Finite Element Exterior Calculus and Applications

Part II

Douglas N. Arnold, University of Minnesota Peking University/BICMR August 15–18, 2015 The fundamental theorem of numerical analysis

The basic idea:

Continuous problem: $L : X \to Y$ bounded linear operator between Banach spaces

Given $f \in Y$ find $u \in X$ such that Lu = f.

Discrete problem: $L_h : X_h \to Y_h$ operator on finite dimensional spaces.

Given $f_h \in Y_h$ find $u_h \in X_h$ such that $L_h u_h = f_h$

- The discretization is *convergent* if *u_h* is sufficiently near *u*.
- The discretization is *consistent* if L_h and f_h are sufficiently near L and f.
- The discretization is *stable* if the discrete problem is well-posed.

THEOREM (FUNDAMENTAL THEOREM OF NUMERICAL ANALYSIS)

A discretization which is consistent and stable is convergent.

To quantify convergence we use

- 1. A norm in the space X_h .
- 2. A representative U_h in X_h .

The *discretization error* is then $||U_h - u_h||_{X_h}$. The method is convergent if it tends to 0 as $h \to 0$.

To quantify convergence we use

- 1. A norm in the space X_h .
- 2. A representative U_h in X_h .

The *discretization error* is then $||U_h - u_h||_{X_h}$. The method is convergent if it tends to 0 as $h \to 0$.

To quantify consistency we use a norm in the space Y_h . The *consistency error* is then $||L_h U_h - f_h||_{Y_h}$. The method is consistent if it tends to 0.

To quantify convergence we use

- 1. A norm in the space X_h .
- 2. A representative U_h in X_h .

The *discretization error* is then $||U_h - u_h||_{X_h}$. The method is convergent if it tends to 0 as $h \to 0$.

To quantify consistency we use a norm in the space Y_h . The *consistency error* is then $||L_h U_h - f_h||_{Y_h}$. The method is consistent if it tends to 0.

The *stability constant* is $\|L_h^{-1}\|_{\mathcal{L}(Y_h, X_h)}$. The method is stable if it remains bounded as $h \to 0$.

To quantify convergence we use

- 1. A norm in the space X_h .
- 2. A representative U_h in X_h .

The *discretization error* is then $||U_h - u_h||_{X_h}$. The method is convergent if it tends to 0 as $h \to 0$.

To quantify consistency we use a norm in the space Y_h . The *consistency error* is then $||L_h U_h - f_h||_{Y_h}$. The method is consistent if it tends to 0.

The *stability constant* is $\|L_h^{-1}\|_{\mathcal{L}(Y_h, X_h)}$. The method is stable if it remains bounded as $h \to 0$.

In this context the fundamental theorem is easy:

$$L_{h}u_{h} = f_{h} \Longrightarrow L_{h}U_{h} - L_{h}u_{h} = L_{h}U_{h} - f_{h} \Longrightarrow U_{h} - u_{h} = L_{h}^{-1}(L_{h}U_{h} - f_{h})$$
$$\|U_{h} - u_{h}\|_{X_{h}} \le \|L_{h}^{-1}\|_{\mathcal{L}(Y_{h},X_{h})}\|L_{h}U_{h} - f_{h}\|_{Y_{h}}$$

To quantify convergence we use

- 1. A norm in the space X_h .
- 2. A representative U_h in X_h .

The *discretization error* is then $||U_h - u_h||_{X_h}$. The method is convergent if it tends to 0 as $h \to 0$.

To quantify consistency we use a norm in the space Y_h . The *consistency error* is then $||L_h U_h - f_h||_{Y_h}$. The method is consistent if it tends to 0.

The stability constant is $\|L_h^{-1}\|_{\mathcal{L}(Y_h, X_h)}$. The method is stable if it remains bounded as $h \to 0$.

In this context the fundamental theorem is easy:

$$L_{h}u_{h} = f_{h} \Longrightarrow L_{h}U_{h} - L_{h}u_{h} = L_{h}U_{h} - f_{h} \Longrightarrow U_{h} - u_{h} = L_{h}^{-1}(L_{h}U_{h} - f_{h})$$
$$||U_{h} - u_{h}||_{X_{h}} \le ||L_{h}^{-1}||_{\mathcal{L}(Y_{h},X_{h})}||L_{h}U_{h} - f_{h}||_{Y_{h}}$$

Discretization of Hilbert complexes

Motivation: why mixed formulation?

