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Finite element spaces of
differential forms



Differential forms on a domain () C R”

= Differential k-forms are functions Q) — AIt‘R”

0-forms: functions; 1-forms: covector fields; k-forms: (}) components

U= ngdxa = Z Foroa XA -+ A d2
a

1<op < <0op<n

The wedge product of a k-form and an I-form is a (k + I)-form

The exterior derivative du of a k-form is a (k + 1)-form

A k-form can be integrated over a k-dimensional subset of ()

Given F : QO — (Y, a k-form on ()’ can be pulled back to a k-form on Q).

m The trace of a k-form on a submanifold is the pull back under inclusion.
= Stokes theorem: / du = / tru, ue AFHQ)
JO JoQ)

m The exterior derivative can be viewed as a closed, densely-defined op
L2AF — [2A*1 with domain HA¥(Q) = {u € L?AF |du € [2AF1},
If O has a Lipschitz boundary, it has closed range.



The L? de Rham complex and its discretization

0— L2A" L 2AT 2y o 1287 5
Our goal is to define spaces V’,j C HAF satisfying the approximation,

subcomplex, and BCP assumptions.

In the case k = 0, Vﬁ C H' will just be the Lagrange elements. It turns
out that for k > 0 there are two distinct generalizations.



Finite element spaces

A FE space is constructed by assembling three ingredients: Ciarlet 78

» A triangulation T consisting of polyhedral elements T
= For each T, a space of shape functions V(T), typically polynomial

m For each T, a set of DOFs: a set of functionals on V(T), each
associated to a face of T. These must be unisolvent, i.e., form a
basis for V(T)*.

The FE space V), is defined as functions piecewise in V(T) with DOFs
single-valued on faces. The DOFs determine (1) the interelement
continuity, and (2) a projection operator into V7.



The Lagrange finite element space P,A%(7,,) for H' = HAQ

Elements T € 7, are simplices in R".
Shape fns: V(T) = P,(T) = P,A%(T) for some r > 1.
DOFs:

m v e AT): ur u(v)

mec AM(T): uws [(treu)g, q€Prae)
mfeNT): urs ff(trfu)q, g € Pr_3(f)

U /f(trf WAG, §€Prg N, feA(T), d>0

The number of DOFs = dim P,(T) and they are unisolvent. The imposed
continuity exactly forces inclusion in H'.



Unisolvence for Lagrange elements in #n dimensions

Shape fns: V(T) = P(T), DOFs: u — [;(tryu)q, q € Pr_y_1(f), d = dimf
#84(T)  dimP,g-1(fa) dimPy(T)

DOF count: \/ \/ /
$DOF = ) (ZI}) (r;1> = <rj;”) = dim P,(T).

d=0
Unisolvence proved by induction on dimension (n = 1 is obvious).

Suppose u € P,(T) and all DOFs vanish. Let f be a facet of T. Note
w treu € Pr(f)
m the DOFs associated to f and its subfaces applied to u coincide
with the Lagrange DOFs in P (f) applied to try u
Therefore try u vanishes by the inductive hypothesis. Thus
u=(ITtori)p, p € Pr_u_1(T). Choose q = p in the interior DOFs
to see thatp = 0.



Polynomial differential forms

= Polynomial diff. forms: P, Ak (Q)  Tya0dcn.adx’, a,€Pr(Q)

Homogeneous polynomial diff. forms: #,AF(Q)

. k. [(r+mn\(n\ _[(r+n\[(r+k
o= (7)) (Z)(E)

. k_ (r+n—=1\(/n\ n [(r+n\[(r+k

dim 3,/ _( r )(k>_n+r(r+k>( k )

» (Homogeneous) polynomial de Rham subcomplex:

d d

0 —— PAY 4 p Al Pr_yA" — 0

0 —— HA" — L 3, A

Hy yA" —— 0



The Koszul complex

For x € Q) C R”, T,Q) may be identified with IR", so the identity map
can be viewed as a vector field.

