� 	 tr �

�


�

i
�

By 	�����
� on the lateral side �t�

�um ��e� �
		��z� � t�


��	�� 	

�w�

�um ��s � ��

	�����


where �s � 	s�� s�� �
� s
�
� 	s�� s�
� �n � 	n�� n�� �
� n

�
� 	n�� n�
� By 	�����
� on the

lateral side �t�

�us ��e� � 		��z� � t�


��	�� 	

�w�

�us ��s �
�
zt�

�� 	

�
	

��
� �

�

�
�

z�

�� 	

�
�

�
� 	

�

��
grad
�

�w � s
�
�

	�����




��

The nonzero values on the right hand side of 	�����
 and 	�����
 or 	�����
 and 	�����


are the values to be corrected by the boundary correctors �c and �uc�

From now on we shall use �uk for either �um or �uk� All the discussion applies

to both of them� De�ne the following functions on �t�

�

t
h� � ��uk ��e�� hs � ��uk ��s� f � ��sT�k�n� 	�����


We will see the reason for scaling h� in section ���� Since the variable z� whose range

is ��t��� t���� is an order O	t
 term� h� is of order O	t�
 pointwise� hs is either zero

or order O	t�
 pointwise� and f is of order O	t
 pointwise�

Applying the Prager�Synge theorem� We will take � � �k��c and
�u � �uk��uc

in the Prager�Synge theorem� By the theorem�

jjj�u� 	�uk � �uc
jjj� � k� � 	�k � �c
k�E � kA���	�uk � �uc
 � 	�k ��c
k�E
� �kA���	�uc
� �ck�E � �kA���	�uk
� �kk�E�

The term kA���	�uk
 � �kk�E is bounded by either 	�����
 or 	�����
� Thus by the

triangle inequality�

jjj�u� �ukjjj �
p
�kA���	�uc
 � �ckE �

p
�kA���	�uk
 ��kkE � jjj�ucjjj

�
p
�kA���	�uc
� �ckE �

p
�kA���	�uk
 � �kkE � jjj�ucjjj� 	�����


and

jjj�u� �ukjjj � �
p
�kA���	�uc
� �ckE �

p
�kA���	�uk
 � �kkE � jjj�ucjjj

� �p�kA���	�uc
 ��ckE �
p
�kA���	�uk
� �kkE � jjj�ucjjj� 	�����


Likewise�

k� � �kkE �
p
�kA���	�uc
� �ckE �

p
�kA���	�uk
 � �kkE � k�ckE� 	�����




�	

and

jjj� � �kjjj � �p�kA���	�uc
� �ckE �
p
�kA���	�uk
� �kkE � k�ckE� 	�����


A similar approach can be used to obtain energy estimates on a subdomain

P t
�� Since

jjj�u� �ukjjjP t
�
� jjj�u� �uk � �ucjjjP t

�
� jjj�ucjjjP t

�
� jjj�u� �uk � �ucjjj� jjj�ucjjjP t

�
�

then

jjj�u� �ukjjjP t
�
�
p
�kA���	�uc
 ��ckE �

p
�kA���	�uk
� �kkE � jjj�ucjjjP t

�
�
	�����


jjj�u� �ukjjjP t
�
� �

p
�kA���	�uc
� �ckE �

p
�kA���	�uk
� �kkE � jjj�ucjjjP t

�
�

	������


Or�

k� � �kkE�P t
�
�
p
�kA���	�uc
� �ckE �

p
�kA���	�uk
� �kkE � k�ckE�P t

�
�

	������


k� � �kkE�P t
�
� �

p
�kA���	�uc
� �ckE �

p
�kA���	�uk
 � �kkE � k�ckE�P t

�
�

	������


In either ��� or ����� �c and �uc are considered separately� kA���	�uc
� �ckE
and jjj�ucjjj are found to be of the same order O	t�
� Although this leads to a global

convergence rate of O	t���
� this approach does not establish the sharpness of the

convergence rate� Moreover� it cannot be used to obtain higher interior convergence

rates�

We notice the simple fact that it is desirable to �nd �c and �uc such that the

order of kA���	�uc
 � �ckE is higher than jjj�ucjjj or k�ckE for global estimation�

and higher than jjj�ucjjjP t
�
or k�ckE�P t

�
for interior estimation� so that the orders of

kA���	�uk
��kkE and k�ckE or orders of kA���	�uk
��kkE and k�ckE�P t
�
kE can

be compared� This leads us to seek the following�

A���	�uc
� �c �  in P t� 	������




��

Recall that �c must satisfy the conditions in 	�����
� Then the equations in

	������
 and 	�����
 determine 	�c� �uc
 as the solution to a three�dimensional plate

problem� This problem consists of the di�erential equation

�div�c � �� in P t� 	������


the boundary condition on the top and bottom surfaces

�c�n � �� on �t
� 	 �t

�� 	������


and on the lateral boundary �t� the boundary values to be corrected are imposed�

For the soft simply supported plate� they are

�uc ��e� � �

t
h� on �t�

�sT�c�n � f on �t�

�nT�c�n � � on �t�

	������


For the hard simply supported plate� they are

�uc ��e� �
�

t
h� on �t�

�uc ��s � hs on �t�

�nT�c�n � � on �t�

	������


These boundary values are speci�ed in	�����
 or 	�����
� Finally� for the soft simply

supported plate� we need to impose the side conditionZ
P t

�uc ��r � �
Z
P t

�uk ��r for all �r � R�

Since u
�

k is odd in z� by 	���
� the right hand side of this condition becomesZ
P t

�uc ��r � � for all �r � R� 	������


The equations 	������
�	������
� 	������
� and 	������
 uniquely determine the bound�

ary corrector 	�c� �uc
 for the soft simply supported plate� and the equations 	������
�

	������
� and 	������
 uniquely determines the boundary corrector 	�c� �uc
 for the

hard simply supported plate�

The following theorem explains how the three�dimensional boundary corrector

a�ects the error estimation�



��

Theorem ������ Let 	�� �u
 be the solution to 	���
�	���
� 	���
 or to 	���
�	���
�

	���
� �k as in 	�����
� �uk as in 	�����
� 	�c� �uc
 as in 	������
�	������
� 	������
��

and 	������
� or as in 	������
�	������
� and 	������
� Then there exists a constant

C independent of t such that

�
p
�k�ckE �

p
�kA���	�uc
� �ckE � jjj�u� �ukjjj� k� � �kkE

� �
p
�k�ckE �

p
�kA���	�uc
 ��ckE�

Moreover� let P t
� be an interior domain of the plate�

�
p
�k�ckE�P t

�
�
p
�kA���	�uc
 ��ckE � jjj�u� �ukjjjP t

�
� k� � �kkE�P t

�

� �
p
�k�ckE�P t

�
�
p
�kA���	�uc
 � �ckE �

	������


Proof� The inequality for the global estimation follows from 	�����
�	�����
 and

	������
� The inequality for the local estimation follows from 	�����
�	������
 and

	������
� �

Note that the right hand side of 	������
 are to be used together with 	�����
 or

	�����
� depending on whether �uk � �um or �uk � �us� As we shall see in chapter �� the

order of k�ckE and k�ckE�P t
�
do not exceed O	t	��
� Thus the global and interior

convergence rates are determined by the order of k�ckE and k�ckE�P t
�
respectively�

The orders of these terms are not easy to estimate� It is the main work in the next

chapter�



��

Chapter Three

CONVERGENCE RATES FOR SIMPLY SUPPORTED PLATES

In this chapter� we estimate the asymptotic orders of the boundary value

correctors� and derive the convergence rates for the simply supported plates� It is

found that for the hard simply supported plate with smooth boundary� the global

convergence rate of O	t���
 is sharp� and the interior convergence rate is O	t
� while

for the soft simply supported plate both the global and interior convergence rates

are O	t���
�

The analysis in this chapter uses asymptotic methods employed by Destuyn�

der and Ciarlet ����� ����� Destuynder discussed convergence rates for the hard

clamped plate� while we treat the cases of soft and hard simply supported plates�

However� instead of correcting the boundary values arising from the second asymp�

totic expansion term in Destuynder�s analysis� we correct the boundary values aris�

ing from the application of Prager�Synge theorem� Initiated by the work of Toupin

���� and Wan ����� ����� ����� our analysis also use the Saint Venant�s principle� which

makes the analysis clearer�

Following the approaches in ����� we organize this chapter as follows� In

section ���� we recall the three�dimensional boundary corrector and its related prop�

erties� In section ���� a set of scalings is used to �x the plate thickness� and assign

appropriate orders to the components of the displacement and the stress� In section

���� an auxiliary problem on a neighborhood of the lateral boundary of the plate is

de�ned� The solution to this problem will agree with the scaled boundary corrector



��

to the lowest order as that of �t� To facilitate the discussion� a boundary��tted

coordinate system is used� In section ���� the auxiliary problem is decoupled into

one two�dimensional Laplace�like problem and one two�dimensional elasticity�like

problem with variable � as a parameter� In section ���� ���� and ���� we analyze the

two problems using Saint Venant�s principle and �nd the orders of the solutions in

various norms� In section ���� we estimate the di�erence between the solution to the

auxiliary problem and �t� In section ���� we obtain the order estimations about �c

from the results in the section ���� Finally in Theorem ������ the convergence rate

results follows�

Sec ���� Three�dimensional Boundary Correctors

As discussed in Section ���� the boundary corrector 	�c� �uc
 is the solution of

a three�dimensional elasticity problem� The di�erential equations and plate domain

are the same as the original three�dimensional plate problem� but the boundary

conditions are di�erent� There is no surface loading on the top and bottom surfaces

�t
� and �t

�� but nonzero data is given on the lateral boundary �t� Speci�cally

	�c� �uc
 solves

A�c � �	�uc
 in P t�

�div�c �  in P t

�c�n � � on �t
� 	 �t

��

	�����


In view of 	������
� 	������
� 	�����
� and 	�����
 or 	�����
� the boundary conditions

imposed on �t can be written as follows�

�nT�c�n � �� �sT�c�n � f� �uc ��e� � �

t
h� soft case�

�nT�c�n � �� �uc ��s � hs� �uc ��e� � �

t
h� hard case�

	�����




��

where hs and h� and f are de�ned in 	�����
� Note the following facts which follow

from Section ����

	�
 All three functions hs� h�� and f are determined by the �rst� second� and

third order derivatives of the Kirchho� plate solution w�

	�
 The functions hs and f are odd functions of z while h� is an even function

of z�

	�
 The function h� is of order O	t�
 pointwise� hs is either zero or of order

O	t�
 pointwise� and f is of order O	t
 pointwise�

	�
 The integrals of hs� h�� and f with respect to z ranging from �t�� to t��

vanish identically�

The weak formulation for 	�����
 and 	�����
 is the following�

Find 	�c� �uc
 such that �uc satis�es the boundary conditions in 	�����
 andZ
P t

A�c � � �
Z
P t

�	�uc
 � � � � for all � � 	�Z
P t

�c � �	�v
 �

� R
�
f	�v ��s
 soft case

� hard case
for all �v � V �

	�����


where the displacement variable space V and stress �eld space	 are given in 	�����
�

For 	�����
 to be equivalent to 	�����
 and 	�����
� it is necessary for 	�����


to hold for �v � R� That isZ
�t
f	�r ��s
 � � for all �r � R� 	�����


Since �r ��s is independent of z for any �r � R� 	�����
 holds�

Sec ���� Scaling

Following Ciarlet ���� and Destuynder ����� we scale the dependent and inde�

pendent variables� The coordinate variables x� y� z are scaled to x�� x� and x� as

follows�

x� � x� x� � y� x� �
z

t
� 	�����




��

Thus the plate domain P t is scaled to P � �� 	����� ���
� Denote the top surface

of P by �� and bottom surface of P by ���

The displacement and the stress are scaled as follows�

�t��	x�� x�� x�
 � �c��	x�� x�� tx�
� �t��	x�� x�� x�
 �
�

t
�c��	x�� x�� tx�
�

�t��	x�� x�� x�
 �
�

t�
�c��	x�� x�� tx�
� ut�	x�� x�� x�
 � uc�	x�� x�� tx�
�

ut�	x�� x�� x�
 � tuc�	x�� x�� tx�
� 	�����


The boundary data becomes

hts	x�� x�� x�
 � hs	x�� x�� tx�
� ht�	x�� x�� x�
 � h�	x�� x�� tx�
�

f t	x�� x�� x�
 � f	x�� x�� tx�
�
	�����


With this scaling� �ut ��e� assumes the value ht� on �� This is the reason for the factor

of ��t in 	�����
�

With such scalings� the spaces V � 	 become V t� 	t�

	t �
�
� j �ij � L�	P 
� �ij � �ji

�
�

V t �
n
�v j vi � H�	P 
��v ��e� � � on�� 	���
 holds

o
soft case�

V t �
n
�v j vi � H�	P 
��v ��e� � �v ��s � � on�

o
hard case�

	�����


The scaled corrector 	�t� �ut
 is the solution to the following problem�

�div�t � �� in P�

�t�n � �� on �� 	 ���
	�����


with the following lateral boundary conditions�

�nT�t�n � �� �sT�t�n � f t� �ut ��e� � ht� soft case�

�nT�t�n � �� �ut ��s � hts�
�ut ��e� � ht� hard case�

	�����


where the components of �t in 	�����
 and 	�����
 are as follows�

�t�� �
E

�	� � 	


	
�ut�
�x�

�
�ut�
�x�

�
�	

�� �	

�
�ut�
�x�

�
�

t�
�ut�
�x�

�

��



�

�t�� �
E

�	� � 	
t�

�
�ut�
�x�

�
�ut�
�x�

�
�

�t�� �
E

	� � 	
t�

�
�ut�
�x�

�
	

�� �	

�
�ut�
�x�

� t�
�ut�
�x�

��
�

	�����




��

Lemma ������ The problem 	�����
�	�����
 has the weak formulation�

Find 	�t� �ut
 such that �ut satis�es the boundary conditions in 	�����
� and

	�t� �ut
 satis�es the following equations�

a�	�
t� � 
 � t�a�	�

t� � 
 � t�a�	�
t� � 
 � b	� � �ut
 � �� for all � � 	t�

b	�t��v
 �

� R
� f

t	�v ��s
 soft case

� hard case
for all �v � V t�

	�����


where

a�	�
t� � 
 �

Z
P

	
� � 	

E
�t�� �

	

E
�t��
��
����

a�	�
t� � 
 �

Z
P

�
	� � 	


E
�t����� �

	

E
	�t����� � ����

t
��


�
�

a�	�
t� � 
 �

Z
P

�

E
�t������

b	� ��v
 � �
Z
P

�ij
�vj
�xi

�

	�����


Proof� By 	����
�

A� �
� � 	

E
� � 	

E
tr���

Let � and � scale to �t and � t according to 	�����
� Then

�

t

Z
P t

A� � � �

Z
P

��
� � 	

E
�t�� �

	

E

�
�t�� � t��t��

��

���

t
��

�t�
� � 	

E
�t���

t
�� � t�

�
t�
� � 	

E
�t�� �

	

E

�
�t�� � t��t��

��
� t��

�
�

Collecting the like power terms of t� we obtain

�

t

Z
P t

A� � � � a�	�
t� � t
 � t�a�	�

t� � t
 � t�a�	�
t� � t
�

where a�� a� and a� are given by 	�����
� Let � and �v scale to �t and �vt according

to 	�����
� we obtain

�

t

Z
P t

� � �	�v
 �

Z
P

�t � �	�vt
�



��

Finally� we have

�

t

Z
�t
f	�v ��s
 �

Z
�

f t	�vt ��s
�

Using � and �v instead of � t and �vt for simplicity� The lemma then follows from

	�����
� �

Sec ���� An Auxiliary Problem

Our goal now is to obtain asymptotic estimates for the scaled corrector func�

tions �t and �ut� Because this is too di�cult to do directly� in this section we shall

introduce a simpli�ed auxiliary problem for which� as we shall see later� the asymp�

totic behavior is the same to the lowest order�

In order to de�ne the auxiliary problem� we need to introduce boundary��tted

coordinates in a neighborhood of the lateral boundary �� Let L be a positive number

less than half the smallest radius of curvature of ��� and let Q be the subset of P

consisting of points within distance L of �� If �z	�
 is a parameterization of the curve

��� f�g by arclength� then the mapping

	�� �� x�
 
� �z	�
 � ��n� x��e�

de�nes a di�eomorphism of "Q �� 	�� L
�R�S� 	����� ���
 onto Q� Here S is the

arclength of �� and R�S denotes the real numbers modulo S�

The boundary of Q consists of the top and bottom surfaces #� �� Q � ���

the outer lateral boundary �� and the inner lateral boundary �L� These have simple

expressions in boundary��tted coordinates�

"#� � 	�� L
 �R�S� f����g�
"� � f�g �R�S� 	����� ���
� "�L � fLg �R�S� 	����� ���
�



��

If �x� � Q� we denote by
"�x the corresponding point in "Q� If f is a function on Q we

de�ne the associated function on "Q by

"f 	
"�x
 � f	�x
�

The vector �elds �n and �s can be extended from � to all of Q by assigning to

each point of Q the value of these vector �elds at the unique point of � nearest the

given point� In terms of boundary��tted coordinates� �n and �s are extended from the

surface � � � by taking them to be independent of �� It is easy to check that

��

�x�
�

s�
�� ��R	�


�
��

�x�
� �n�  � �� ��

and d�f
�x�

�
� "f

��

��

�x�
�
� "f

��

��

�x�
�  � �� ��

d�f
�x�

�
� "f

�x�
�

Change of variable in integration givesZ
Q

f �

Z
Q

"fJ �

Z ���

����

Z S

�

Z L

�

"f "J d�d�dx�� 	�����


where "J � �� ��R	�
 is the Jacobi determinant� In the sequel we shall usually omit

the circum$ex from the notation and rely on the context to distinguish between the

functions f and "f �

From the boundary��tted coordinate system we have an orthogonal frame

	��n��s��x�
 de�ned at each point of Q� We shall use this frame to express vector and

tensor �elds� Thus if �v is a vector �eld de�ned on Q� we can write

�v � �vn�n� vs�s � v��e�

where

vn � ��v � �n� vs � �v ��s� v� � �v ��e�� 	�����




�	

Similarly� if � is a symmetric tensor �eld on Q� then

� � �nn�n�n
T ��ns	�s�n

T ��n�sT 
��ss�s�s
T��n�	�n�e

T
� �

�e��n
T 
��s�	�s�e

T
� �

�e��s
T 
�����e��e

T
�

	�����


where

�nn � �nT��n� �ns � �sT ��n� �ss � �sT��s�

�n� � �nT ��e�� �s� � �sT ��e�� ��� � �eT� �
�e��

Next we restate the di�erential equations 	�����
� 	�����
 determining the

scaled boundary corrector in terms of boundary��tted coordinates� Using the fact

that
��n

��
�

��s

��
� ��

��n

��
�

�s

R
�

��s

��
� �

�n

R
�

we get

��tnn
��

�
�

�� ��R

��tns
��

�
��tn�
�x�

� ��

��tns
��

�
�

�� ��R

��tss
��

�
��ts�
�x�

� ��

��tn�
��

�
�

�� ��R

��ts�
��

�
��t��
�x�

� ��

and

�tnn �
E

�	� � 	


�
�
�utn
��

�
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�� �	

�
�utn
��

�
�

t�
�ut�
�x�

�
�

�� ��R

�
�uts
��

� �

R
utn

���
�

�tns �
E

�	� � 	


�
�uts
��

�
�

�� ��R	�


�
�utn
��

�
�

R
uts

��
�

�tss �
E

	� � 	
	� � �	


�
	

t�

�
�ut�
�x�

� t�
�utn
��

�
�

�� 	

�� ��R

�
�uts
��

� �

R
utn

��
�

�tn� �
E

�	� � 	
t�

�
�ut�
��

�
�utn
�x�

�
�

�ts� �
E

�	� � 	
t�

�
�uts
�x�

�
�

�� ��R

�ut�
��

�
�

�t�� �
E	�� 	


	� � 	
	� � �	
t�

�
�ut�
�x�

�
t�	
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�
�utn
��

�
�

�� ��R

�
�uts
��

� �

R
utn

���
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To de�ne the auxiliary problem� we alter these di�erential equations� by sup�

pressing terms that arise from di�erentiation with respect to �� Thus we shall de�ne

a tensor �eld � and a vector �eld �y on Q satisfying

�nn �
E	�� 	


	� � 	
	�� �	
t�

�
	

�� 	

�y�
�x�

� t�
�yn
��

�
�

�ns �
E

�	� � 	


�ys
��

�

�ss �
E	

	� � 	
	�� �	
t�

�
�y�
�x�

� t�
�yn
��

�
�

�n� �
E

�	� � 	
t�

�
�y�
��

�
�yn
�x�

�
�

�s� �
E

�	� � 	
t�
�ys
�x�

�

��� �
E	�� 	


	� � 	
	�� �	
t�

�
�y�
�x�

�
t�	

�� 	

�yn
��

�
� 	�����


and
��nn
��

�
��n�
�x�

� ��

��ns
��

�
��s�
�x�

� ��

��n�
��

�
����
�x�

� ��

	�����


The boundary conditions on � and �y are

�n� � �� �s� � �� ��� � � on #� 	#�

�nn � �� �sn � �f� � � h� on �� soft case�

�nn � �� ys � hs� y� � h� on �� hard case�

yn � �� �ns � �� y� is constant on �L�Z
�L

�n� � ��

	�����


We will discuss the existence and uniqueness of the problem in the next section�



��

The solution 	���y
 satis�es a weak formulationwhich we will use in Section ���

in the error analysis� For this purpose we introduces the following spaces�

	Q �
�
� j �ij � L�	Q
� �ij � �ji

�
� 	�����


VQ �
n
�v j vi � H�	Q
� �v ��e� � � on��� �v � �n � �� �v ��e� � constant on�L

o
soft case�

VQ�
n
�v j vi � H�	Q
� �v ��e���v ��s�� on��� �v � �n��� �v ��e��constant on�L

o
hard case�

Lemma ������ Let 	���y
 be a solution to 	�����
�	�����
� Then 	���y
 � 	� �
�H�	Q
��� �y satis�es 	�����
 on �� 	 �L� and

