Finite Element Exterior Calculus and Applications

Part III

Douglas N. Arnold, University of Minnesota
Peking University / BICMR
August 15-18, 2015

Finite element spaces of differential forms

Differential forms on a domain $\Omega \subset \mathbb{R}^{n}$

- Differential k-forms are functions $\Omega \rightarrow \mathrm{Alt}^{k} \mathbb{R}^{n}$

0 -forms: functions; 1-forms: covector fields; k-forms: $\binom{n}{k}$ components

$$
u=\sum_{\sigma} f_{\sigma} d x^{\sigma}:=\sum_{1 \leq \sigma_{1}<\cdots<\sigma_{k} \leq n} f_{\sigma_{1} \cdots \sigma_{k}} d x^{\sigma_{1}} \wedge \cdots \wedge d x^{\sigma_{k}}
$$

- The wedge product of a k-form and an l-form is a $(k+l)$-form
- The exterior derivative $d u$ of a k-form is a $(k+1)$-form
- A k-form can be integrated over a k-dimensional subset of Ω
- Given $F: \Omega \rightarrow \Omega^{\prime}$, a k-form on Ω^{\prime} can be pulled back to a k-form on Ω.
- The trace of a k-form on a submanifold is the pull back under inclusion.
- Stokes theorem: $\int_{\Omega} d u=\int_{\partial \Omega} \operatorname{tr} u, \quad u \in \Lambda^{k-1}(\Omega)$
- The exterior derivative can be viewed as a closed, densely-defined op $L^{2} \Lambda^{k} \rightarrow L^{2} \Lambda^{k+1}$ with domain $H \Lambda^{k}(\Omega)=\left\{u \in L^{2} \Lambda^{k} \mid d u \in L^{2} \Lambda^{k+1}\right\}$. If Ω has a Lipschitz boundary, it has closed range.

The L^{2} de Rham complex and its discretization

$$
0 \rightarrow L^{2} \Lambda^{0} \xrightarrow{d} L^{2} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} L^{2} \Lambda^{n} \rightarrow 0
$$

Our goal is to define spaces $V_{h}^{k} \subset H \Lambda^{k}$ satisfying the approximation, subcomplex, and BCP assumptions.

In the case $k=0, V_{h}^{k} \subset H^{1}$ will just be the Lagrange elements. It turns out that for $k>0$ there are two distinct generalizations.

Finite element spaces

A FE space is constructed by assembling three ingredients: Ciarlet '78

- A triangulation \mathcal{T} consisting of polyhedral elements T
- For each T, a space of shape functions $V(T)$, typically polynomial
- For each T, a set of DOFs: a set of functionals on $V(T)$, each associated to a face of T. These must be unisolvent, i.e., form a basis for $V(T)^{*}$.

The FE space V_{h} is defined as functions piecewise in $V(T)$ with DOFs single-valued on faces. The DOFs determine (1) the interelement continuity, and (2) a projection operator into V_{h}.

The Lagrange finite element space $\mathcal{P}_{r} \Lambda^{0}\left(\mathcal{T}_{h}\right)$ for $H^{1}=H \Lambda 0$

Elements $T \in \mathcal{T}_{h}$ are simplices in \mathbb{R}^{n}.
Shape fns: $V(T)=\mathcal{P}_{r}(T)=\mathcal{P}_{r} \Lambda^{0}(T)$ for some $r \geq 1$.
DOFs:

- $v \in \Delta_{0}(T): \quad u \mapsto u(v)$
- $e \in \Delta_{1}(T): \quad u \mapsto \int_{e}\left(\operatorname{tr}_{e} u\right) q, \quad q \in \mathcal{P}_{r-2}(e)$
- $f \in \Delta_{2}(T): \quad u \mapsto \int_{f}\left(\operatorname{tr}_{f} u\right) q, \quad q \in \mathcal{P}_{r-3}(f)$

$$
u \mapsto \int_{f}\left(\operatorname{tr}_{f} u\right) \wedge q, \quad q \in \mathcal{P}_{r-d-1} \Lambda^{d}(f), f \in \Delta_{d}(T), d \geq 0
$$

THEOREM

The number of DOFs $=\operatorname{dim} \mathcal{P}_{r}(T)$ and they are unisolvent. The imposed continuity exactly forces inclusion in H^{1}.