®» The Koszul differential x : AK — AF~1 is the contraction with the
identity: xw = waid. Applied to polynomials it increases degree.
m xox =0 giving the Koszul complex:

0 —— PA" —— PogA™ ! S P A —— 0

w xdxt = X, K(wAp) = (kw) AputwA (kp)
mox(f dx7,- - -Adx‘fk) = f YK ()% dx1s - X dx
3D Koszul complex:

0 —— PA> —2 P A2 2 P oAl 2 P A ——— 0

THEOREM (HOMOTOPY FORMULA)

(dx+xd)w = (r+k)w, w € H, Ak



Proof of the homotopy formula

(dx +xd)w = (r+k)w, w € HAF
Proof by induction on k. k = 0 is Euler’s identity.

Assume true for w € H,AF1 and verify it for w A dxt.

dic(w A dx') = d(kw Adx' + (=1)" 1w A X))

d
d(xw) Adx' + (=1 (dw) Ax' + w A dx',

kd(w Adx') = k(dw Adx') = x(dw) Adx' + (—1) dw A x'.

(dx + kd) (w A dx') = [(dx + xd)w] Adx' + w Adx' = (r + k) (w A dx').



Consequences of the homotopy formula

m The polynomial de Rham complex is exact (except for constant
O-forms in the kernel). The Koszul complex is exact (except for
constant 0-forms in the coimage).

B kdw =0 — dw=0, dcw =0 —= xw=020

 H A = kM, A @AM, AR

= Define P’Ak = Proa AR +xH,_ AR

s PrAO=P,A0, PoA" =P, A", else P,_1AF C P7AKC PAK
. _ r+n\ (r+k—1

s dim P AF = (r+k)< ‘ > +kd1m73r

» R(d|P; A*) = R(d|PAF),  N(d|P; AF) = N(d|P,_1AF)

® The complex (with constant r)

0P AL p-Al L L poAn 0
is exact (except for constant 0-forms).



Complexes mixing P, and P,

On an 7-D domain there are 2"~! complexes beginning with P, A°
(or ending with 7, A"). At each step we have two choices:

PAT —r Pt or P A1 —r P
TP, Ak TP, Ak
In 3-D:
0= PA —4 s poAl —L poa2 L P A 0.
05 PA —1 s poAl — L5 p A2 —L s P A3,
0= PAY —4 s P Al —4 s P A2 L P, A3 5,

0 PA —1 o P Al —L s P A2 —L s P A3 S,



The P, AF family of simplicial FE differential forms

Given: a mesh 7, of simplices T, r > 1,0 < k < n, we define
P, AK(Ty) via:
Shape fns: P, AF(T)

DOFs:
u— 4(trf WA, G € PrkaaATK(), fEAT), d=dimf >k

THEOREM

The number of DOFs = dim P,;” A¥(T) and they are unisolvent. The
imposed continuity exactly enforces inclusion in HAK.
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Unisolvence for P,” A¥: outline

1. Verify that the number of DOFs equals dim P,” A¥(T)

2. Verify the frace properties:
a) try P AK(T) € P7AK(f), and
b) the pullback trf: P, AK(f)* — P, AN(T)*  takes

f
DOFs for P,;” A¥(f) to DOFs for P, AK(T)

3. u e Py AK(T) & the interior DOFs vanish = u =0

subspace w/
vanishing trace

1,2,3 = unisolvence, by induction on dimension



Unisolvence for P,” A: dimension count

#DOFs = Y #A,4(T) dim P, ;4 1 AF(RY)
a>k

- ()6
-2 () ()0

Simplify using the identities

6 =065 5646 -65)

to get

#00Fs — (7Y (TR gimp Ak
r+k k



Unisolvence for P,” A¥, completed (modulo lemma)

2. The trace properties follows from definitions
(essentially, try xu = g try,).

3. It remains to show:

BueP ANT) & (%) Jrurng=0Vq e Prgya A"X(T) = u=0



Unisolvence for P,” A¥, completed (modulo lemma)

