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The fundamental theorem of
numerical analysis



Convergence, consistency, and stability of discretizations

The basic idea:

Continuous problem: L : X→ Y bounded linear operator between
Banach spaces

Given f ∈ Y find u ∈ X such that Lu = f .

Discrete problem: Lh : Xh → Yh operator on finite dimensional spaces.

Given fh ∈ Yh find uh ∈ Xh such that Lhuh = fh
The discretization is convergent if uh is sufficiently near u.
The discretization is consistent if Lh and fh are sufficiently near
L and f .
The discretization is stable if the discrete problem is well-posed.

THEOREM (FUNDAMENTAL THEOREM OF NUMERICAL ANALYSIS)

A discretization which is consistent and stable is convergent.
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Measuring convergence, consistency, and stability

To quantify convergence we use
1. A norm in the space Xh.
2. A representative Uh in Xh.

The discretization error is then ‖Uh − uh‖Xh . The method is convergent
if it tends to 0 as h→ 0.

To quantify consistency we use a norm in the space Yh. The
consistency error is then ‖LhUh − fh‖Yh . The method is consistent if it
tends to 0.

The stability constant is ‖L−1
h ‖L(Yh,Xh)

. The method is stable if it
remains bounded as h→ 0.

In this context the fundamental theorem is easy:

Lhuh = fh =⇒ LhUh − Lhuh = LhUh − fh =⇒ Uh − uh = L−1
h (LhUh − fh)

‖Uh − uh‖Xh ≤ ‖L
−1
h ‖L(Yh,Xh)

‖LhUh − fh‖Yh
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Discretization of Hilbert
complexes



Motivation: why mixed formulation?

H1 grad−−→ H(rot) rot−→ L2 (dd∗ + d∗d)u = (− grad rot+ curl rot)u = λu

Primal formulation: Find u such that (du, dv) + (d∗u, d∗v) = λ(u, v) ∀v

λ1 = 1.94 λ2 = 2.02 λ3 = 2.26

P1 ⊗V

4K elts
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Eigenvalues of the 1-form Hodge Laplacian (FEEC)

λ1 = 0 λ2 = 0.617 λ3 = 0.658

P−1 Λ0×
P−1 Λ1

4K elts
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Motivation: why do we need special elements?

Mixed Poisson eq: H(div) div−→ L2 → 0.

The obvious choice of Lagrange P1 for V0 and P0 for V1 is unstable.
RT, BDM families are stable.

P1 ⊗V P0

(Lagrange)
P−1 Λ1 P0Λ2

(RT)
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Motivation: a real computation

Stowell–Fassenfass–White, IEEE Trans. Ant. & Prop. 2008

Solved time-dependent Maxwell equations using Q−1 Λ1 for E and
Q−1 Λ2 for B (Nédélec elements of the first kind on bricks)
10,114,695,855 brick elements (≈ 1 cm resolution)
≈ 60, 000, 000, 000 unknowns
≈ 12, 000 time steps of 14 picoseconds

concrete walls

cinder block/rebar walls
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Discretizing the mixed formulation

We therefore consider finite element discretizations of the mixed form:

Given f ∈ Wk, find σ ∈ Vk−1, u ∈ Vk, and p ∈ Hk s.t.

〈σ, τ〉 − 〈u, dτ〉 = 0, τ ∈ Vk−1,

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f , v〉, v ∈ Vk,

〈u, q〉 = 0, q ∈ Hk.

Choose f.d. subspaces Vj
h ⊂ Vj

Define Z
j
h, B

j
h, H

j
h = {v ∈ Z

j
h | v ⊥ B

j
h}

Given f ∈ Wk, find σh ∈ Vk−1
h , uh ∈ Vk

h, and ph ∈ Hk
h s.t.

〈σh, τ〉 − 〈uh, dτ〉 = 0, τ ∈ Vk−1
h ,

〈dσh, v〉+ 〈duh, dv〉+ 〈ph, v〉 = 〈f , v〉, v ∈ Vk
h,

〈uh, q〉 = 0, q ∈ Hk
h.
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Choice of subspaces

For any choice of the Vj
h there exists a unique solution.

However, the consistency and stability of the numerical method
depends vitally on the choice of subspaces.

Remark:
Note that Zh ⊂ Z, Bh ⊂ B, but in general Hh * H. So the mixed
method is slightly nonconforming, and this also contributes to the
consistency error.