Unisolvence for Lagrange elements in n dimensions

Shape fns: $V(T)=\mathcal{P}_{r}(T), \quad$ DOFs: $u \mapsto \int_{f}\left(\operatorname{tr}_{f} u\right) q, q \in \mathcal{P}_{r-d-1}(f), d=\operatorname{dim} f$ $\# \Delta_{d}(T) \quad \operatorname{dim} \mathcal{P}_{r-d-1}\left(f_{d}\right) \operatorname{dim} \mathcal{P}_{r}(T)$
DOF count:

$$
\mathrm{\# DOF}=\sum_{d=0}^{n}\binom{n+1}{d+1}\binom{r-1}{d}=\binom{r+n}{n}=\operatorname{dim} \mathcal{P}_{r}(T)
$$

Unisolvence proved by induction on dimension ($n=1$ is obvious).
Suppose $u \in \mathcal{P}_{r}(T)$ and all DOFs vanish. Let f be a facet of T. Note

- $\operatorname{tr}_{f} u \in \mathcal{P}_{r}(f)$
- the DOFs associated to f and its subfaces applied to u coincide with the Lagrange DOFs in $\mathcal{P}_{r}(f)$ applied to $\operatorname{tr}_{f} u$
Therefore $\operatorname{tr}_{f} u$ vanishes by the inductive hypothesis. Thus $u=\left(\prod_{i=0}^{n} \lambda_{i}\right) p, \quad p \in \mathcal{P}_{r-n-1}(T)$. Choose $q=p$ in the interior DOFs to see that $p=0$.

Polynomial differential forms

- Polynomial diff. forms: $\quad \mathcal{P}_{r} \Lambda^{k}(\Omega) \quad \sum_{\sigma} a_{\sigma} d x^{\sigma_{1}} \wedge \ldots \wedge d x^{\sigma_{k}}, a_{\sigma} \in \mathcal{P}_{r}(\Omega)$

Homogeneous polynomial diff. forms: $\mathcal{H}_{r} \Lambda^{k}(\Omega)$

- $\operatorname{dim} \mathcal{P}_{r} \Lambda^{k}=\binom{r+n}{r}\binom{n}{k}=\binom{r+n}{r+k}\binom{r+k}{k}$
$\operatorname{dim} \mathcal{H}_{r} \Lambda^{k}=\binom{r+n-1}{r}\binom{n}{k}=\frac{n}{n+r}\binom{r+n}{r+k}\binom{r+k}{k}$
- (Homogeneous) polynomial de Rham subcomplex:
$0 \longrightarrow \mathcal{P}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n}$
$0 \longrightarrow \mathcal{H}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{H}_{r-1} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{H}_{r-n} \Lambda^{n}$ \qquad

The Koszul complex

For $x \in \Omega \subset \mathbb{R}^{n}, T_{x} \Omega$ may be identified with \mathbb{R}^{n}, so the identity map can be viewed as a vector field.

- The Koszul differential $\kappa: \Lambda^{k} \rightarrow \Lambda^{k-1}$ is the contraction with the identity: $\kappa \omega=\omega\lrcorner \mathrm{id} . \quad$ Applied to polynomials it increases degree.
- $\kappa \circ \mathcal{K}=0$ giving the Koszul complex:
$0 \longrightarrow \mathcal{P}_{r} \Lambda^{n} \xrightarrow{\kappa} \mathcal{P}_{r+1} \Lambda^{n-1} \xrightarrow{\kappa} \cdots \mathcal{P}_{r+n} \Lambda^{0}$ \qquad
- $\kappa d x^{i}=x^{i}, \quad \kappa(\omega \wedge \mu)=(\kappa \omega) \wedge \mu \pm \omega \wedge(\kappa \mu)$
- $\kappa\left(f d x^{\sigma_{1}} \wedge \cdots \wedge d x^{\sigma^{k}}\right)=f \sum_{i=1}^{k}(-)^{i} x^{\sigma_{i}} d x^{\sigma_{1}} \wedge \ldots \widehat{d x^{\sigma_{i}}} \ldots \wedge d x^{\sigma^{k}}$
- 3D Koszul complex:
$0 \longrightarrow \mathcal{P}_{r} \Lambda^{3} \xrightarrow{x} \mathcal{P}_{r+1} \Lambda^{2} \xrightarrow{\times x} \mathcal{P}_{r+2} \Lambda^{1} \xrightarrow{\cdot x} \mathcal{P}_{r+3} \Lambda^{0}$ \qquad
THEOREM (HOMOTOPY FORMULA)