2. The trace properties follows from definitions
(essentially, try xu = g try,).

3. It remains to show:

BueP ANT) & (%) Jrurng=0Vq e Prgya A"X(T) = u=0
A weaker result can be proven by an explicit choice of test functions:

Lem{na:
G ueP,aANT) & () [rurg=0Vq € Py A"HT) = u=0



Unisolvence for P,” A¥, completed (modulo lemma)

2. The trace properties follows from definitions
(essentially, try xu = g try,).

3. It remains to show:

BueP ANT) & (%) Jrurng=0Vq e Prgya A"X(T) = u=0
A weaker result can be proven by an explicit choice of test functions:

Lem{na:
G ueP,aANT) & () [rurg=0Vq € Py A"HT) = u=0

So we only need to show that u € P,_1AF(T).



Unisolvence for P,” A¥, completed (modulo lemma)

2. The trace properties follows from definitions
(essentially, try xu = g try,).

3. It remains to show:

BueP ANT) & (%) Jrurng=0Vq e Prgya A"X(T) = u=0
A weaker result can be proven by an explicit choice of test functions:

Lem{na:
G ueP,aANT) & () [rurg=0Vq € Py A"HT) = u=0

So we only need to show that u € P,_1AF(T).
By the homotopy formula, u € P, A du=0 = uec Pr,lAk,



Unisolvence for P,” A¥, completed (modulo lemma)

2. The trace properties follows from definitions
(essentially, try xu = g try,).

3. It remains to show:

BueP ANT) & (%) Jrurng=0Vq e Prgya A"X(T) = u=0
A weaker result can be proven by an explicit choice of test functions:

Lem{na:
G ueP,aANT) & () [rurg=0Vq € Py A"HT) = u=0

So we only need to show that u € P,_1AF(T).

By the homotopy formula, u € P, A du=0 = uec Pr,lAk,
so it suffices to show that du = 0.



Unisolvence for P,” A¥, completed (modulo lemma)

2. The trace properties follows from definitions
(essentially, try xu = g try,).

3. It remains to show:

BueP ANT) & (%) Jrurng=0Vq e Prgya A"X(T) = u=0
A weaker result can be proven by an explicit choice of test functions:

Lem{na:
G ueP,aANT) & () [rurg=0Vq € Py A"HT) = u=0

So we only need to show that u € P,_1AF(T).

By the homotopy formula, u € P, A du=0 = uec Pr,lAk,

so it suffices to show that du = 0.

But du € P,_1 AFT1(T) so satisfies () with k — k+1. The hypothesis
(x) for du then becomes: (x) [ durg =0Vq € P AT

This holds by integration by parts and ().



Proof of lemma

LEMMA

Ifu € P,_1AK(T) and/Tu AGg=0, §€Prrn1A"¥T)thenu=0.

u = Z ugd/\g“] VANRERIAN d)\gk, Uy € Pr_l(T).
ceX(kn)

From the vanishing traces,

Ug = Polo; -+ Age  forsome po € Pryp—1(T).

Choosing
q - 2 (_1)Sign(ala*)p0’d/\‘7]* AN d/\ Tk
oeX(kn)
gives
O—/u/\q—/ ) P2y s Agr dAT A NdA.

ceX(kn)

so all the p, vanish.



Summary for simplicial elements

The argument adapts easily to P, A¥. Thus a single argument proves
unisolvence for all of the most important simplicial FE spaces at once.

To obtain the “best” proof, it is necessary

= to consider P, AF and P, AF together
= to consider all form degrees k

= to consider general dimension #

“A finite element which does not work in n-dimensions is probably
not so good in 2 or 3 dimensions.”