 $H^1 \xrightarrow{\text{grad}} H(\text{rot}) \xrightarrow{\text{rot}} L^2 \quad (dd^* + d^*d)u = (-\operatorname{grad}\operatorname{rot} + \operatorname{curl}\operatorname{rot})u = \lambda u$

Primal formulation: Find *u* such that $(du, dv) + (d^*u, d^*v) = \lambda(u, v) \quad \forall v$

Motivation: why mixed formulation?

 $H^1 \xrightarrow{\text{grad}} H(\text{rot}) \xrightarrow{\text{rot}} L^2 \quad (dd^* + d^*d)u = (-\operatorname{grad}\operatorname{rot} + \operatorname{curl}\operatorname{rot})u = \lambda u$

Primal formulation: Find *u* such that $(du, dv) + (d^*u, d^*v) = \lambda(u, v) \quad \forall v$

Motivation: why mixed formulation?

 $H^1 \xrightarrow{\text{grad}} H(\text{rot}) \xrightarrow{\text{rot}} L^2 \quad (dd^* + d^*d)u = (-\operatorname{grad} \operatorname{rot} + \operatorname{curl} \operatorname{rot})u = \lambda u$

Primal formulation: Find *u* such that $(du, dv) + (d^*u, d^*v) = \lambda(u, v) \quad \forall v$

 $\begin{array}{c} \mathcal{P}_1\otimes\mathbb{V}\\ 4K \text{ elts} \end{array}$

Eigenvalues of the 1-form Hodge Laplacian (FEEC)

Motivation: why do we need special elements?

Mixed Poisson eq: $H(\operatorname{div}) \xrightarrow{\operatorname{div}} L^2 \to 0$.

The obvious choice of Lagrange \mathcal{P}_1 for V^0 and P_0 for V^1 is unstable. RT, BDM families are stable.

 $\mathcal{P}_1^- \Lambda^1$ (RT)

Motivation: a real computation

Stowell-Fassenfass-White, IEEE Trans. Ant. & Prop. 2008

- Solved time-dependent Maxwell equations using $Q_1^- \Lambda^1$ for *E* and $Q_1^- \Lambda^2$ for *B* (Nédélec elements of the first kind on bricks)
- 10,114,695,855 brick elements (\approx 1 cm resolution)
- $\approx 60,000,000,000$ unknowns
- \approx 12,000 time steps of 14 picoseconds

Discretizing the mixed formulation

We therefore consider finite element discretizations of the mixed form:

Given
$$f \in W^k$$
, find $\sigma \in V^{k-1}$, $u \in V^k$, and $p \in \mathfrak{H}^k$ s.t.

$$egin{aligned} &\langle \sigma, \tau
angle - \langle u, d \tau
angle &= 0, & au \in V^{k-1}, \ &\langle d \sigma, v
angle + \langle d u, d v
angle + \langle p, v
angle &= \langle f, v
angle, & v \in V^k, \ &\langle u, q
angle &= 0, & q \in \mathfrak{H}^k. \end{aligned}$$

Discretizing the mixed formulation

We therefore consider finite element discretizations of the mixed form:

Given
$$f \in W^k$$
, find $\sigma \in V^{k-1}$, $u \in V^k$, and $p \in \mathfrak{H}^k$ s.t.

$$egin{aligned} &\langle \sigma, \tau
angle - \langle u, d \tau
angle &= 0, & au \in V^{k-1}, \ &\langle d \sigma, v
angle + \langle d u, d v
angle + \langle p, v
angle &= \langle f, v
angle, & v \in V^k, \ &\langle u, q
angle &= 0, & q \in \mathfrak{H}^k. \end{aligned}$$

• Choose f.d. subspaces $V_h^j \subset V^j$

• Define $\mathfrak{Z}_{h'}^{j}$, $\mathfrak{B}_{h'}^{j}$, $\mathfrak{H}_{h}^{j} = \{ v \in \mathfrak{Z}_{h}^{j} | v \perp \mathfrak{B}_{h}^{j} \}$

Given $f \in W^k$, find $\sigma_h \in V_h^{k-1}$, $u_h \in V_h^k$, and $p_h \in \mathfrak{H}_h^k$ s.t.

$$egin{aligned} &\langle \sigma_h, au
angle - \langle u_h, d au
angle = 0, & au \in V_h^{k-1}, \ &\langle d\sigma_h, v
angle + \langle du_h, dv
angle + \langle p_h, v
angle = \langle f, v
angle, & v \in V_h^k, \ &\langle u_h, q
angle = 0, & q \in \mathfrak{H}_h^k. \end{aligned}$$

For *any* choice of the V_h^j there exists a unique solution.