8 / 20



Key assumptions

We need the spaces Vj
h ⊂ Vj (at least for j = k− 1, k, k + 1) to satisfy

three properties:

1. Approximation property: Of course Vj
h must afford good

approximation of elements of Vj. This can be formalized with
respect to a family of subspaces parametrized by h by requiring

lim
h→0

inf
v∈Vj

h

‖w− v‖V = 0, w ∈ Vj

(or = O(hr) for w in some dense subspace, or . . . )

2. Subcomplex property: dVk−1
h ⊂ Vk

h and dVk
h ⊂ Vk+1

h , so

Vk−1
h

d−→ Vk
h

d−→ Vk+1
h

is a subcomplex.
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Bounded cochain projection

3. Bounded cochain projection: Most important, we assume that
there exists a cochain map from the H-complex to the subcomplex
which is a projection and is bounded.

Vk−1 d−−−−→ Vk d−−−−→ Vk+1

πk−1
h

y πk
h

y πk+1
h

y
Vk−1

h
d−−−−→ Vk

h
d−−−−→ Vk+1

h

For now, boundedness is in V-norm: ‖πhv‖V ≤ c‖v‖V. But later
we will need W-boundedness, which is a stronger requirement.

A bounded projection is quasioptimal:

‖v− πhv‖V ≤ c inf
w∈Vj

h

‖v−w‖V, v ∈ Vj
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First consequences from the assumptions

From the subcomplex property

Vk−1
h

d−→ Vk
h

d−→ Vk+1
h

is itself a closed H-complex. (We take Wk
h = Vk

h but with the W-norm.)

Therefore there is a discrete adjoint operator d∗h (its domain is all of
Wk

h), a discrete Hodge decomposition

Vk
h = Bk

h�Hk
h�B∗kh.

and a discrete Poincaré inequality

‖z‖V ≤ cP
h‖dz‖, z ∈ Z

k⊥Vh
h .
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Preservation of cohomology

THEOREM

Given: a closed H-complex, and a choice of f.d. subspaces satisfying the
subcomplex property and admitting a V-bdd cochain projection πh. Assume
also the (very weak) approximation property

‖q− πhq‖ < ‖q‖, 0 6= q ∈ Hk.

Then πh induces an isomorphism from Hk onto Hk
h.

Moreover,
gap

(
H,Hh

)
≤ sup

q∈H
‖q‖=1

‖q− πhq‖V.

gap(H,Hh) := max
(

sup
u∈H
‖u‖=1

inf
v∈Hh

‖u− v‖V, sup
v∈Hh
‖v‖=1

inf
u∈H
‖u− v‖V

)
.
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Uniform Poincaré inequality and stability

THEOREM

Given: a closed H-complex, and a choice of f.d. subspaces satisfying the
subcomplex property and admitting a V-bdd cochain projection πh. Then

‖v‖V ≤ cP‖πh‖‖dv‖V, v ∈ Zk⊥
h ∩Vk

h.

COROLLARY (STABILITY AND QUASIOPTIMALITY OF THE MIXED METHOD)

The mixed method is stable (uniform inf-sup condition) and satisfies

‖σ− σh‖V + ‖u− uh‖V + ‖p− ph‖
≤ C( inf

τ∈Vk−1
h

‖σ− τ‖V + inf
v∈Vk

h

‖u− v‖V + inf
q∈Vk

h

‖p− q‖V

+ µ inf
v∈Vk

h

‖PBu− v‖V),

where µ = µh = sup
r∈Hk,‖r‖=1

‖(I− πh)r‖.
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Improved error estimates

In addition to µ = ‖(I− πh)PH‖, define δ, η = o(1) by

δ = ‖(I− πh)K‖Lin(W,W), η = ‖(I− πh)d
[∗]K‖Lin(W,W).

When Vk
h ⊃ Pr, µ = O(hr+1), η = O(h), δ =

{
O(h2), r > 0,
O(h), r = 0,

THEOREM

Given: an H-complex satisfying the compactness property, and a choice of
f.d. subspaces satisfying the subcomplex property and admitting a W-bdd
cochain projection πh. Then

‖d(σ− σh)‖ ≤ cE(dσ), ‖σ− σh‖ ≤ c[E(σ) + ηE(dσ)],

‖d(u− uh)‖ ≤ c{E(du) + η[E(dσ) + E(p)]},

‖u− uh‖ ≤ c{E(u) + η[E(du) + E(σ)]

+(η2 + δ)[E(dσ) + E(p)] + µE(PBu)}.
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Numerical tests

− grad div u + curl rot u = f in Ω (unit square), u · n = rot u = 0 on ∂Ω
(magnetic BC)

0→ H1 grad−−→ H(rot) rot−→ L2 → 0

σh ∈ V0
h ⊂ H1, uh ∈ V1

h ⊂ H(rot)

〈σh, τ〉 − 〈uh, grad τ〉 = 0, τ ∈ Vk−1
h ,

〈grad σh, v〉+ 〈rot uh, rot v〉 = 〈f , v〉, v ∈ Vk
h.