The P,AF family of simplicial FE differential forms

Given: a mesh 7, of simplices T, r > 1,0 < k < n, we define PrAk(ﬁl)
via:

Shape fns: P, AF(T)

DOFs:

s 4 (tpu)ng, € Py JAK(E), fEMT), d=dimf >k

The number of DOFs = dim P, A¥(T) and they are unisolvent. The
imposed continuity exactly enforces inclusion in HAK,
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Application of the P, and P, families to the Hodge Laplacian

®» The shape function spaces P,A¥(T) and P,” A¥(T) combine into
de Rham subcomplexes.

m The DOFs connect these spaces across elements to create
subspaces of HAF(Q)).

Therefore the assembled finite element spaces P,A¥(7},) and
P,~ AK(T},) combine into de Rham subcomplexes (in 2"~ ways).

The DOFs of freedom determine projections from A¥(Q) into the
finite element spaces. From Stokes thm, these commute with 4.
Suitably modified, we obtain bounded cochain projections. Thus the
abstract theory applies. We may use any two adjacent spaces in any
of the complexes.

P, AT P, A(T)
or E— or
P AT P 1 AN(T)



Rates of convergence

Rates of convergence are determined by the improved error estimates
from the abstract theory. They depend on

m The smoothness of the data f.
m The amount of elliptic regularity.

m The degree of of complete polynomials contained in the finite
element spaces.

The theory delivers the best possible results: with sufficiently smooth
data and elliptic regularity, the rate of convergence for each of the
quantities u, du, ¢, do, and p in the L2 norm is the best possible given
the degree of polynomials used for that quantity.

Eigenvalues converge as O(h?").



Historical notes

s The P;” AF complex is in Whitney ’57 (Bossavit '88).
1 p y

m In 76, Dodziuk and Patodi defined a finite difference
approximation based on the Whitney forms to compute the
eigenvalues of the Hodge Laplacian, and proved convergence. In
retrospect, that method can be better viewed as a mixed finite
element method. This was a step on the way to proving the
Ray-Singer conjecture, completed in '78 by W. Miller.

s The P,AF complex is in Sullivan '78.
» Hiptmair gave a uniform treatment of the P;” AF spaces in "99.

® The unified treatment and use of the Koszul complex is from
DNA-Falk-Winther "06.



Bounded cochain projections

The DOFs defining P, AX(7T;,) and P,” A%(T},) determine canonical
projection operators IT, from piecewise smooth forms in HA* onto
A’,j. However, ITj, is not bounded on HA¥ (much less uniformly
bounded wrt h). IT;, is bounded on CA¥.

If we have a smoothing operator R, , € Lin(L2AF, CAF) such that R, ,
commutes with d, we can define Q. , = IR, ;, and obtain a bounded
operator L2AF — Aﬁ which commutes with d (as suggested by
Christiansen).

However Qj, will not be a projection. We correct this by using
Schober!’s trick: if the finite dimensional operator

. Ak k
QE,h‘AZ CA = A

is invertible, then

Ty = (Qe,h Aﬁ)_lQe,hr

is a bounded commuting projection. It remains to get uniform bds on 7t,.



The two key estimates

For this we need two key estimates for Q. j, := IT,R

» For fixed €, Q. j, is uniformly bounded:
Ve > 0 suff. small 3 c(e) > 0s.t.

S‘;P HQe,h”Lin(LZ,LZ) < c(e)

n lgrb I = Qenlluin(rz,2) =0  uniformly inh

THEOREM

Suppose that these two estimates hold and define 1y, :== (Qc A;c)_lQe,h/
where AX is either P, AX(Ty,) or ;HAk(Th). Then, for h sufficiently small,
7Ty, 1 a cochain projection onto Aﬁ and

|w — myw|| < e ||w||gspr, @ € HSAY, 0<s<r41.



The smoothing operator

The simplest definition is to take R, ,u to be an average over y € By of
(FZ ;) “u where th(x) = x+ ehy:

Repu(x) = [ p(y) (Pl sl (x)dy

Needs modification near the boundary and for non-quasiuniform
meshes.

The key estimates can be proven using macroelements and scaling.