$$
(d \kappa+\kappa d) \omega=(r+k) \omega, \quad \omega \in \mathcal{H}_{r} \Lambda^{k} .
$$

Proof of the homotopy formula

$$
(d \kappa+\kappa d) \omega=(r+k) \omega, \quad \omega \in \mathcal{H}_{r} \Lambda^{k}
$$

Proof by induction on $k . k=0$ is Euler's identity. Assume true for $\omega \in \mathcal{H}_{r} \Lambda^{k-1}$, and verify it for $\omega \wedge d x^{i}$.

$$
\begin{aligned}
d \kappa\left(\omega \wedge d x^{i}\right) & =d\left(\kappa \omega \wedge d x^{i}+(-1)^{k-1} \omega \wedge x^{i}\right) \\
& =d(\kappa \omega) \wedge d x^{i}+(-1)^{k-1}(d \omega) \wedge x^{i}+\omega \wedge d x^{i} \\
\kappa d\left(\omega \wedge d x^{i}\right) & =\kappa\left(d \omega \wedge d x^{i}\right)=\kappa(d \omega) \wedge d x^{i}+(-1)^{k} d \omega \wedge x^{i} . \\
(d \kappa+\kappa d)\left(\omega \wedge d x^{i}\right) & =[(d \kappa+\kappa d) \omega] \wedge d x^{i}+\omega \wedge d x^{i}=(r+k)\left(\omega \wedge d x^{i}\right)
\end{aligned}
$$

Consequences of the homotopy formula

- The polynomial de Rham complex is exact (except for constant 0 -forms in the kernel). The Koszul complex is exact (except for constant 0 -forms in the coimage).
- $\kappa d \omega=0 \Longrightarrow d \omega=0, \quad d \kappa \omega=0 \Longrightarrow \kappa \omega=0$
- $\mathcal{H}_{r} \Lambda^{k}=\kappa \mathcal{H}_{r-1} \Lambda^{k+1} \oplus d \mathcal{H}_{r+1} \Lambda^{k-1}$
- Define $\mathcal{P}_{r}^{-} \Lambda^{k}=\mathcal{P}_{r-1} \Lambda^{k}+\kappa \mathcal{H}_{r-1} \Lambda^{k+1}$
- $\mathcal{P}_{r}^{-} \Lambda^{0}=\mathcal{P}_{r} \Lambda^{0}, \quad \mathcal{P}_{r}^{-} \Lambda^{n}=\mathcal{P}_{r-1} \Lambda^{n}, \quad$ else $\mathcal{P}_{r-1} \Lambda^{k} \subsetneq \mathcal{P}_{r}^{-} \Lambda^{k} \subsetneq \mathcal{P}_{r} \Lambda^{k}$
- $\operatorname{dim} \mathcal{P}_{r}^{-} \Lambda^{k}=\binom{r+n}{r+k}\binom{r+k-1}{k}=\frac{r}{r+k} \operatorname{dim} \mathcal{P}_{r} \Lambda^{k}$
- $\mathcal{R}\left(d \mid \mathcal{P}_{r}^{-} \Lambda^{k}\right)=\mathcal{R}\left(d \mid \mathcal{P}_{r} \Lambda^{k}\right), \quad \mathcal{N}\left(d \mid \mathcal{P}_{r}^{-} \Lambda^{k}\right)=\mathcal{N}\left(d \mid \mathcal{P}_{r-1} \Lambda^{k}\right)$
- The complex (with constant r)

$$
0 \rightarrow \mathcal{P}_{r}^{-} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{1} \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{n} \rightarrow 0
$$

is exact (except for constant 0 -forms).