AQ
� 	�� � 
 � t�AQ

� 	�� � 
 � t�AQ
� 	�� � 
 �BQ	� ��y
 � � for all � � 	Q� 	�����


BQ	���v
 �

� R
�
f t	�v ��s
 soft case

� hard case
for all �v � VQ� 	�����


where

AQ
� 	�� � 
 �

Z
Q

�
� � 	

E
��� � 	

E
���
��

�
���J

���

AQ
� 	�� � 
 �

Z
Q

�
	� � 	


E
������ � 	

E
	������ � ������


�
J���

AQ
� 	�� � 
 �

Z
Q

�

E
������J

���

BQ	� ��v
 �

Z
Q

�
�nn

�vn
��

� �ns
�vs
��

� �n�
�v�
��

� �n�
�vn
�x�

��s�
�vs
�x�

� ���
�v�
�x�

�
J��� 	������


Proof� Multiply the three equations in 	�����
 by vn� vs� and v�� respectively� and

integrate over Q� Integrating by parts and using the boundary conditions in 	�����


gives 	�����
�



��

Associate to a tensor � the scaled version

�nn � �nn� �ns � �ns� �ss � �ss�

�n� � t�n�� �s� � t�s�� ��� � t�����

Further� de�ne a tensor � � �	�y
 by

�nn �
�yn
��

� �ns �
�

�

�ys
��

� �n� �
�

�t

�
�y�
��

�
�yn
�x�

�
�

�s� �
�

�t

�ys
�x�

� ��� �
�

t�
�y�
�x�

� �ss � ��

Then

AQ
� 	�� � 
 � t�AQ

� 	�� � 
 � t�AQ
� 	�� � 
 �

Z
Q

A � � �J���

and

BQ	� ��y
 �

Z
Q

� � �	�y
J���

	The fourth order tensor A is given in 	����

� Therefore the equation 	�����
 holds

if and only if A � � �	�y
� This last equation follows directly from the de�nition of

these tensors� �

Note that AQ
i di�ers from ai in two ways� restriction of the domain to Q and

multiplication of J��� If we let �Q be the characteristic function of Q� then

AQ
i 	J�� � 
 � ai	�Q�� � 
� i � �� �� �� 	������


Note also that BQ	� ��v
 di�ers from b	� ��v
 in three ways� restriction of the domain

to Q� suppression of terms involving tangential derivatives� and multiplication of

J��� In fact�

b	�Q� ��v
 �

Z
Q

�
�nn

�vn
��

� �ns

�
�vs
��

�
�

�� ��R

�
�vn
��

�
�

R
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� �n�

�v�
��

��n�
�vn
�x�

� �s�

�
�vs
�x�

�
�
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�v�
��

�
� �ss

�
�vs
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� �

R
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�
� ���

�v�
�x�
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Thus� let

� �
�

�� ��R

�
�

�

�
�vn
��

�
�

R
vs

�
	�n�sT ��s�nT 
 �

�
�vs
��

� �

R
vn

�
�s�sT

�
�

�

�y�
��

	�e��s
T ��s�eT� 


�
�

then it follows that

B�	J� ��v
 � b	�Q� ��v
�
Z
Q

� � �� 	������


Substitute 	�����
 into 	�����
� 	�����
� we obtain explicitly the following di�erential

equations and boundary conditions in terms of only the displacement variables�

�t�	�� 	

��yn
���

�
��y�
�x���

� 	� � �	

��yn
�x��

� � in Q�

�	�� 	

��y�
�x��

� t�
��yn
�x���

� t�	�� �	

��y�
���

� � in Q�

t�
��ys
���

�
��ys
�x��

� � in Q�

	������


with the following boundary condition on top and bottom surfaces�

�y�
��

�
�yn
�x�

� � on #� 	#��

	t�

�� 	

�yn
��

�
�y�
�x�

� � on #� 	#��

�ys
�x�

� � on #� 	#��

On the lateral boundary ��� the boundary conditions are as follows�

t�
�yn
��
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�� 	

�y�
�x�

� �� y� � h��
�ys
��

� ��	� � 	


E
f % soft case

t�
�yn
��
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�� 	

�y�
�x�

� �� y� � h�� ys � hs% hard case

On the lateral boundary �L� the boundary conditions are as follows�

yn � ��
�ys
��

� �� y� is constant on �L�Z
�L

�
�yn
�x�

�
�y�
��

�
� ��

	������
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Sec ���� Two Separate Problems

The problem in 	������
�	������
 has derivatives with respect to only the vari�

ables � and x�� This indicates that the variable � can be treated as a parameter� Thus

we discuss the problem in the two�dimensional domain�� � 	�� L
�	����� ���
�f�g
for every �� For simplicity we write � instead of ��� In the following discussion�

although bounds derived for the unknown variables on the domain � seem to depend

on �� such dependence is continuous� As the domain of � is a compact set� all such

bounds are actually independent of �� From this this section on� we denote yn by

�� ys by �� and y� by ��

We denote by �� the horizontal segment 	�� L
 � f����g� and by �� the

vertical segment fg � 	����� ���
 for � �  � L�

It is easy to see that the equations in 	������
�	������
 decouple into two

problems�

The �rst problem relates to a Laplace equation on �� and determines ��

t�
���

���
�
���

�x��
� � in ��

��

�x�
� � on �� 	 ���

��

��
� � on �L�

��

��
� ��	� � 	


E
f on ��% soft case�

� � hs on ��% hard case�

	�����


In the soft case� we add the following condition to guarantee that the solution is

unique� Z
�

� � �� 	�����
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For soft simply supported plate� the compatibility condition is
R
	�
f � ��

The second problem relates to a plane elasticity system� and determines �

and ��

�t�	�� 	

���

���
�

���

�x���
� 	�� �	


���

�x��
� � in ��

�	�� 	
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�x��
� t�
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�x���
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���

���
� � in ��
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��

�x�
� ��

	t�
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��
�

��

�x�
� � on �� 	 ���

t�
��

��
�

	

�� 	

��

�x�
� �� � � h� on ���

� � �� � is constant on �L�Z
	L

�
��

��
�

��

�x�

�
� �� 	�����


It is easy to see that either 	�����
 or 	�����
 has a unique solution�

We need to �nd the orders of �� �� � and components of � in several norms�

The following space is equipped with a norm that treats partial derivatives along

di�erent directions separately�

Hs��	�
 �

�
v � � 
� R j v	�� y
 � Hs	�� L
�

Z ���

����

kv	x� �
k�Hs���L� dy �

�

Sec ���� Saint Venant�s Principle

In this section we discuss Saint Venant�s principle for Laplace�s equation

and the elasticity equations in a two�dimensional strip� Saint Venant�s principle

describes that under certain conditions� the e�ect of nonzero boundary data decay

quickly away from the boundary� ����� ����� ����� ����� �����

We also derive bounds for some energy norms� Results obtained in this section

will be used in later estimation� The notation is independent of the previous sections�



��

For any numbers r� � r� let �r��r� denote the rectangle 	r�� r�
� 	����� ���
�
For r � � we use the simpler notation �r in place of ���r� Also we denote by �r

the vertical segment frg � 	����� ���
� and by ��r the horizontal segments 	�� r
 �
f����g�

Exponential decay for Laplace�s equation in a strip� In this subsection we

consider Laplace�s equation

�u � � in �r� 	�����


subject to the homogeneous Neumann boundary condition

�u

�n
� � on ��r 	 ��r 	 �r 	�����


on three sides of the strip� On the fourth side we impose either the Dirichlet condition

	the hard case


u � h on �� 	�����


or the Neumann condition 	the soft case
 	the soft case


�u

�n
� g on ��� 	�����


where g is a given function on �� of mean value zero�Z
	�

g � �� 	�����


In the case of the Neumann condition� we also normalize the solution by imposing

the condition Z
�r

u � �� 	�����


Given g satisfying 	�����
� there is clearly a unique solution u to 	�����
� 	�����
� and

either 	�����
 or 	�����
 and 	�����
� Note that� in view of 	�����
� equation 	�����


holds in both cases� The main result of this subsection is the following exponential

decay result�



��

Theorem ������ Let r � � and let u � �r � R be the unique solution to one of the

boundary value problems described above� ThenZ
�r��r

jgradu
�

j� � e���r��r��
Z
�r��r

jgradu
�

j� for all � � r� � r� � r�

Here � is the constant ����	��� � �
�

Before turning to the proof� we establish some simple lemmas� The following

standard result may be derived from a Fourier series expansion�

Lemma ������ Let g � H�	I
 where I is an interval of length � and suppose thatR
I
g � �� Then Z

I

jgj� � �

���

Z
I

jg�j�

	where the prime denotes di�erentiation along I
�

Next we show that the solution u has mean value zero on every vertical seg�

ment�

Lemma ������ Let r and u be as in Theorem ������ ThenZ
	s

u � �

for all � � s � r�

Proof� From 	�����
� Green�s theorem� and 	�����
 we have

� �

Z
�s�r

�u �

Z

�s�r

�u

�n
�

Z
	s

�u

�n
�

De�ne v	x� y
 � x� Again applying 	�����
� Green�s theorem� and 	�����
� we get

� �

Z
�s

	v�u� u�v
 �

Z

�s

�
v
�u

�n
� u

�v

�n

�
� �

Z

�s

u
�v

�n
�

Z
	�

u�
Z
	s

u�

The lemma follows from this equality and 	�����
� �



��

We now turn to the proof of Theorem ������

Proof� For � � s � r� let E	s
 �
R
�s�r

jgradu
�

j�� so E � 	�� r
 � R is positive and

decreasing�

From 	�����
� Green�s theorem� and 	�����
 we have

E	s
 �

Z

�s�r

u
�u

�n
�

Z
	s

u
�u

�n
� �

�

Z
	s

juj� � �

�

Z
	s

�����u�n
����� �

where we have used the arithmetic�geometric mean inequality in the last step� In

view of Lemma ����� we may apply Lemma ����� to get

E	s
 �
�
�

�
�

�

���

�Z
	s

jgradu
�

j��

or

E	s
 � � �

�
E�	s
�

Rewriting this as E�	s
�E	s
 � ��� integrating from r� to r�� and exponentiating

then gives

E	r�
 � e���r��r��E	r�


as desired� �

Note that from Lemmas � and � we easily obtain the estimate

kuk�L���s�r� �
�

���
kgradu
�

k�L���s�r��

Therefore we obtain exponential decay of the H� norm as a corollary of Theo�

rem ������

Theorem ������ Under the conditions of Theorem �����

kuk�H���r��r�
�
�
� �

�

���

�
e���r��r��

Z
�r��r

jgradu
�

j� for all � � r� � r� � r�



�	

Exponential decay for two�dimensional elasticity equation in a strip� Let

A be a symmetric positive de�nite tensor on symmetric ��� matrices� We consider

the following two�dimensional elasticity equations in this subsection�

�
�
� A�

�
	u
�

 in �r� 	�����


div
�
�
�
� �
�

in �r� 	�����


subject to the homogeneous Neumann boundary condition

�
�
n
�
� �
�

on ��r 	 ��r � 	�����


on the top and bottom sides of the strip� On one side we impose

n
�

T�
�
n
�
� �� u

�
� s
�
� h on ��� 	������


On the other side we impose

u
�
� n
�
� �� u

�
� s
�
is constant on �r�Z

	r

s
�

t�
�
n
�
� ��

	������


De�ne the space for displacement

V
�
h �

n
v
�
� H�	�r
jv

�
� s
�
� h on ��� v

�
� n
�
� �� v

�
� s
�
is constant on �r

o
�

The weak formulation of 	�����
�	������
 is the following�

Find u
�
� V
�
h such that

Z
�r

�A�
�
	u
�

� � �

�
	v
�

 � � for all v

�
� V
�
�� 	������


Note that
� R

�r
�A�
�
	u
�

� � �

�
	u
�


����

is a norm on V
�
�� so the equation 	������
 has

a unique solution� The main result of this subsection is the following exponential

decay result�



��

Theorem ������ Let r � � and let u
�
� V
�
h be the unique solution to 	������
� Then

there exist positive constants � and C independent of r such that

Z
�r��r

j�
�
j� � Ce���r��r��

Z
�r��r

j�
�
j� for all r� � �� r� � � � r� � r�Z

�r��r

j�
�
	u
�

j� � Ce���r��r��

Z
�r��r

j�
�
	u
�

j� for all r� � �� r� � � � r� � r�

Before turning to the proof� we establish a simple lemma and corollary�

Lemma ������ Let 	�
�
� u
�

 be the solution to 	�����
�	������
� Then

Z
	s

�
�
n
�
� ��

Z
	s

yn
�

T�
�
n
�
� � for all � � s � r�

Proof� First� let v
�
� 	�� �
� From Green�s theorem� 	�����
� 	�����
� and 	������
� for

any � � s � r� we obtain

� �

Z
�s�r

�
�
� �
�
	v
�

 �

Z

�s�r

	�
�
n
�

 � v
�
�
Z
�s�r

	div
�
�
�

 � v
�
�

Z
	s

s
�

T�
�
n
�
� 	������


Next� let v
�
� 	�� �
� From Green�s theorem� 	�����
� 	�����
 and 	������
� for any