However, the consistency and stability of the numerical method depends vitally on the choice of subspaces.

Remark:

Note that $\mathfrak{Z}_h \subset \mathfrak{Z}$, $\mathfrak{B}_h \subset \mathfrak{B}$, but in general $\mathfrak{H}_h \not\subseteq \mathfrak{H}$. So the mixed method is slightly *nonconforming*, and this also contributes to the consistency error.

We need the spaces $V_h^j \subset V^j$ (at least for j = k - 1, k, k + 1) to satisfy three properties:

1. Approximation property: Of course V_h^j must afford good approximation of elements of V^j . This can be formalized with respect to a family of subspaces parametrized by *h* by requiring

$$\lim_{h \to 0} \inf_{v \in V_h^j} \|w - v\|_V = 0, \quad w \in V^j$$

(or = $O(h^r)$ for w in some dense subspace, or ...)

2. Subcomplex property: $dV_h^{k-1} \subset V_h^k$ and $dV_h^k \subset V_h^{k+1}$, so

$$V_h^{k-1} \xrightarrow{d} V_h^k \xrightarrow{d} V_h^{k+1}$$

is a subcomplex.

Bounded cochain projection

3. Bounded cochain projection: Most important, we assume that there exists a *cochain map* from the H-complex to the subcomplex which is a *projection* and is *bounded*.

$$V^{k-1} \xrightarrow{d} V^k \xrightarrow{d} V^{k+1}$$

$$\pi_h^{k-1} \downarrow \qquad \pi_h^k \downarrow \qquad \pi_h^{k+1} \downarrow$$

$$V_h^{k-1} \xrightarrow{d} V_h^k \xrightarrow{d} V_h^{k+1}$$

- For now, boundedness is in *V*-norm: $\|\pi_h v\|_V \le c \|v\|_V$. But later we will need *W*-boundedness, which is a stronger requirement.
- A bounded projection is *quasioptimal*:

$$\|v - \pi_h v\|_V \le c \inf_{w \in V_h^j} \|v - w\|_V, \quad v \in V^j$$

From the subcomplex property

$$V_h^{k-1} \xrightarrow{d} V_h^k \xrightarrow{d} V_h^{k+1}$$

is itself a closed H-complex. (We take $W_h^k = V_h^k$ but with the W-norm.)

Therefore there is a discrete adjoint operator d_h^* (its domain is all of W_h^k), a discrete Hodge decomposition

 $V_h^k = \mathfrak{B}_h^k \oplus \mathfrak{H}_h^k \oplus \mathfrak{B}_{kh}^k.$

and a discrete Poincaré inequality

$$\|z\|_V \leq c_h^P \|dz\|, \quad z\in \mathfrak{Z}_h^{k\perp_{V_h}}.$$

Theorem

Given: a closed H-complex, and a choice of f.d. subspaces satisfying the subcomplex property and admitting a V-bdd cochain projection π_h . Assume also the (very weak) approximation property

$$\|q-\pi_h q\|<\|q\|, \quad 0
eq q\in \mathfrak{H}^k.$$

Then π_h induces an isomorphism from \mathfrak{H}^k onto \mathfrak{H}^k_h . Moreover,

$$\operatorname{gap}(\mathfrak{H},\mathfrak{H}_h) \leq \sup_{\substack{q \in \mathfrak{H} \\ \|q\|=1}} \|q - \pi_h q\|_V.$$

$$\operatorname{gap}(\mathfrak{H},\mathfrak{H}_h) := \max\left(\sup_{\substack{u \in \mathfrak{H} \\ \|u\|=1}} \inf_{v \in \mathfrak{H}_h} \|u - v\|_V, \sup_{\substack{v \in \mathfrak{H}_h \\ \|v\|=1}} \inf_{u \in \mathfrak{H}} \|u - v\|_V\right).$$