Complexes mixing \mathcal{P}_{r} and \mathcal{P}_{r}^{-}

On an n-D domain there are 2^{n-1} complexes beginning with $\mathcal{P}_{r} \Lambda^{0}$ (or ending with $\mathcal{P}_{r} \Lambda^{n}$). At each step we have two choices:

$$
\mathcal{P}_{r} \Lambda^{k-1} \longrightarrow \mathcal{P}_{r}^{-} \Lambda^{k} \quad \text { or } \mathcal{P}_{r-1} \Lambda^{k} \Lambda^{k-1} \longrightarrow \mathcal{P}_{r}^{-} \Lambda^{k}
$$

In 3-D:

$$
\begin{aligned}
& 0 \rightarrow \mathcal{P}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{1} \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{2} \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{3} \rightarrow 0 . \\
& 0 \rightarrow \mathcal{P}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{1} \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{2} \xrightarrow{d} \mathcal{P}_{r-2} \Lambda^{3} \rightarrow 0, \\
& 0 \rightarrow \mathcal{P}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1} \xrightarrow{d} \mathcal{P}_{r-1}^{-} \Lambda^{2} \xrightarrow{d} \mathcal{P}_{r-2} \Lambda^{3} \rightarrow 0, \\
& 0 \rightarrow \mathcal{P}_{r} \Lambda^{0} \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1} \xrightarrow{d} \mathcal{P}_{r-2} \Lambda^{2} \xrightarrow{d} \mathcal{P}_{r-3} \Lambda^{3} \rightarrow 0,
\end{aligned}
$$

The $P_{r}^{-} \Lambda^{k}$ family of simplicial FE differential forms

Given: a mesh \mathcal{T}_{h} of simplices $T, r \geq 1,0 \leq k \leq n$, we define $\mathcal{P}_{r}^{-} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ via:

Shape fns: $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$
DOFs:

$$
u \mapsto \int_{f}\left(\operatorname{tr}_{f} u\right) \wedge q, \quad q \in \mathcal{P}_{r+k-d-1} \Lambda^{d-k}(f), f \in \Delta(T), \quad d=\operatorname{dim} f \geq k
$$

THEOREM

The number of DOFs $=\operatorname{dim} \mathcal{P}_{r}^{-} \Lambda^{k}(T)$ and they are unisolvent. The imposed continuity exactly enforces inclusion in $H \Lambda^{k}$.

$$
\begin{array}{rlllll}
\mathcal{P}_{r}-\Lambda^{k} & & k=0 & k=1 & k=2 & k=3 \\
n=1 & r=2 & \bullet & \longrightarrow & \\
& r=3 & \bullet & \longrightarrow & &
\end{array}
$$

$$
r=1
$$

$$
n=2 \quad r=2
$$

$$
r=3
$$

$$
r=1
$$

$$
n=3 \quad r=2
$$

$$
r=3
$$

Unisolvence for $\mathcal{P}_{r}^{-} \Lambda^{k}$: outline

1. Verify that the number of DOFs equals $\operatorname{dim} \mathcal{P}_{r}^{-} \Lambda^{k}(T)$
2. Verify the trace properties:
a) $\operatorname{tr}_{f} \mathcal{P}_{r}^{-} \Lambda^{k}(T) \subset \mathcal{P}_{r}^{-} \Lambda^{k}(f)$, and
b) the pullback $\operatorname{tr}_{f}^{*}: \mathcal{P}_{r}^{-} \Lambda^{k}(f)^{*} \rightarrow \mathcal{P}_{r}^{-} \Lambda^{k}(T)^{*}$ takes DOFs for $\mathcal{P}_{r}^{-} \Lambda^{k}(f)$ to DOFs for $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$
3. $u \in \grave{\mathcal{P}}_{r}^{-} \Lambda^{k}(T) \quad \& \quad$ the interior DOFs vanish $\Longrightarrow u=0$
$1,2,3 \Longrightarrow$ unisolvence, by induction on dimension