� � s � r� we obtain

� �

Z
�s

�
�
� �
�
	v
�

 �

Z

�s

	�
�
n
�

 � v
�
�
Z
�s

	div
�
�
�

 � v
�
�

Z
	s

n
�

T�
�
n
�
�

Finally take v
�
� 	y��x
� From Green�s theorem� 	�����
� 	�����
 and 	������
� for

any � � s � r� we obtain

� �

Z
�s

�
�
� �
�
	v
�

 �

Z

�s

	�
�
n
�

 � v
�
�
Z
�s

	div
�
�
�

 � v
�

�

Z
	s

yn
�

T�
�
n
�
� s

Z
	s

s
�

t�
�
n
�
�

Z
	s

yn
�

T�
�
n
�
�

The last equality follows from 	������
� �



��

Corollary ������ If 	�
�
� u
�

 solves 	�����
�	������
� then

Z
	s

	�
�
n
�

 �m

�
� � for all � � s � r� for all m

�
� N �

where N � f a � by� c� bx j a� b� c � R g� �

We now turn to the proof of Theorem ������

Proof� We set

E	s
 �

Z
�s�r

�
�
� �
�
	u
�

�

For each s � �� denote by Ns the space of rigid motions in the domain �s�s�� �

	s� s � �
 � 	����� ���
� It is well known that any rigid motion takes the form

	a � cy� b � cx
 for some constants a� b� c� and so Ns is a space of dimension ��

When s � r � � �xed� let �u
�
be such that u

�
� �u
�
� Ns and �u

�
is orthogonal to Ns in

L�	�s�s��
� It follows from Korn�s inequality that there is a constant C independent

of r and s such that Z
�s�s��

j�u
�
j� � C

Z
�s�s��

j�
�
	u
�

j��

Let

Q	s
 �

Z s��

s

E	p
 dp for all � � s � r � ��

From Green�s theorem� 	�����
� 	�����
� 	������
 and Corollary ������ for any s� we

have

Q	s
 �

Z s��

s

Z
�p�r

�
�
� �
�
	u
�

 �

Z s��

s

Z
	p�	r

	�
�
n
�

 � u
�
�

Z s��

s

Z
	p

	�
�
n
�

 � �u
�

� �

�

Z
�s�s��

�
j�
�
j� � j�u

�
j�
�
� C

Z
�s�s��

j�
�
j� � �

�

Z
�s�s��

�
�
� �
�
	u
�



where � is some positive constant� On the other hand�Z
�s�s��

�
�
� �
�
	u
�

 � E	s
 �E	s� �
 � �Q�	s
�



��

Thus�

Q	s
 � � �

�
Q�	s
�

Rewriting this as Q�	s
�Q	s
 � ��� integrating from r� to r�� and exponentiating

then gives

Q	r�
 � e���r��r��Q	r�
 for all � � r� � r� � r � ��

Note that E	s
 is a decreasing function� so

E	s� �
 � Q	s
 � E	s
 for all � � s � r � ��

It follows that

E	r�
 � e�e���r��r��E	r�
 for all r� � �� r� � � � r� � r�

The theorem follows easily� �

Energy norm bounds� In this subsection� we show that the energy norm of the

solution to either the Laplace equation or the elasticity equations can be bounded

in terms of the lateral boundary data on �� uniformly in r�

Theorem ������ Let u� h� g satisfy 	�����
�	�����
� There exist constants C�� C�

independent of r � � such that

C�kgkH�����	�� � kukH���r� � C�kgkH�����	�� soft case�

C�khkH����	�� � kukH���r� � C�khkH����	�� hard case�

Proof� We �rst prove the lower bounds� For the hard case� since u � h on ��� by

trace theorem� there exists a positive constant C �� independent of r such that

khkH����	�� � C ��kukH����� � C ��kukH���r��



��

For the soft case� since �u��n � f and �u � �� then there exists a positive constant

C �� independent of r such that

kfkH�����	�� � C ��kukH����� � C ��kukH���r��

The lower bounds then follow by taking C� � ��C ��� We now prove the upper

bounds� First consider the hard case�Z
�r

jgradu
�

j� �
Z

�r

u
�u

�n
�

Z
	�

u
�u

�n
�

Z
	�

h
�u

�n
�

Let w � H�	��
 be such that

�w � � in ���

�w

�n
� � on ��� 	 ��� �

w � h on ���

w � � on ��

It follows from a standard regularity result that

kwkH����� � C�khkH����	���

Thus� we have the following bound�

kgradu
�

k�L���r� �
Z
	�

h
�u

�n
�

Z
	�

w
�u

�n
�

Z

��

w
�u

�n
�

Z
��

gradw
�

� gradu
�

� kwkH�����kgradu
�

kL����� � C�khkH����	��kgradu
�

kL���r��

It follows that

kgradu
�

kL���r� � C�khkH����	��� 	������


Similar arguments hold for the soft case�Z
�r

jgradu
�

j� �
Z

�r

�u

�n
u �

Z
	�

�u

�n
u �

Z
	�

gu�



��

Let w � H�	��
 be such that

�w � � in ���

�w

�n
� � on ��� 	 ��� 	 ���

�w

�n
� g on ���Z

��

w � �

It follows from a standard regularity result that

kwkH����� � C�kgk�����	� �

Thus� we have the following bound�

kgradu
�

k�L���r� �
Z
	�

u
�u

�n
�

Z
	�

u
�w

�n
�

Z

��

u
�w

�n
�

Z
��

gradu
�

� gradw
�

� kgradu
�

kL�����kwkH����� � C�kgradu
�

kL���r�kgkH�����	���

It follows that

kgradu
�

kL���r� � C�kgkH�����	��� 	������


From Lemma ������
R
	s
u � � for all s � ��� r�� thus

kuk�L���r� �
Z r

�

Z
	s

juj� � C�

Z r

�

Z
	s

jgradu
�

j�� 	������


The upper bounds then follows from 	������
� 	������
 and 	������
� �

Theorem ������ Let h� �
�
� and u

�
satisfy 	�����
�	������
� Then there exist con�

stants C� and C� independent of r � � such that

C�khkH����	�� � k�
�
kL���r� � C�khkH����	���

C�khkH����	�� � k�
�
	u
�

kL���r� � C�khkH����	���



��

Proof� We �rst prove the lower bounds� Since u� � h on ��� by the trace theorem

and Korn�s inequality� there exists a constant C �� independent r such that

khkH����	�� � C ��ku�kH����� � C ��min	k�
�
	u
�

kL������ k�

�
kL�����


� C ��min	k�
�
	u
�

kL���r�� k�

�
kL���r�
�

The lower bounds then follow by taking C� � ��C ��� Now we prove the upper bounds�

By 	�����
�	������
� div
�
�
�

� �
�

in �r� �
�
n
�

� �
�

on ��r 	 ��r � n
�

T�
�
n
�

� � on ��� andR
	r
	�
�
n
�

 � u
�
� �� Then we have

k�
�
k�L���r� � C�

Z
�r

�
�
� �
�
	u
�

 � C�

Z
	�

s
�

t�
�
n
�
h� 	������


Let w
�

be such that

�
�
� A�

�
	w
�

 in ���

div
�
�
�
� �
�

in ���

�
�
n
�
� �
�

on ��� 	 ��� �

n
�

T �
�
n
�
� � on ���

w
�
� s
�
� h on ���

w
�
� �
�

on ���

	������


Then

kw
�
kH����� � C�khkH����	��� 	������


Then by 	������
� 	������
� 	������
� 	������
 and 	������
� we obtain the following

bound�

k�
�
k�L���r� � C�

Z
	�

sT
�
�
�
n
�
h � C�

Z
	�

sT
�
	�
�
n
�

	w
�
� s
�

 � C�

Z

��

	�
�
n
�

 � w

�

� C�

Z
��

�
�
� �
�
	w
�

 � C�k�

�
kL�����kw

�
kH����� � C�k�

�
kL���r�khkH����	��

The upper bounds then follow� �



��

Lemma ������ Let u
�
� V

�
h be the unique solution to 	������
� If h is an even

function in x�� then u� is an odd function in x� and u� is an even function in x��

Proof� De�ne �u�	x� y
 � �u�	x��y
 and �u�	x� y
 � u�	x��y
� It is easy to check

that 	�u�� �u�
 is also a solution to 	������
� By uniqueness of the solution� �u� � u�

and �u� � u�� Hence u� is an odd function in y and u� is an even function in y� �

Sec ���� Order Estimation for the Scaled Terms

In this section� we estimate the orders of the solutions to 	�����
 and 	�����


by using the results of Section ����

Estimates for �� Consider the solution � to 	�����
 and de�ne u on �r� where

r � L�t� by

u	x� x�
 � �	tx� x�
� 	�����


The u satis�es 	�����
�	�����
 with

h	�� x�
 � hs	�� x�
� g	�� x�
 � �t	� � 	
�Ef	�� x�
�

The following result therefore follows from Theorem ������

Theorem ������ Let L � �� � � t � �� hs � H���	��
 or f � H����	��
 given�

and � the solution to 	�����
� Then there exist constants C�� C� independent of t

such that

C�t
���kfkH�����	�� � k�kL���� �

���� ���x�
����
L����

� t

��������
����
L����

� C�t
���kfkH�����	�� soft case�

C�t
���khskH����	�� � k�kL���� �

���� ��

�x�

����
L����

� t

��������
����
L����

� C�t
���khskH����	�� hard case�



��

Theorem ������ Let � be the solution to 	�����
� or 	�����
 and 	�����
� For all

� �  � L� let �� � �n��� Then there exist positive constants � and C independent

of t such that

k�kL������ �
���� ��

�x�

����
L������

� t

��������
����
L������

� Ct���e�����tkfkH�����	�� soft case�

k�kL������ �
���� ��

�x�

����
L������

� t

��������
����
L������

� Ct���e�����tkhskH����	�� hard case�

Proof� We choose r� � �� r� � �t� and r � L�t in Theorem ������ to get

kuk�H�����t�L�t�
� Ce����t

Z
�L�t

jgradu
�

j��

Making the change of variables in 	�����
� this becomes

k�k�L������ �
���� ���x�

�����
L������

� t�
��������

�����
L������

� Ce����t
Z
�

�
t�
��������

����� � ���� ���x�
�����
�
�

The right hand side can be bounded by Lemma ����� and the result follows� �

Before deriving several consequences of the exponential decay properties� we

prove three calculus lemmas�

Lemma ������ Let L � �� f � ��� L� � R� Suppose there exist K � �� � � �� and

� � � such that �Z L

�

jf j�
����

� Ke��� for all � �  � L� 	�����


Then Z L

�

jf j � e�

e� �
K�����e��� for all � �  � L� 	�����


Z L

�

�Z L

�

jf j
��

� e�

�	e � �
�
K����e���� for all � �  � L� 	�����


Z L

�

��jf j� � CK����e���� for all � �  � L� 	�����




��

where C � e�
P�

i�� 	i� ��� � �
� e��i� ��� is the largest integer less than or equal

to ��

Proof� Fix any  � ��� L�� let In � �n���� 	n � �
���� � ��L�� By 	�����
� for all