Theorem

Given: a closed H-complex, and a choice of f.d. subspaces satisfying the subcomplex property and admitting a V-bdd cochain projection π_h *. Then*

$$\|v\|_V \le c^P \|\pi_h\| \|dv\|_V, \quad v \in \mathfrak{Z}_h^{k\perp} \cap V_h^k.$$

COROLLARY (STABILITY AND QUASIOPTIMALITY OF THE MIXED METHOD)

The mixed method is stable (uniform inf-sup condition) and satisfies

$$\begin{split} \|\sigma - \sigma_h\|_V + \|u - u_h\|_V + \|p - p_h\| \\ &\leq C(\inf_{\tau \in V_h^{k-1}} \|\sigma - \tau\|_V + \inf_{v \in V_h^k} \|u - v\|_V + \inf_{q \in V_h^k} \|p - q\|_V \\ &+ \mu \inf_{v \in V_h^k} \|p_{\mathfrak{B}} u - v\|_V), \end{split}$$
where $\mu = \mu_h = \sup_{r \in \mathfrak{H}^k, \|r\| = 1} \|(I - \pi_h)r\|.$

Improved error estimates

In addition to $\mu = ||(I - \pi_h)P_{\mathfrak{H}}||$, define $\delta, \eta = o(1)$ by

$$\delta = \| (I - \pi_h) K \|_{\text{Lin}(W,W)}, \quad \eta = \| (I - \pi_h) d^{[*]} K \|_{\text{Lin}(W,W)}.$$

When $V_h^k \supset \mathcal{P}_r, \quad \mu = O(h^{r+1}), \quad \eta = O(h), \quad \delta = \begin{cases} O(h^2), & r > 0, \\ O(h), & r = 0, \end{cases}$

Theorem

Given: an H-complex satisfying the compactness property, and a choice of *f.d.* subspaces satisfying the subcomplex property and admitting a W-bdd cochain projection π_h . Then

 $\begin{aligned} \|d(\sigma - \sigma_h)\| &\leq cE(d\sigma), \qquad \|\sigma - \sigma_h\| \leq c[E(\sigma) + \eta E(d\sigma)], \\ \|d(u - u_h)\| &\leq c\{E(du) + \eta [E(d\sigma) + E(p)]\}, \\ \|u - u_h\| &\leq c\{E(u) + \eta [E(du) + E(\sigma)] \\ &+ (\eta^2 + \delta)[E(d\sigma) + E(p)] + \mu E(P_{\mathfrak{B}}u)\}. \end{aligned}$

 $-\operatorname{grad}\operatorname{div} u + \operatorname{curl}\operatorname{rot} u = f \text{ in } \Omega \text{ (unit square)}, \quad u \cdot n = \operatorname{rot} u = 0 \text{ on } \partial \Omega \text{ (magnetic BC)}$

$$0 \to H^1 \xrightarrow{\text{grad}} H(\text{rot}) \xrightarrow{\text{rot}} L^2 \to 0$$

$$\sigma_h \in V_h^0 \subset H^1, \quad u_h \in V_h^1 \subset H(\text{rot})$$

$$\langle \sigma_h, \tau \rangle - \langle u_h, \text{grad} \tau \rangle = 0, \qquad \tau \in V_h^{k-1},$$

$$\langle \text{grad} \sigma_h, v \rangle + \langle \text{rot} u_h, \text{rot} v \rangle = \langle f, v \rangle, \quad v \in V_h^k.$$

 V_h^0 Lagrange V_h^1 R-T V_h^2 DG

All hypotheses are met...

$\ \sigma - \sigma_h\ $	rate	$\ \nabla(\sigma-\sigma_h)\ $	rate	$ u-u_h $	rate	$\ \operatorname{rot}(u-u_h)\ $	rate
2.16e-04	3.03	2.63e-02	1.98	2.14e-03	1.99	1.17e-02	1.99
2.70e-05	3.00	6.60e-03	1.99	5.37e-04	1.99	2.93e-03	2.00
3.37e-06	3.00	1.65e-03	2.00	1.34e-04	2.00	7.33e-04	2.00
4.16e-07	3.02	4.14e-04	2.00	3.36e-05	2.00	1.83e-04	2.00
	3		2		2		2

Numerical solution of vector Laplacian, Dirichlet BC

For Dirichlet boundary conditions, $\sigma = -\operatorname{div} u$ is sought in H^1 , u is sought in $\mathring{H}(\operatorname{rot})$ (the BC $u \cdot t = 0$ is essential, $u \cdot n = 0$ is natural).