Unisolvence for $\mathcal{P}_{r}^{-} \Lambda^{k}$: dimension count

$$
\begin{aligned}
\# \mathrm{DOFs} & =\sum_{d \geq k} \# \Delta_{d}(T) \operatorname{dim} \mathcal{P}_{r+k-d-1} \Lambda^{k}\left(\mathbb{R}^{d}\right) \\
& =\sum_{d \geq k}\binom{n+1}{d+1}\binom{r+k-1}{d}\binom{d}{k} \\
& =\sum_{j \geq 0}\binom{n+1}{j+k+1}\binom{r+k-1}{j+k}\binom{j+k}{j}
\end{aligned}
$$

Simplify using the identities

$$
\binom{a}{b}\binom{b}{c}=\binom{a}{c}\binom{a-c}{a-b} \quad \sum_{j \geq 0}\binom{a}{b+j}\binom{c}{j}=\binom{a+c}{a-b}
$$

to get

$$
\text { \#DOFs }=\binom{r+n}{r+k}\binom{r+k-1}{k}=\operatorname{dim} \mathcal{P}_{r}^{-} \Lambda^{k}
$$

Unisolvence for $\mathcal{P}_{r}^{-} \Lambda^{k}$, completed (modulo lemma)

2. The trace properties follows from definitions (essentially, $\operatorname{tr}_{f} \kappa u=\kappa_{f} \operatorname{tr}_{u}$).
3. It remains to show:
(†) $u \in \stackrel{\circ}{\mathcal{P}}_{r}^{-} \Lambda^{k}(T) \quad \& \quad(*) \int_{T} u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \Longrightarrow u=0$

Unisolvence for $\mathcal{P}_{r}^{-} \Lambda^{k}$, completed (modulo lemma)

2. The trace properties follows from definitions (essentially, $\operatorname{tr}_{f} \kappa u=\kappa_{f} \operatorname{tr}_{u}$).
3. It remains to show:
(†) $u \in \dot{\mathcal{P}}_{r}^{-} \Lambda^{k}(T) \quad \& \quad(*) \int_{T} u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \Longrightarrow u=0$
A weaker result can be proven by an explicit choice of test functions: Lemma:
($\ddagger) u \in \stackrel{\mathcal{P}}{r-1} \Lambda^{k}(T) \quad \& \quad(*) \int_{T} u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \quad \Longrightarrow u=0$

Unisolvence for $\mathcal{P}_{r}^{-} \Lambda^{k}$, completed (modulo lemma)

2. The trace properties follows from definitions (essentially, $\operatorname{tr}_{f} \kappa u=\kappa_{f} \operatorname{tr}_{u}$).
3. It remains to show:
(†) $u \in \check{\mathcal{P}}_{r}^{-} \Lambda^{k}(T) \quad \& \quad(*) \int_{T} u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \quad \Longrightarrow u=0$
A weaker result can be proven by an explicit choice of test functions:
Lemma:
($\ddagger) u \in \stackrel{\circ}{\mathcal{P}}_{r-1} \Lambda^{k}(T) \quad \& \quad(*) \int_{T} u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \Longrightarrow u=0$
So we only need to show that $u \in \mathcal{P}_{r-1} \Lambda^{k}(T)$.

Unisolvence for $\mathcal{P}_{r}^{-} \Lambda^{k}$, completed (modulo lemma)

2. The trace properties follows from definitions (essentially, $\operatorname{tr}_{f} \kappa u=\kappa_{f} \operatorname{tr}_{u}$).
3. It remains to show:
(†) $u \in \dot{\mathcal{P}}_{r}^{-} \Lambda^{k}(T) \quad \& \quad(*) \int_{T} u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \Longrightarrow u=0$
A weaker result can be proven by an explicit choice of test functions:
Lemma:
($\ddagger) u \in \stackrel{\circ}{\mathcal{P}}_{r-1} \Lambda^{k}(T) \quad \& \quad(*) \int_{T} u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \Longrightarrow u=0$
So we only need to show that $u \in \mathcal{P}_{r-1} \Lambda^{k}(T)$.
By the homotopy formula, $u \in \mathcal{P}_{r}^{-} \Lambda^{k}, d u=0 \Longrightarrow u \in \mathcal{P}_{r-1} \Lambda^{k}$,