� �  � L�Z L

�

jf j �
�L��X

n�����

Z
In

jf j � �����
�L��X

n�����

�Z
In

jf j�
����

� �����
�L��X

n�����

�Z L

max�n����	�

jf j�
����

� K�����
�L��X

n�����

e�n

� K�����
�X

n�����

e�n � K�����e�����
�X
n��

e�n

� e�

e� �
K�����e����

This establish 	�����
�

Let

g	�
 �

Z L

�

jf j�
By 	�����
�

g	�
 � e�

e � �
K�����e���� � � � � L�

Thus� for � �  � L�Z L

�

jgj� d� �
Z L

�

�
e�

e� �

��

K����e���� d� � �

�
���

�
e�

e� �

��

K�e�����

which is 	�����
�

Finally� for � �  � L�Z L

�

��jf j� �

�L��X
n�����

Z
In

��jf j� � ���
�L��X

n�����

	n � �
�
Z
In

jf j�

� ���
�L��X

n�����

	n � �
�
Z L

max�n����	�

jf j� � K����
�L��X

n�����

	n� �
�e��n

� K����e������
�X
i��

	i � ��� � �
�e��i � K����e����e�
�X
i��

	i � ��� � �
�e��i�

This proves 	�����
�



�	

Lemma ������ Suppose that the hypotheses of Lemma ���� hold with � � t and

� � ��	�t
 for some positive t� �� and that�Z L

�

jf j�
����

� K�

Then Z L

�

jf j �
�
e�����

e� �

r
�

�
� �

�
Kt���� 	�����


Z L

�

�Z L

�

jf j
��

�
�� e���

	e � �
�
�

��
�

�
e�����

e � �

r
�

�
� �

��
��K�t��

	�����
Z L

�

��jf j� �
�

�C

��e�
� �

�
K�t�� 	�����


where C �
P�

i�� e
�	i� ����� � �
�e��i�

Proof� Taking  � t in 	�����
 givesZ L

t

jf j � e�

e � �
K

r
�

�
t���e�����

Moreover� Z t

�

jf j � t���
�Z t

�

jf j�
����

� Kt����

The inequality 	�����
 then follows�

By 	�����
 with the same choice  � t�

Z L

t

�Z L

�

jf j
��

� e�

�	e� �
�
K� �

��
t�e���

Moreover by 	�����
�

Z t

�

�Z L

�

jf j
��

�
Z t

�

�Z L

�

jf j
��

�
�
e�����

e � �

r
�

�
� �

��

K�t��

The inequality 	�����
 then follows�



��

Finally by 	�����
� Z L

t

��jf j� � CK� �

��
t�e���

where C �
P�

i�� e
�	i� ����� � �
�e��i� Moreover�Z t

�

��jf j� � t�
Z t

�

jf j� � K�t��

The inequality 	�����
 then follows� �

Lemma ������ Let L � �� � � t � L� and � � � � R be given� Set �� � �n���
Suppose that there exist constants �� M � �� and s � R independent of t such that

k�kL������ �Mtse�����t for all t �  � L� and for  � �� 	�����


Then there exists a constant C independent of t such that

k�kL������ � CMts����e�����t for all t �  � L� 	������
�����
Z L

�

j�j d�
�����
L������

� CMts��e�����t for all t �  � L� 	������


k�kL���� � CMts����� 	������
�����
Z L

�

j�j d�
�����
L����

� CMts��� 	������


k��kL���� � CMts��� 	������


Proof� We apply Lemmas ����� and ������ Let

f	�
 �

�Z ���

����

j�	�� x�
j� dx�
����

� K �Mts� � �
�

�t
� � � t� 	������


By 	�����
� we obtain�Z L

�

jf j�
����

� k�kL������ �Mtse�����t � Ke��� for all � �  � L�

�Z L

�

jf j�
����

� k�kL���� � K�



��

Thus� the conditions of Lemma ����� and ����� are satis�ed� By 	�����
� 	������
 and

Cauchy�s inequality� we obtain

k�kL������ �
Z L

�

Z ���

����

j�j �
Z L

�

jf j � CK�����e���

� CMts����e�����t for all t �  � L�

which is 	������
�

Moreover� by 	�����
 and Cauchy�s inequality�

k�kL���� �
Z L

�

jf j � CKt��� � CMts�����

so 	������
 holds�

To show 	������
� take any v � L�	��
 with kvkL������ � �� By Cauchy�s

inequality and 	�����
� we obtainZ ���

����

Z L

�

�Z L

�

j�	�� x�
j d�
�
v	�� x�
 d�dx�

�

Z L

�

Z L

�

Z ���

����

j�	�� x�
jv	�� x�
 dx�d�d�

�
Z L

�

��Z L

�

�Z ���

����

j�	�� x�
j� dx�
����

d�

���Z ���

����

jvj� dx�
����

d�

�
��Z L

�

�Z L

�

jf j d�
��

d�

����� � CK���e���

� CMts��e�����t for all t �  � L�

This shows 	������
�

Similarly� but using 	�����
 instead of 	�����
� we get

Z ���

����

Z L

�

�Z L

�

j�	�� x�
j d�
�
v	�� x�
 d�dx� �

��Z L

�

�Z L

�

jf j d�
��
�����

� CKt � CMts���



��

i�e�� 	������
�

Finally� take any v � L�	�
 with kvkL���� � �� By Cauchy�s inequality and

	�����
� we obtain

Z L

�

Z ���

����

��v �

Z L

�

�

�Z ���

����

j�j�
�����Z ���

����

jvj�
����

d�

� C

�Z L

�

��f�

����

� CKt � CMts���

showing 	������
 and completing the lemma� �

Theorem ������ Let L � �� � � t � �� h � H���	��
� f � H����	��
 given� and �

the solution to 	�����
� Then there exists a constant C independent of t such that

	�
 In the soft case

k��kL���� �
����� ���x�

����
L����

� t

����� ����
����
L����

� Ct	��kfkH�����	���
	������


k�kH������� �
���� ���x�

����
H�������

� t

��������
����
H�������

� Ct	��kfkH�����	���
	������


	�
 In the hard case

k��kL���� �
����� ���x�

����
L����

� t

����� ����
����
L����

� Ct���khskH����	���
	������


k�kH������� �
���� ��

�x�

����
H�������

� t

��������
����
H�������

� Ct���khskH����	���
	������


Proof� For � �  � L� let �� � �n��� Consider �rst the hard case� By Theorem

������ there exist positive constants �� C� independent of t such that

k�kL������ � C�t
���e�����tkhskH����	�� for all � �  � L�

Thus may take � � �� s � ���� and M � C�khskH����	�� in Lemma ������ Then the

desired bound on the �rst term on the left hand side of 	������
 follows immediately

from 	������
�



��

Next take any w � H���	�
 with w	�� x�
 � w	L� x�
 � � and kwkH������ � ��

We obtain

Z ���

����

Z L

�

�w d�dx� �

Z ���

����

Z L

�

�Z L

�

�d�

�
�w

��
d�dx� �

�����
Z L

�

�

�����
L����

�

The desired bound on the �rst term on the left hand side of 	������
 follows immedi�

ately from 	������
� We have thus bounded the �rst terms on the left hand sides of

	������
 and 	������
� Identical argumentation gives the same bounds for remaining

terms� and the soft case may be treated in the same way� �

Estimates for � and ��

Consider the solution 	�� �
 to 	�����
 and de�ne 	u�� u�
 on �r� where r �

L�t� by

�	�� x�
 �
�

t
u�	t

���� x�
� �	�� x�
 � �u�	t���� x�
� 	������


Then 	u�� u�
 satis�es 	�����
�	������
 with h	�� x�
 � h�	�� x�
� The following result

then follows from Theorem ������

Theorem ������ Let L � �� � � t � �� and h� � H���	��
 be given� and let 	�� �


be the solution to 	�����
� Then there exist constants C� and C� independent of t

such that

C�t
���kh�kH����	�� � t�

��������
����
L����

� t

���� ���x� �
��

��

����
L����

�

���� ���x�
����
L����

� C�t
���kh�kH����	���

�



��

Theorem ������ Let L � �� � � t � �� and h� � H���	��
 be given� and let 	�� �


be the solution to 	�����
� For � �  � L let �� � �n��� Then there exist constants

� and C independent of t such that

t�
��������

����
L������

� t

���� ���x� �
��

��

����
L������

�

���� ���x�
����
L������

� Ct���e�����tkh�kH����	�� for all t �  � L�

Proof� We choose r� � �� r� � �t� and r � L�t in Theorem ������ to get for all

t �  � L� Z
���t�L�t

j�
�
	u
�

j� � Ce����t

Z
�L�t

j�
�
	u
�

j��

Making the change of variables in 	������
� this becomes

t�
��������

�����
L������

� t�
���� ���x� �

��

��

�����
L������

�

���� ���x�
�����
L������

� Ce����t

�
t�
��������

�����
L����

� t�
���� ���x� �

��

��

����
L����

�

���� ���x�
�����
L����

�
�

The right hand side can be bounded by Theorem ����� and the result follows� �

Theorem ������ Let L � �� � � t � �� and h� � H���	��
 be given� and let 	�� �


be the solution to 	�����
� Then there exists a constant C independent of t such that

t�
����� ����

����
L����

� t

������ ��

�x�
�
��

��

�����
L����

�

����� ���x�
����
L����

� Ct���kh�kH����	���
	������


t�
��������

����
H�������

� t

���� ���x� �
��

��

����
H�������

�

���� ���x�
����
H�������

� Ct���kh�kH����	���
	������


Proof� First� we bound the �rst term on the left hand side of 	������
� By Lemma

����� and Theorem ������ there exist positive constants � and C� independent of t

such that��������
����
L������

� C�t
����e�����tkh�kH����	�� for all t �  � L� and for  � ��

	������




��

Then we let � � ������ s � ����� and M � C�kh�kH����	�� in Lemma ������ and

from 	������
 we obtain ����� ����
����
L����

� Ct����kh�kH����	��

as desired�

Given any w � H���	�
 with w	�� x�
 � w	L� x�
 � � and kwkH������ � ��Z ���

����

Z L

�

��

��
w d�dx� �

Z ���

����

Z L

�

�Z L

�

��

��
d�

�
�w

��
d�dx��

Then by 	������
�Z ���

����

Z L

�

�Z L

�

��

��
d�

�
�w

��
d�dx� � C

�����
Z L

�

��

��
d�

�����
L����

� Ct����kh�kH����	���

The desired bound on the �rst term of 	������
 then follows� The bounds on the

other terms of 	������
 and 	������
 can be shown in the same way� �

Sec ���� L� Estimation

In the previous section we obtained bounds on certain derivatives of � and

�� In this section� we estimate the order of k�kL���� and k�kL����� The result will