There is no complex, so our theory does not apply.

σ -	$-\sigma_h \ $	rate	$\ \nabla(\sigma-\sigma_h)\ $	rate	$ u-u_h $	rate	$\ \operatorname{rot}(u-u_h)\ $	rate
1.90)e-02	1.62	2.53e+00	0.63	1.22e-03	2.01	1.55e-02	1.58
6.36	6e-03	1.58	1.68e+00	0.60	3.05e-04 r	2.00	5.33e-03	1.54
2.18	3e-03	1.54	1.14e+00	0.56	7.63e-05	2.00	1.85e-03	1.52
7.58	3e-04	1.52	7.89e-01	0.53	1.91e-05	2.00	6.49e-04	1.51
		1.5		0.5		2		1.5

DNA-Falk-Gopalakrishnan M3AS 2011

Find
$$\lambda \in \mathbb{R}$$
, $0 \neq u \in D(L)$ s.t. $Lu = \lambda u$, $u \perp \mathfrak{H}$

 $\lambda ||u||^2 = ||du||^2 + ||d^*u||^2 > 0$ so $\lambda > 0$ and $Ku = \lambda^{-1}u$.

By the compactness property, $K : W^k \to W^k$ is compact and self-adjoint, so $0 < \lambda_1 \le \lambda_2 \le \cdots \to \infty$. Denote by v_i corresponding orthonormal eigenvalues, $E_i = \mathbb{R}v_i$.

Mixed discretization:

Find
$$\lambda_h \in \mathbb{R}$$
, $0 \neq (\sigma_h, u_h, p_h) \in V_h^{k-1} \times V_h^k \times \mathfrak{H}_h^k$ s.t.

$$egin{aligned} &\langle \sigma_h, au
angle - \langle u_h, d au
angle = 0, & au \in V_h^{k-1}, \ &\langle d\sigma_h, v
angle + \langle du_h, dv
angle + \langle p_h, v
angle = \lambda_h \langle u_h, v
angle, & v \in V_{h'}^k, \ &\langle u_h, q
angle = 0, & q \in \mathfrak{H}_h^k. \end{aligned}$$

 $0 < \lambda_{1h} \leq \lambda_{2h} \leq \ldots \leq \lambda_{N_h h}$, v_{ih} orthonormal, $E_{ih} = \mathbb{R} v_{ih}$

Let $\sum_{i=1}^{m(j)} E_i$ be the span of the eigenspaces of the first *j* distinct eigenvalues. The method converges if $\forall j, \epsilon > 0, \exists h_0 > 0$ s.t.

$$\max_{1 \le i \le m(j)} |\lambda_i - \lambda_{ih}| \le \epsilon \quad \text{and} \quad \operatorname{gap}\left(\sum_{i=1}^{m(j)} E_i, \sum_{i=1}^{m(j)} E_{i,h}\right) \le \epsilon \quad \text{if } h \le h_0.$$

A sufficient (and necessary) condition for eigenvalue convergence is operator norm convergence of the discrete solution operator $K_h P_h$ to K (Kato, Babuska–Osborn, Boffi–Brezzi–Gastaldi): $W \rightarrow W_h$ orthog.

The mixed discretization of the eigenvalue problem converges if

 $\lim_{h\to 0} \|K_h P_h - K\|_{\mathcal{L}(W,W)} = 0.$

Eigenvalue convergence follows from improved estimates

$$\|u - u_h\| \le c\{E(u) + \eta[E(du) + E(\sigma)] + (\eta^2 + \delta)[E(d\sigma) + E(p)] + \mu E(P_{\mathfrak{B}}u)\}$$

$$E(d\sigma) + E(p) + E(P_{\mathfrak{B}}u) \le \|d\sigma\| + \|p\| + \|u\| \le \|f\|$$

$$E(u) \le \delta\|f\|, \quad E(du) + E(\sigma) \le \eta\|f\|$$

Therefore

$$\|(K - K_h P_h)f\| \le \delta + \eta^2 + \mu \to 0$$

Rates of convergence also follow, included doubled convergence rates for eigenvalues...