Unisolvence for $\mathcal{P}_{r}^{-} \Lambda^{k}$, completed (modulo lemma)

2. The trace properties follows from definitions (essentially, $\operatorname{tr}_{f} \kappa u=\kappa_{f} \operatorname{tr}_{u}$).
3. It remains to show:
(†) $u \in \stackrel{\circ}{\mathcal{P}}_{r}^{-} \Lambda^{k}(T) \quad \& \quad(*) \int_{T} u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \quad \Longrightarrow u=0$
A weaker result can be proven by an explicit choice of test functions:
Lemma:
($\ddagger) u \in \stackrel{\circ}{\mathcal{P}}_{r-1} \Lambda^{k}(T) \quad \& \quad(*) \int_{T} u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \Longrightarrow u=0$
So we only need to show that $u \in \mathcal{P}_{r-1} \Lambda^{k}(T)$.
By the homotopy formula, $u \in \mathcal{P}_{r}^{-} \Lambda^{k}, d u=0 \Longrightarrow u \in \mathcal{P}_{r-1} \Lambda^{k}$, so it suffices to show that $d u=0$.

Unisolvence for $\mathcal{P}_{r}^{-} \Lambda^{k}$, completed (modulo lemma)

2. The trace properties follows from definitions (essentially, $\operatorname{tr}_{f} \kappa u=\kappa_{f} \operatorname{tr}_{u}$).
3. It remains to show:
(†) $u \in \dot{\mathcal{P}}_{r}^{-} \Lambda^{k}(T) \quad \& \quad(*) \int_{T} u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \Longrightarrow u=0$
A weaker result can be proven by an explicit choice of test functions:
Lemma:
($\ddagger) u \in \stackrel{ْ}{\mathcal{P}}_{r-1} \Lambda^{k}(T) \quad \& \quad(*) \int_{T} u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T) \Longrightarrow u=0$
So we only need to show that $u \in \mathcal{P}_{r-1} \Lambda^{k}(T)$.
By the homotopy formula, $u \in \mathcal{P}_{r}^{-} \Lambda^{k}, d u=0 \Longrightarrow u \in \mathcal{P}_{r-1} \Lambda^{k}$, so it suffices to show that $d u=0$.
But $d u \in \dot{\mathcal{P}}_{r-1} \Lambda^{k+1}(T)$ so satisfies (\ddagger) with $k \rightarrow k+1$. The hypothesis
(*) for $d u$ then becomes: $(*) \int_{T} d u \wedge q=0 \forall q \in \mathcal{P}_{r+k-n} \Lambda^{n-k-1}(T)$
This holds by integration by parts and (*).

Proof of lemma

LEMMA

If $u \in \stackrel{\circ}{\mathcal{P}}_{r-1} \Lambda^{k}(T)$ and $\int_{T} u \wedge q=0, \quad q \in \mathcal{P}_{r+k-n-1} \Lambda^{n-k}(T)$ then $u \equiv 0$.

$$
u=\sum_{\sigma \in \Sigma(k, n)} u_{\sigma} d \lambda_{\sigma_{1}} \wedge \cdots \wedge d \lambda_{\sigma_{k}} \quad u_{\sigma} \in \mathcal{P}_{r-1}(T)
$$

From the vanishing traces,

$$
u_{\sigma}=p_{\sigma} \lambda_{\sigma_{1}^{*}} \cdots \lambda_{\sigma_{n-k}^{*}} \text { for some } p_{\sigma} \in \mathcal{P}_{r+k-n-1}(T)
$$

Choosing

$$
q=\sum_{\sigma \in \Sigma(k, n)}(-1)^{\operatorname{sign}\left(\sigma, \sigma^{*}\right)} p_{\sigma} d \lambda_{\sigma_{1}^{*}} \wedge \cdots \wedge d \lambda_{\sigma_{n-k}^{*}}
$$

gives

$$
0=\int_{T} u \wedge q=\int_{T} \sum_{\sigma \in \Sigma(k, n)} p_{\sigma}^{2} \lambda_{\sigma_{1}^{*}} \cdots \lambda_{\sigma_{n-k}^{*}} d \lambda_{1} \wedge \cdots \wedge d \lambda_{n}
$$

so all the p_{σ} vanish.