be used in the next section�

Theorem ������ Let h� � H���	��
 an even function of x� with
R
	�
h� � �� and

let 	�� �
 be the solution to 	�����
� Then

k�kL���� � Ct����kh�kH����	��� k�kL���� � Ckh�kH����	���

Proof� By 	�����
 � � � on �L� Thus

� �

Z �

L

��	�� x�


��
d��



��

In view of 	������
 we may apply Lemma ����� to get

k�kL���� �
�����
Z L

�

��	�� x�


��

�����
L����

� Ct����kh�kH����	���

Next we prove the estimate for �� Let

����	�
 �

Z ���

����

�	�� s
 d��

����	�� x�
 � �	�� x�
� ����	�
�

	�����


By Theorem ������ ���� ���x�
����
L����

� Ct���kh�kH����	���

Since
R
	�
���� � � for all � � � � L� then

k����kL���� � C

����������x�

����
L����

� C

���� ���x�
����
L����

� Ct���kh�kH����	��� 	�����


It remains to bound ���� in L�	�
� By Lemma ������ and 	������
� � is an odd

function in x�� and so �	�� �
 � �� Therefore� we have the identity

�	�� x�
 �

Z x�

�

��

�x�
	�� s
 d� �

Z x�

�

�
��

�x�
�
��

��

�
	�� s
 d� �

Z x�

�

��

��
	�� s
 d��

	�����


Let

����	�� x�
 � �	�� x�
 � x�
d����

d�
	�
� 	�����


Then by 	�����
 and 	�����
� we obtain

���� �

Z x�

�

��
��

��
�

��

�x�

�
� �����

��

�
� 	�����


Recall the expression for � in 	�����
 and the equations 	�����
 and 	�����
� In



��

particular� for any �xed value s of the arclength coordinate� we have

��nn
��

�
��n�
�x�

� �� in ��

��n�
��

�
����
�x�

� �� in ��

�n� � �� ��� � � on �� 	 ���

�nn � �� � � h� on ���

� � constant� � � � on �L�Z
�L

�n� � ��

	�����


By Lemma ����� and 	������
 and 	�����
�Z
�L

x��nn � ��

Take any v � v	�
 � H�	�� L
 with v	�
 � �� Then

�
�

�
�x� dv

d�
v

�
�

�
�x� d

�v

d��
�

� �

�
�

Furthermore� by the boundary values of �nn� �n�� ��� on ��� and the facts that

v	�
 � �� �x��dv��d� is linear� and v is constant on �L� we obtain

� �

Z
�

cdiv
�

�
�nn �n�
�n� ���

��
�x� dv

d�
v

�
� �

Z
�

�
�nn �n�
�n� ���

�
� �
�

�
�x� dv

d�
v

�

�

Z

�

��
�nn �n�
�n� ���

�
n
�

��
�x� dv

d�
v

�
�

Z
�

x��nn
d�v

d��
�

where cdivf � �f��� � �f��x�� Since
�
d�v�d�� � H�	�� L
 j v	�
 � �

�
� L�	�� L
�

it follows that Z ���

����

x��nn � � for all � � ��� L��

From the expression of �nn in 	�����
 this impliesZ ���

����

x�
��

��
� � 	

t�	� � 	


Z ���

����

x�
��

�x�
� 	�����




��

Now we di�erentiate both sides of 	�����
 with respect to �� multiply by x� and

integrate from ���� to ��� in x� direction� Thus�

�

��

d�����

d��
�

Z ���

����

x�
�����

��
dx� �

Z ���

����

x�
��

��
dx�

�

Z ���

����

�
x�
�����

��
�

	

t�	� � 	

x�

��

�x�

�
dx��

	�����


where we used 	�����
 in the last step�

Now
R
	�
� �

R ���
����

h� � �� That is

����	�
 � �� 	�����


By 	�����
 and the expression of �n� in 	�����
� � � � on �L andZ
	L

��

�x�
�
��

��
� ��

Thus Z
	L

��

��
� ��

That is
�����

��
	L
 � �� 	������


From 	�����
� 	�����
� and 	������
 we can compute �����

����	�
 � ��

Z �

�

Z �

L

Z ���

����

x�

�
�����

��
	�� x�
 �

	

t�	�� 	


��

�x�
	�� x�


�
dx�d�d��

	������


Now we consider the term
���R �� R �L R �������

x�����x�

���
L����

� By Theorem ����� and

Lemma ������ there exist positive constants �� C independent of t such that���� ���x�
����
L������

� Ct���e�����tkh�kH����	�� for all t �  � L and for  � ��

Then by 	������
 and 	������
� we obtain�����
Z L

�

���� ���x�
����
�����
L������

� Ct���e�����tkh�kH����	�� for all t �  � L and for  � ��



�	

Thus by 	������
 in Lemma ������ we obtain�����
Z �

�

Z L

�

Z ���

����

x�
��

�x�

�����
L����

� C

�����
Z L

�

���� ���x�
����
�����
L����

� Ct�kh�kH����	��� 	������


By 	�����
 � � � on �L� and by 	������
 d�����d� � � on �L� Then by 	�����
 we

obtain

���� � � on �L�

Thus by 	�����
Z �

�

Z �

L

Z ���

����

x�
�����

��
�

Z ���

����

x�

Z �

�

����	�� x�


�

Z ���

����

x�

Z x�

�

	Z �

�

�
��

��
�

��

�x�

�
� ����	�� x�
 � ����	�� x�




�

	������


By 	�����
� ����Z x�

�

����
����
L����

� Ct���kh�kH����	���

By 	�����
 � � h� on ��� By 	�����
 ���� � � on ��� Then ���� � � � ���� � h� on

��� Thus

k����	�� x�
kL���� � Ckh�kL��	�� � Ckh�kH����	���

By Lemma ����� and ������ there exist positive constants �� C independent of t such

that���� ���x� �
��

��

����
L������

� Ct����e�����tkh�kH����	�� for all t �  � L and for  � ��

Then by 	������
 in Lemma �����������
Z �

�

�
��

��
�

��

�x�

������
L����

� Ckh�kH����	��� 	�������


By 	������
�	������
� we obtain�����
Z �

�

Z �

L

Z ���

����

x�
�����

��

�����
L����

� Ckh�kH����	��� 	������




��

By 	������
� 	������
� and 	������
� we obtain

k����kL���� � Ckh�kH����	���

Together with 	�����
� this gives the desired bound on �� �

Sec ���� Error Estimation

In this section� we estimate the orders of k�tkL��P � and k�tkL��P��� where �t

is the scaled boundary corrector in 	�����
�

The order estimation depends on the results we have obtained about �� �

and �� By 	�����
� 	�����
 and 	�����
� we recover � and �y from �� � and �� Let

�	�
 be a cuto� function that assumes the value one in a neighborhood of the lateral

boundary with width of L��� and the value zero outside Q� Let �� � �� and
��y � �y��

Then 	 ���
��y
 is de�ned on the entire domain P � Decompose the three�dimensional

boundary corrector 	�t� �ut
 as 	���y
 � 	 ���
��y
� It follows directly from 	�����
 and

	�����
 that 	���z
 is the solution to the following problem�

Find 	���z
 � 	t � V t such that

a�	�� � 
 � t�a�	�� � 
 � t�a�	�� � 
 � b	� ��z


� �
h
a�	 ��� � 
 � t�a�	 ��� � 
 � t�a�	 ��� � 
 � b	� �

��y

i

for all � � 	t�

b	���v
 �

� R
� f

t	�v ��s
� b	 ����v
 soft case

�b	 ����v
 hard case
for all �v � V t�

	�����


For any � � 	t� J� jQ � 	Q� where J � � � ��R is the Jacobi determinant in

	�����
� For any �v � V t�
��v � ��v � VQ� Moreover ��v � �v on �� Thus� from 	�����


and 	�����
�

AQ
� 	�� J� 
 � t�AQ

� 	�� J� 
 � t�AQ
� 	�� J� 
 �B

Q	J� ��y
 � � for all � � 	�

BQ	�� ��v
 �

� R
�
f t	�v ��s
 soft case

� hard case
for all �v � V��

	�����
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By 	�����
 and 	�����
� we obtain

a�	�� � 
 � t�a�	�� � 
 � t�a�	�� � 
 � b	� � ��


� �
h
a�	 ��� � 
 � t�a�	 ��� � 
 � t�a�	 ��� � 
 � b	� �

��y

i

�
h
AQ
� 	�� J� 
 � t�AQ

� 	�� J� 
 � t�AQ
� 	�� J� 
�B

Q	J� ��y

i
for all � � 	t�

b	���v
 � �b	 ����v
 �BQ	��
��v
 for all �v � V t�

	�����


We shall obtain the necessary bounds on 	���z
 from 	�����
�

Expressions of error terms� Since �� and
��y vanish outside the domain Q� then

the right hand side expressions of 	�����
 are all integration expressions over the

region Q� Recall that
R
Q
f �

R ���
����

R S
�

R L
�
fJ for any function f � We can write

a�	�� � 
 � t�a�	�� � 
 � t�a�	�� � 
 � b	� � ��
 � �
Z
Q

	L��� �L��� �L���
 � � �

b	���v
 � �
Z
Q

M � �	�v
 � hN �����vi � hN �����vi � hN �����vi�

where Z
Q

L��� � � � a�	 ��� � 
 � t�a�	 ��� � 
 � t�a�	 ��� � 


�
h
AQ
� 	�� J� 
 � t�AQ

� 	�� J� 
 � t�AQ
� 	�� J� 


i
� 	�����
Z

Q

L��� � � � b	� �
��y
�

Z
Q

� � �	�y
� 	�����
Z
Q

L��� � � �

Z
Q

� � �	�y
 �BQ	J� ��y
� 	�����
Z
Q

M � �	�v
 � b	 ����v
 �
Z
Q

� � �	�v
� 	�����


hN �����vi �
Z
Q

� � �	�v
�BQ	J���v
� 	�����


hN �����vi � BQ	J���v
�BQ	���v
� 	�����


hN �����vi � BQ	���v
 �BQ	��
��v
� 	������




��

By 	������
�

ai	 ��� � 
 � ai	�Q ��� � 
 � AQ
i 	 ��� J� 
�

Thus by 	�����
Z
Q

L��� � � � A�
� 	 �� � �� J� 
 � t�A�

� 	 �� � �� J� 
 � t�A�
� 	 �� � �� J� 
� 	������


From 	�����
� we obtain Z
Q

L��� � � �

Z
Q

� � �	
��y � �y
�

Thus

L��� � �	
��y � �y
� 	������


From 	�����
 and 	������
� we obtain

L��� �
�

�� ��R

�
�

�

�
��

��
�

�

R
�

�
	�n�sT ��s�nT 


�

�
��

��
� �

R
�

�
�s�sT �

�

�

��

��
	�e��s

T ��s�eT� 


�
�

	������


From 	�����
� we obtainZ
Q

M � �	�v
 �

Z
Q

	 �� � �
 � �	�v
�

Thus

M � ��� �� 	������


From 	�����
 and 	������
� we obtain

hN �����vi �
Z ���

����

Z S

�

Z L

�

�
�ns

�
�vn
��

�
�

R
vs

�
� �ss

�
�vs
�s

� �

R

�
� ��s

�vs
��

�
�

	������


From 	�����
 and the de�nition of B� in 	������
� we obtain

hN �����vi � BQ	J���v
�BQ	���v
 � �
Z ���

����

Z S

�

Z L

�

�
�nn

�vn
��

��ns
�vs
��

� �n�
�v�
��

� �n�
�vn
�x�

� �s�
�vs
�x�

� ���
�v�
�x�

�
�

R
d�d�dx��

	������


From 	������
 and 	������
�

hN �����vi � BQ		�� �
���v
 �
Z ���

����

Z S

�

Z L

�

d�

d�
	�nnvn � �nsvs � �n�v�
 d�d�dx��

	������




��

Order estimation for � and �z� We de�ne a t�dependent norm on 	t by

jjj� jjjt �
��X

���

k���k�L��P � � t�
X
�

k���k�L��P � � t�k���k�L��P �

�A���

�

The dual norm is given by

jjj�jjj�t �
��X

���

k���k�L��P � �
�

t�

X
�

k���k�L��P � �
�

t�
k���k�L��P �

�A���

�

On V t de�ne

k�vkt � jjj�	�v
jjj�t�

Denote the dual norm as k � k�t� By Korn�s inequality� k � kt de�nes a norm on V t�

We also de�ne jjj� jjjt�P� similarly by restricting the domain to P�� Note that

Z
P

R � �	�v
 � jjjRjjjtk�vkt�

Theorem ������ Let F � 		t� jjj � jjjt
� and G � 	V t� k � kt
� be given� and let