V0
h Lagrange V1

h R-T V2
h DG

All hypotheses are met. . .
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Numerical solution of vector Laplacian, magnetic BC

‖σ− σh‖ rate ‖∇(σ− σh)‖ rate ‖u− uh‖ rate ‖ rot(u− uh)‖ rate

2.16e-04 3.03 2.63e-02 1.98 2.14e-03 1.99 1.17e-02 1.99

2.70e-05 3.00 6.60e-03 1.99 5.37e-04 1.99 2.93e-03 2.00

3.37e-06 3.00 1.65e-03 2.00 1.34e-04 2.00 7.33e-04 2.00

4.16e-07 3.02 4.14e-04 2.00 3.36e-05 2.00 1.83e-04 2.00

3 2 2 2
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Numerical solution of vector Laplacian, Dirichlet BC

For Dirichlet boundary conditions, σ = −div u is sought in H1, u is
sought in H̊(rot) (the BC u · t = 0 is essential, u · n = 0 is natural).

There is no complex, so our theory does not apply.

‖σ− σh‖ rate ‖∇(σ− σh)‖ rate ‖u− uh‖ rate ‖ rot(u− uh)‖ rate

1.90e-02 1.62 2.53e+00 0.63 1.22e-03 2.01 1.55e-02 1.58

6.36e-03 1.58 1.68e+00 0.60 3.05e-04 r 2.00 5.33e-03 1.54

2.18e-03 1.54 1.14e+00 0.56 7.63e-05 2.00 1.85e-03 1.52

7.58e-04 1.52 7.89e-01 0.53 1.91e-05 2.00 6.49e-04 1.51

1.5 0.5 2 1.5
DNA-Falk-Gopalakrishnan M3AS 2011
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Eigenvalue problems

Find λ ∈ R, 0 6= u ∈ D(L) s.t. Lu = λu, u ⊥ H

λ‖u‖2 = ‖du‖2 + ‖d∗u‖2 > 0 so λ > 0 and Ku = λ−1u.

By the compactness property, K : Wk → Wk is compact and
self-adjoint, so 0 < λ1 ≤ λ2 ≤ · · · → ∞.
Denote by vi corresponding orthonormal eigenvalues, Ei = Rvi.

Mixed discretization:

Find λh ∈ R, 0 6= (σh, uh, ph) ∈ Vk−1
h ×Vk

h ×Hk
h s.t.

〈σh, τ〉 − 〈uh, dτ〉 = 0, τ ∈ Vk−1
h ,

〈dσh, v〉+ 〈duh, dv〉+ 〈ph, v〉 = λh〈uh, v〉, v ∈ Vk
h,

〈uh, q〉 = 0, q ∈ Hk
h.

0 < λ1h ≤ λ2h ≤ . . . ≤ λNhh, vih orthonormal, Eih = Rvih
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Convergence of eigenvalue problems

Let ∑
m(j)
i=1 Ei be the span of the eigenspaces of the first j distinct

eigenvalues. The method converges if ∀ j, ε > 0, ∃ h0 > 0 s.t.

max
1≤i≤m(j)

|λi − λih| ≤ ε and gap

(
m(j)

∑
i=1

Ei,
m(j)

∑
i=1

Ei,h

)
≤ ε if h ≤ h0.

A sufficient (and necessary) condition for eigenvalue convergence is
operator norm convergence of the discrete solution operator KhPh to
K (Kato, Babuska–Osborn, Boffi–Brezzi–Gastaldi):

W→Wh orthog.

The mixed discretization of the eigenvalue problem converges if

lim
h→0
‖KhPh − K‖L(W,W) = 0.
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Eigenvalue convergence follows from improved estimates

‖u−uh‖ ≤ c{E(u)+ η[E(du)+E(σ)]+ (η2 + δ)[E(dσ)+E(p)]+µE(PBu)}

E(dσ) + E(p) + E(PBu) ≤ ‖dσ‖+ ‖p‖+ ‖u‖ ≤ ‖f‖

E(u) ≤ δ‖f‖, E(du) + E(σ) ≤ η‖f‖

Therefore
‖(K− KhPh)f‖ ≤ δ + η2 + µ→ 0

Rates of convergence also follow, included doubled convergence
rates for eigenvalues. . .
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