Summary for simplicial elements

The argument adapts easily to $\mathcal{P}_{r} \Lambda^{k}$. Thus a single argument proves unisolvence for all of the most important simplicial FE spaces at once.

To obtain the "best" proof, it is necessary

- to consider $\mathcal{P}_{r}^{-} \Lambda^{k}$ and $\mathcal{P}_{r} \Lambda^{k}$ together
- to consider all form degrees k
- to consider general dimension n
"A finite element which does not work in n-dimensions is probably not so good in 2 or 3 dimensions."

The $P_{r} \Lambda^{k}$ family of simplicial FE differential forms

Given: a mesh \mathcal{T}_{h} of simplices $T, r \geq 1,0 \leq k \leq n$, we define $\mathcal{P}_{r} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ via:

Shape fns: $\quad \mathcal{P}_{r} \Lambda^{k}(T)$
DOFs:

$$
u \mapsto \int_{f}\left(\operatorname{tr}_{f} u\right) \wedge q, \quad q \in \mathcal{P}_{r+k-d}^{-} \Lambda^{d-k}(f), f \in \Delta(T), \quad d=\operatorname{dim} f \geq k
$$

THEOREM

The number of DOFs $=\operatorname{dim} \mathcal{P}_{r} \Lambda^{k}(T)$ and they are unisolvent. The imposed continuity exactly enforces inclusion in $H \Lambda^{k}$.
$\begin{array}{rlllll} & & k=0 & k=1 & k=2 & k=3 \\ n=1 & \begin{array}{l}k=1 \\ \\ n=2\end{array} & \bullet & \ldots & & \\ & r=3 & \bullet \bullet & \cdots & \cdots & \end{array}$

$$
r=1
$$

$$
n=2 \quad r=2
$$

$$
r=3
$$

$$
r=1
$$

$$
n=3 \quad r=2
$$

$$
r=3
$$

Application of the \mathcal{P}_{r} and \mathcal{P}_{r}^{-}families to the Hodge Laplacian

- The shape function spaces $\mathcal{P}_{r} \Lambda^{k}(T)$ and $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$ combine into de Rham subcomplexes.
- The DOFs connect these spaces across elements to create subspaces of $H \Lambda^{k}(\Omega)$.
Therefore the assembled finite element spaces $\mathcal{P}_{r} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ and $\mathcal{P}_{r}^{-} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ combine into de Rham subcomplexes (in 2^{n-1} ways).

The DOFs of freedom determine projections from $\Lambda^{k}(\Omega)$ into the finite element spaces. From Stokes thm, these commute with d. Suitably modified, we obtain bounded cochain projections. Thus the abstract theory applies. We may use any two adjacent spaces in any of the complexes.

$$
\left\{\begin{array}{c}
\mathcal{P}_{r} \Lambda^{k-1}(\mathcal{T}) \\
\text { or } \\
\mathcal{P}_{r}^{-} \Lambda^{k-1}(\mathcal{T})
\end{array}\right\} \xrightarrow{d}\left\{\begin{array}{c}
\mathcal{P}_{r}^{-} \Lambda^{k}(\mathcal{T}) \\
\text { or } \\
\mathcal{P}_{r-1} \Lambda^{k}(\mathcal{T})
\end{array}\right\}
$$

Rates of convergence

Rates of convergence are determined by the improved error estimates from the abstract theory. They depend on

- The smoothness of the data f.
- The amount of elliptic regularity.
- The degree of of complete polynomials contained in the finite element spaces.

The theory delivers the best possible results: with sufficiently smooth data and elliptic regularity, the rate of convergence for each of the quantities $u, d u, \sigma, d \sigma$, and p in the L^{2} norm is the best possible given the degree of polynomials used for that quantity.

Eigenvalues converge as $O\left(h^{2 r}\right)$.