	�� �u
 � 	t � V t the solution to the following problem�

a�	�� � 
 � t�a�	�� � 
 � t�a�	�� � 
 � b	� � �u
 � hF� � i for all � � 	t�

b	���v
 � hG��vi for all �v � V t�

Here ai and b are de�ned in 	�����
� Then there exists a constant C independent of

t such that

jjj�jjjt � k�ukt � C 	jjjF jjj�t � kGk�t
 �

where ai and b are de�ned in 	�����
�

Proof� Let

A	�� � 
 � a�	�� � 
 � t�a�	�� � 
 � t�a�	�� � 
 for all �� � � 	t�



��

Note that A is symmetric� and

A	� � � 
 � jjj� jjj�t for all � � 	t�

Furthermore� for any �v � V t� let � � 	t be de�ned by

��� � ���	�v
� ��� �
�

t�
���	�v
� ��� �

�

t�
���	�v
�

Then

b	���v
 � jjj�jjjtk�vkt�

The theorem then follows from Brezzi�s theorem ���� �

The following corollary is immediate�

Corollary ������ Let L���� L���� L���� M � N ���� N ���� and N ��� be as in 	�����
�

	������
� and let �� �z satisfy 	�����
� Then there is a constant C independent of t

such that

jjj�jjjt � k�zkt � C

�X
i

jjjL�i�jjj�t � jjjM jjjt �
X
i

kN �i�k�t
�
� 	������


We �rst show that some of the terms on the right hand side of 	������
 have

negative exponential orders�

Lemma ������ Let P� be an interior domain of P 	i�e� P� � �� � 	����� ���

with ��� � �
� and let � be de�ned in 	�����
� Then there exist positive constants

C� and C� such that

k�kL��P��Q� �
�
C�e

�C��t	kfkH�����	�� � kh�kH����	��
 soft case�

C�e
�C��t	khskH����	�� � kh�kH����	��
 hard case�

Proof� By the expression of � in 	�����
� the lemma follows from Theorems �����

and ������ �



��

Corollary ������ Let L���� M � and N ��� be as in 	�����
� 	�����
 and 	������


respectively� Then there exists positive constants C�� C� such that

jjjL���jjj�t � kMkt � kN ���k�t

�
�
C�e

�C��t	kfkH�����	�� � kh�kH����	��
 soft case�

C�e
�C��t	khskH����	�� � kh�kH����	��
 hard case�

Proof� Let P� �
n
�x � P j dist	�x��
 � L��

o
be an interior domain of P � Then

k �� � �kL��Q� � k	� � �
�kL��P��Q��

The corollary follows from 	������
� 	������
� 	������
� and Lemma ������ �

Lemma ������ Let N ��� be as in 	�����
� Then there exists a constant C indepen�

dent of t such that

kN ���k�t �
�
C
�
t���kfkH�����	�� � t����kh�kH����	��

�
soft case�

C
�
t���khskH����	�� � t����kh�kH����	��

�
hard case�

Proof� By 	������
�

kN ���k�t � Cjjj��jjjt�

By the expression for � in 	�����
 and Theorems ����� and ������

k��nnkL��Q� � k��nskL��Q� � k��sskL��Q� � tk��n�kL��Q� � tk��s�kL��Q�

� t�k����kL��Q�
�
C
�
t���kfkH�����	�� � t����kh�kH����	��

�
soft case�

C
�
t���khskH����	�� � t����kh�kH����	��

�
hard case�

The left hand side of this inequality is equivalent to jjj��jjjt� the lemma follows� �

Now we estimate jjjL���jjj�t� jjjL���jjj�t� First we notice that the following identity�

�	�y
 �
��

��
�n�nT �

�

�

��

��
	�n�sT ��s�nT 
 �

�

�

�
��

��
�

��

�x�

�
	�n�eT� ��e��n

T 


�
�

�

��

�x�
	�s�eT� ��e��s

T 
 �
��

�x�
�e��e

T
� �L����
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Thus� by 	������
� we obtain

L��� � 	� � �


�
��

��
�n�nT �

�

�

��

��
	�n�sT ��s�nT 
 �

�

�

�
��

��
�

��

�x�

�
	�n�eT� ��e��n

T 


�
��

�x�
�e��e

T
� �L���

�
�
d�

d�

�
��n�nT �

�

�
�	�n�sT ��s�nT 
 �

�

�
�	�n�eT� ��e��n

T 


�
�

	������


From Theorems ����� and ����� there exist positive constants C� and C� independent

of t such that����	� � �

��

��

����
L����

�

����	� � �

��

��

����
L����

�

����	�� �


�
��

��
�

��

�x�

�����
L����

�

����	�� �

��

�x�

����
L����

�

����	� � �

��

�x�

����
L����

�
�
C�e

�C��t	kfkH�����	�� � kh�kH����	��
 soft case�

C�e
�C��t	khskH����	�� � kh�kH����	��
 hard case�

	������


By 	������
�

jjj	�� �
L���jjj�t �
d�

d�
jjj
�
��n�nT �

�

�
�	�n�sT ��s�nT 
 �

�

�
�	�n�eT� ��e��n
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�
jjj�t

� jjjL���jjj�t �
d�

d�

�
k�kL��Q� � k�kL��Q� � �

t
k�kL��Q�

�
� C

�
k�kL��Q� � k�kL��Q� � �

t
k�kL��Q� �

��������
����
L��Q�

�

��������
����
L��Q�

�
�

t

��������
����
L��Q�

�
�

	������


Together this shows that jjjL���jjj�t is bounded by the right hand sides of 	������
 and

	������
�

Notice that bound for kL���k�t is also given in 	������
� Therefore we have the

following estimates�

Lemma ������ Let L���� L��� be as in 	�����
� 	�����
 respectively� Then there

exists a constant C independent of t such that

jjjL���jjj�t � jjjL���jjj�t �
�
C
�
t���kfkH������� � t��kh�kH�������

�
soft case�

C
�
t���khskH������� � t��kh�kH�������

�
hard case�
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Proof� By Theorems ����� and ������ we obtain

k�kL��Q� � k�kL��Q� � �

t
k�kL��Q�

�
�
C
�
t���kfkH�����	�� � t��kh�kH����	��

�
soft case�

C
�
t���khskH����	�� � t��kh�kH����	��

�
hard case�

	������


Since � enters as a parameter� and the bound in 	������
 is independent of �� then��������
����
L��Q�

�

��������
����
L��Q�

�
�

t

��������
����
L��Q�

�

�����������
C

�
t���

�����f��
����
H��������

� t��
�����h���

����
H�������

�
soft case�

C

�
t���

�����hs��

����
H�������

� t��
�����h���

����
H�������

�
hard case�

	������


The lemma follows from 	������
 and 	������


Finally� we estimate kN ���k�t�

Lemma ������ Let N ��� be as in 	�����
� Then there exists a constant C indepen�

dent of t such that

kN ���k�t �
�
C
�
t���kfkH������� � t��kh�kH�������

�
soft case�

C
�
t����khskH������� � t��kh�kH�������

�
hard case�

Proof� From 	������
�
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�

Z L

�
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�
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�
�

R
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�
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R

�
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First� we consider the �rst term of the right hand side of 	������
� By 	�����
 and

Theorem ������ Z ���
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Z S

�

Z L
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�
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��

�
�

R
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�
� Ck�nskL��Q�k�vkt
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Ct����khskH����	��k�vkt hard case�
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Next� by 	�����
 v� � � on ��� and so �v� � � on �� 	 �L� Thus�Z ���
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Z S
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Z L

�

�s�
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�
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Z S
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�
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����
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kv�kL��Q�
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����
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��s�
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L��Q�

�
kv�kH��Q�

�
�
Ct���kfkH�������k�vkt soft case�

Ct����khskH�������k�vkt hard case�
	������


The last inequality follows from 	�����
 and Theorems ������ ������

Finally� we consider the second term of the right hand side of 	������
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�ss �
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�
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�x�
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By 	������
� Theorems ����� and ������ there exist positive constants C and �

such that

k�sskL������ � Ct����e�����tkh�kH����	��� for all t �  � L� and  � ��

	������


By 	������
 and Lemma �����������
Z L

�

�ss
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L����

� Ct����kh�kH����	���

k�kL���� � Ct��kh�kH����	��������
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L����

� Ct��kh�kH����	���
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It follows from 	������
 and 	������
 thatZ ���

����

Z S

�

Z L

�

�

R
�ssvn � Ct��kh�kH����	��k�vkt� 	������


The same argument as above leads toZ ���
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Z S
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Z L

�

��ss
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vs � Ct��
�����h���

����
H�������
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From 	������
� 	������
 and 	������
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�
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The lemma then follows from 	������
� 	������
 and 	������
� �
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Theorem ������ Let 	���z
 be as in 	�����
� � � t � �� Then

jjj�jjjt � k�zkt �
�
C
�
t���kfkH������� � t��kh�kH�������

�
soft case�

C
�
t����khskH������� � t��kh�kH�������

�
hard case�

Proof� By Corollary ������ the theorem follows from Corollary ������ Lemma ������

������ and ������ �

Global and local estimates for �t�

Theorem ������ Let �t be the solution to 	�����
� Then there exists a constant C

independent of t such that

jjj�tjjjt �
�
C
�
t���kfkH������� � t����kh�kH�������

�
soft case�

C
�
t����khskH������� � t����kh�kH�������

�
hard case�	������


jjj�tjjjt�P� �
�
C
�
t���kfkH������� � t��kh�kH�������

�
soft case�

C
�
t����khskH������� � t��kh�kH�������

�
hard case�	������


Moreover� for the hard simply supported plate there exists another positive constant

C � independent of t such that

jjj�tjjjt � C �
�
t����khskH����	�� � t����kh�kH����	��

�
� 	������


Proof� By the de�nition of ��

�t � � � ��� 	������


By 	�����
� Theorem ����� and ������ there exist positive constants C� and C� such

that

C�

�
t���kfkH�����	�� � t����kh�kH����	��

�
� jjj�Q�jjjt

� C�

�
t���kfkH�����	�� � t����kh�kH����	��

�
soft case�

C�

�
t����khskH����	�� � t����kh�kH����	��

�
� jjj�Q�jjjt

� C�

�
t����khskH����	�� � t����kh�kH����	��

�
hard case�

	������




��

It is easy to see that there exist also constants C �� and C
�
� independent of t such that

C ��jjj�Q�jjjt � jjj ��jjjt � C ��jjj�Q�jjjt� 	������


Using the triangle inequality� 	������
 and 	������
 follows from 	������
� 	������
�

	������
 and Theorem ������

For the interior estimates� by Lemma ������ there exists positive constants C�

and C� such that

jjj ��jjjt�P� �
�
C�e

�C��t
�kfkH�����	�� � kh�kH����	��

�
soft case�

C�e
�C��t

�khskH����	�� � kh�kH����	��

�
hard case�

Thus the order of jjj ����jjjt�P� is of the same order as that of jjj�jjjt�P�� The inequality
	������
 then follows from Theorem ������ �

Sec ���� Convergence Results

We return to the domain P t and discuss the order of the three�dimensional

boundary corrector 	�c� �uc
 de�ned in 	�����
� Note that �uc corrects the boundary

value of �uk� which can be either �um or �us in 	�����
 or 	�����
 respectively� As we

shall see� Theorem ������ implies that the orders of k�ckL��P t� and k�ckL��P t
��

do

not exceed O	t	��
� Thus �uk � �um is a more appropriate choice� If we choose

�uk � �us� we will get the same order estimates but to bound the term khskH��������

by 	�����
� we need more regularity assumption on the data g�

khskH������� � Ct�kwkH���� � Ct�kgkH�����

where w is the Kirchho� plate solution� g the scaled loading of the three�dimensional

plate� Both w and g are independent of t�



��

Now� with �uk � �um� by 	�����
�

hs � �� 	�����


By 	�����
 and the trace theorem� there exists a constant C independent of t such

that

kh�kH������� � t�kfkH������� � Ct�kwkH���� � Ct�kgkL�����

We now give bounds using data g instead of h�� hs� and f �

Theorem ������ Let 	�c� �uc
 be the solution to 	�����
 and 	�����
� � � t � ��

Then there exists a constant C independent of t such that

k�ckE � Ct�kgkL�����

and

k�ckE�P t
�
�
�
Ct�kgkL���� soft case�

Ct	��kgkL���� hard case�

Moreover� for the hard simply supported plate� there exits a constant C � independent

of t such that

k�ckE � C �t�kgkL�����

Proof� The theorem follows from the de�nitions of k � kE and k � kE�P t
�
in 	����
�

Theorem ������ 	�����
� and the scalings in 	�����
 and 	�����
� �

Now with the order of the boundary correctors known� we derive the conver�

gence results introduced in the �rst chapter�

Theorem ������ Let � and �u be de�ned by either the soft simply supported plate

problem 	���
�	���
� 	���
� 	���
 or the hard simply supported plate problem 	���
�

	���
� 	���
� and let �k and �uk be the Kirchho� approximations de�ned by 	���
�



��

	����
� 	�����
� and 	�����
� Then there exists a constant C depending only on the

domain � such that

k� � �kkE � jjj�u� �ukjjj � Ct�kgkL�����

Moreover� for the hard simply supported plate there exits another constant C � de�

pending only on the domain � such that

jjj�u� �ukjjj� k� � �kkE � C �t�kgkL�����

Proof� The theorem follows from Theorem ������ the scaling in 	�����
� and Theorem

������ �

By 	�����
 and 	�����
� it is easy to see that there exists constants C� and C�

such that

C�t
���kgkL���� � jjj�ukjjj� k�kkE � C�t

���kgkL����� 	�����


Thus� we have the following result�

Theorem ������ Let �� �u be the same as in Theorem ������ Then there exists

positive constants C� and C� independent of t such that

C�t
���kgkL���� � jjj�ujjj� k�kE � C�t

���kgkL�����

Proof� The result follows immediately from Theorem ����� and 	�����
� �

From Theorem ����� and ������ the following convergence result immediately

follows�



��

Theorem ������ The global convergence rate for both the soft and hard simply

supported plate is O	t���
� More precisely� let �� �u� �k� and �uk be as in Theorem

������ Then there is a constant C independent of t such that

jjj�u� �ukjjj
jjj�ujjj

�
k� � �kkE
k�kE � Ct����

Moreover� for the hard simply supported plate the convergence rate of O	t���
 is

sharp� i�e�� there exists a positive constant C � independent of t such that

jjj�u� �ukjjj
jjj�ujjj

�
k� � �kkE
k�kE � C �t����

�

It is very likely that the O	t���
 convergence rate is sharp for the soft simply

supported plate as well� For that plate� since the orders of the boundary data h� and

f are O	t�
 and O	t
 respectively� then by Theorem ������ the order of k�kL��P � is
O	t���
� which is the same as that of k ��kL��P �� Thus our analysis fails to determine

the order of k�tkL��P � � k �� � �kL��P �� However� by 	�����
� it is highly unlikely

that all the lowest order terms of �� can cancel out with all the lowest order terms of

�� Thus our conjecture is that k�tkL��P � is still of order O	t���
 for the soft simply

supported plate� If that conjecture is true� then the O	t���
 global convergence rate

is sharp for the soft simply supported plate�

Theorem ������ The interior convergence rate for the soft simply supported plate

is O	t���
� and for the hard simply supported plate is O	t
� More precisely� Let ��

�u� �k� �uk be as in Theorem ������ Then there exists a constant C independent of t

such that

jjj�u� �ukjjjP t
�
� k� � �kkE�P t

�
� Ct�kgkL���� soft case�

jjj�u� �ukjjjP t
�
� k� � �kkE�P t

�
� Ct	��kgkL���� hard case�

�



��

Chapter Four

SUMMARY

In this thesis we analyzed the accuracy of the Kirchho� plate model as an

approximation to the full system of three�dimensional linear elasticity� considering

the cases of soft and of hard simply supported boundary conditions� The key results

were energy norm estimates for this approximation� both global and restricted to an

interior subdomain disjoint from the lateral boundary� In some cases we were able

to prove the sharpness of our estimates�

The Kirchho� plate solution is a scalar function de�ned on the midsurface of

the plate� From this function we constructed approximations to the displacement

and to the stress� These approximations are ��vector�valued and ����tensor�valued

functions de�ned on the three�dimensional plate domain� Speci�cally we introduced

modi�cations of expressions which had been developed earlier by Morgenstern and

by Simmonds� Simmonds�s expression is more accurate in some situations� but

requires more regularity than Morgenstern�s� Our modi�cations a�ect neither the

accuracy nor the regularity� but were introduced to simplify the error analysis�

Note that the Kirchho� model does not distinguish between the hard and soft

simply supported plates� the same approximation is obtained for both� In fact the

simply supported Kirchho� plate is closer to the hard simply supported plate than

to the more physically relevant soft simply supported plate� This is re$ected in

the �nal results� which give higher order interior convergence in the hard simply

supported case�



��

The basis of the error analysis is the Prager�Synge theorem� Since neither of

the approximations satisfy the lateral boundary conditions required by that theorem�

a boundary corrector was introduced� Unlike in previous work� we de�ned the

boundary corrector as the solution of a three�dimensional elasticity problem� The

analysis then reduced to determining global and interior energy norm bounds on the

boundary corrector� Our approach to this problem was strongly in$uenced by the

work of Destuynder� but includes new elements as well� especially the explicit use

of boundary��tted coordinates and of Saint Venant�s principle�

Since the asymptotic analysis of the three�dimensional problem de�ning the

boundary corrector is too di�cult� we �rst consider a simpli�ed auxiliary problem

which 	it turns out
 has similar asymptotic behavior� This auxiliary problem is

obtained from the three�dimensional problem by restricting to a neighborhood of

the lateral boundary of the plate� using boundary��tted coordinates� neglecting the

derivatives with respect to the tangential direction� and suppressing the Jacobian

which arises from the change of coordinates� The auxiliary problem then decoupled

into a two�dimensional Laplace�like problem and a two�dimensional elasticity�like

problem� both parameterized by the tangential coordinate variable� Exponential de�

cay properties of the solutions of these two problems were then obtained in the spirit

of Saint Venant�s principle� and from these properties we determined the global and

interior orders of the solution to the auxiliary problem� Next we bounded the global

energy norm of the di�erence between the three�dimensional boundary corrector and

the solution to the auxiliary problem� Finally we combined these results to obtain

the global and interior energy norm bounds for the boundary corrector�

With this approach we have proved that the known global convergence rate of

O	t���
 for the hard simply supported plate with smooth boundary is sharp� 	This

is the rate of convergence of the relative energy norm error�
 We have also derived

the interior convergence rate of O	t
 for hard simply supported plate� To the best of
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our knowledge� both of these results are new� The same analysis applied to the soft

simply supported plate gives both global and interior convergence rates of O	t���
�

Our analysis strongly suggests� although does not de�nitively prove� that both these

convergence rates are sharp as well�

The low orders of convergence in these results contrast with the second order

convergence which we established for a periodic plate� This di�erence suggests the

e�ect of boundary layers in determining the accuracy of the Kirchho� model�

An interesting area for future investigation is the accuracy of the Reissner�

Mindlin plate model� While estimates for the error in the Reissner�Mindlin model as

an approximation to three�dimensional elasticity can be obtained using the results

here and known results for the di�erence between the Reissner�Mindlin approxima�

tion and the Kirchho� approximation� it may be possible to obtain sharper results in

some cases by applying the approach here directly to the Reissner�Mindlin model�

In particular it would be interesting to know whether the Reissner�Mindlin model

can be used to obtain interior convergence of higher than O	t���
 for the soft simply

supported plate�



��

INDEX OF NOTATIONS

Vectors in R� are denoted by Latin letters with arrows� �u� �v� Vectors in R�

are denoted by Latin letters with under�tildes� u
�
� v
�
� Tensors in R��� are denoted

by bold Greek letters� �� �� � � and tensors in R��� by Greek letters with double

under�tildes� �
�
� 

�
� When used as indices� i and j range from � to � and � �� �

range from � to ��

The following notations are presented in the approximate order of their ap�

pearance�

P t three�dimensional plate domain

t plate thickness

� midsurface of P t� P t � �� 	����� ���

�t
� top surface of P t� �t

� � �� f���g
�t
� bottom surface of P t� �t

� � �� f����g
�t lateral boundary of P t

� three�dimensional stress tensor� � � P t 
� R
���

�u three�dimensional displacement vector� �u � P t 
� R
�

E Young�s modulus

	 Poisson�s ratio

� �� � identity matrix



�

�� � identity matrix

q� vertical surface traction density at the top surface

q� vertical surface traction density at the bottom surface

g scaled vertical surface traction density at the top and bottom surfaces



�	

�e� unit vector� directed upward

�n unit normal vector to the lateral boundary� directed outward

�s unit in�plane tangential vector to the lateral boundary� directed counter�

clockwise

R space of in�plane rigid motions

w solution to the Kirchho� plate equation

A compliance tensor� relating three�dimensional strain to three�dimensional

stress

�k Kirchho� plate approximation to three�dimensional stress

�uk Kirchho� plate approximation to �u

P t
� interior subdomain of P t� �� � 	�t��� t��

	

�
� j �ij � L�	P t
� �ij � �ji

�
V subspace of

n
�v j vi � H�	P t


o
% cf� 	�����


k � kE energy norm on 	

jjj � jjj energy norm on V

� approximation to � 	used in Prager�Synge theorem


�u approximation to �u 	used in Prager�Synge theorem


�c boundary corrector for �k� � ��k

�uc boundary corrector for �uk�
�u� �uk

� Laplacian

�grad 	��vector
 gradient of a scalar function

div 	scalar
 divergence of a vector function

�div 	��vector
 divergence of a �� � tensor

grad
�

	��vector
 gradient of a scalar function

grad
�

	� � � tensor
 gradient of a ��vector function

�um modi�cation of Morgenstern�s approximation to �u

�uk modi�cation of Simmonds�s approximation to �u



��

h� vertical displacement on lateral boundary to be corrected

hs tangential displacement on lateral boundary to be corrected

f tangential traction on lateral boundary to be corrected

P scaling of P t� P � �� 	����� ���

�� top surface of P � �� � �� f���g
�� bottom surface of P � �� � �� f����g
� lateral boundary of P

�t scaling of �c� �t � P 
� R
���

	t
�
� j �ij � L�	P 
� �ij � �ji

�
V t subspace of

n
�v j vi � H�	P 


o
% cf� 	�����


ai� b bilinear forms for the scaled problem% cf� 	�����
�	�����


� independent variable in the direction of ��n
� independent variable in the direction of �s

vn ��v � �n
vs �v ��s
�nn �nT ��n

�ns ��sT ��n
�ss �sT��s

�n� ��nT��e�
�s� �sT��e�

��� �eT� �
�e�

S arclength of ��

L a constant less than half the smallest radius of curvature on ��

Q subset of P consisting of points within distance L of �

#� Q � ��

#� Q � ��

�L inner lateral boundary of Q



��

R radius of curvature on ��% R � R	�


J Jacobi determinant of transformation to the boundary��tted coordinate sys�

tem

���y solution to auxiliary problem of Q

	Q

�
� j �ij � L�	Q
� �ij � �ji

�
VQ subspace of

n
�v j vi � H�	Q


o
% cf� 	�����


�Q characteristic function of Q

AQ
i � B

Qbilinear form for the auxiliary problem% cf� 	�����
�	������


�� horizontal segment 	�� L
� f����g
�� vertical segment fg � 	����� ���

�r��r� rectangle 	r�� r�
� 	����� ���

�r rectangle 	�� r
 � 	����� ���

�� �� � notations for yn� ys� ys respectively

� cuto� function supported in Q� equal to � near �



��
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