Historical notes

- The $\mathcal{P}_{1}^{-} \Lambda^{k}$ complex is in Whitney '57 (Bossavit '88).
- In '76, Dodziuk and Patodi defined a finite difference approximation based on the Whitney forms to compute the eigenvalues of the Hodge Laplacian, and proved convergence. In retrospect, that method can be better viewed as a mixed finite element method. This was a step on the way to proving the Ray-Singer conjecture, completed in ' 78 by W. Miller.
- The $\mathcal{P}_{r} \Lambda^{k}$ complex is in Sullivan '78.
- Hiptmair gave a uniform treatment of the $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces in '99.
- The unified treatment and use of the Koszul complex is from DNA-Falk-Winther '06.

Bounded cochain projections

The DOFs defining $\mathcal{P}_{r} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ and $\mathcal{P}_{r}^{-} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ determine canonical projection operators Π_{h} from piecewise smooth forms in $H \Lambda^{k}$ onto Λ_{h}^{k}. However, Π_{h} is not bounded on $H \Lambda^{k}$ (much less uniformly bounded wrt h). Π_{h} is bounded on $C \Lambda^{k}$.
If we have a smoothing operator $R_{\epsilon, h} \in \operatorname{Lin}\left(L^{2} \Lambda^{k}, C \Lambda^{k}\right)$ such that $R_{\epsilon, h}$ commutes with d, we can define $Q_{\epsilon, h}=\Pi_{h} R_{\epsilon, h}$ and obtain a bounded operator $L^{2} \Lambda^{k} \rightarrow \Lambda_{h}^{k}$ which commutes with d (as suggested by Christiansen).

However Q_{h} will not be a projection. We correct this by using Schöberl's trick: if the finite dimensional operator

$$
\left.Q_{\epsilon, h}\right|_{\Lambda_{h}^{k}}: \Lambda_{h}^{k} \rightarrow \Lambda_{h}^{k}
$$

is invertible, then

$$
\pi_{h}:=\left(\left.Q_{\epsilon, h}\right|_{\Lambda_{h}^{k}}\right)^{-1} Q_{\epsilon, h \prime}
$$

is a bounded commuting projection. It remains to get uniform bds on π_{h}.

The two key estimates

For this we need two key estimates for $Q_{\epsilon, h}:=\Pi_{h} R_{\epsilon, h}$:

- For fixed $\epsilon, Q_{\epsilon, h}$ is uniformly bounded:
$\forall \epsilon>0$ suff. small $\exists c(\epsilon)>0$ s.t.

$$
\sup _{h}\left\|Q_{\epsilon, h}\right\|_{\operatorname{Lin}\left(L^{2}, L^{2}\right)} \leq c(\epsilon)
$$

- $\lim _{\epsilon \rightarrow 0}\left\|I-Q_{\epsilon, h}\right\|_{\operatorname{Lin}\left(L^{2}, L^{2}\right)}=0$ uniformly in h

THEOREM

Suppose that these two estimates hold and define $\pi_{h}:=\left(\left.Q_{\epsilon, h}\right|_{\Lambda_{h}^{k}}\right)^{-1} Q_{\epsilon, h}$ where Λ_{h}^{k} is either $\mathcal{P}_{r} \Lambda^{k}\left(\mathcal{T}_{h}\right)$ or $\mathcal{P}_{r+1}^{-} \Lambda^{k}\left(T_{h}\right)$. Then, for h sufficiently small, π_{h} is a cochain projection onto Λ_{h}^{k} and

$$
\left\|\omega-\pi_{h} \omega\right\| \leq c h^{s}\|\omega\|_{H^{s} \Lambda^{k}}, \quad \omega \in H^{s} \Lambda^{k}, \quad 0 \leq s \leq r+1
$$

The smoothing operator

The simplest definition is to take $R_{\epsilon, h} u$ to be an average over $y \in B_{1}$ of $\left(F_{\epsilon, h}^{y}\right)^{*} u$ where $F_{\epsilon, h}^{y}(x)=x+\epsilon h y$:

$$
R_{\epsilon, h} u(x)=\int_{B_{1}} \rho(y)\left[\left(F_{e h}^{y}\right)^{*} u\right](x) d y
$$

Needs modification near the boundary and for non-quasiuniform meshes.

The key estimates can be proven using macroelements and scaling.

