Finite Element Exterior Calculus and Applications

Part II

Douglas N. Arnold, University of Minnesota
Peking University/BICMR
August 15-18, 2015

The fundamental theorem of numerical analysis

Convergence, consistency, and stability of discretizations

The basic idea:

Continuous problem: $L: X \rightarrow Y$ bounded linear operator between Banach spaces

$$
\text { Given } f \in Y \text { find } u \in X \text { such that } L u=f \text {. }
$$

Discrete problem: $L_{h}: X_{h} \rightarrow Y_{h}$ operator on finite dimensional spaces.

$$
\text { Given } f_{h} \in Y_{h} \text { find } u_{h} \in X_{h} \text { such that } L_{h} u_{h}=f_{h}
$$

- The discretization is convergent if u_{h} is sufficiently near u.
- The discretization is consistent if L_{h} and f_{h} are sufficiently near L and f.
- The discretization is stable if the discrete problem is well-posed.

THEOREM (FUNDAMENTAL THEOREM OF NUMERICAL ANALYSIS)
A discretization which is consistent and stable is convergent.

Measuring convergence, consistency, and stability

To quantify convergence we use

1. A norm in the space X_{h}.
2. A representative U_{h} in X_{h}.

The discretization error is then $\left\|U_{h}-u_{h}\right\|_{X_{h}}$. The method is convergent if it tends to 0 as $h \rightarrow 0$.

Measuring convergence, consistency, and stability

To quantify convergence we use

1. A norm in the space X_{h}.
2. A representative U_{h} in X_{h}.

The discretization error is then $\left\|U_{h}-u_{h}\right\|_{X_{h}}$. The method is convergent if it tends to 0 as $h \rightarrow 0$.

To quantify consistency we use a norm in the space Y_{h}. The consistency error is then $\left\|L_{h} U_{h}-f_{h}\right\|_{Y_{h}}$. The method is consistent if it tends to 0 .

Measuring convergence, consistency, and stability

To quantify convergence we use

1. A norm in the space X_{h}.
2. A representative U_{h} in X_{h}.

The discretization error is then $\left\|U_{h}-u_{h}\right\|_{X_{h}}$. The method is convergent if it tends to 0 as $h \rightarrow 0$.

To quantify consistency we use a norm in the space Y_{h}. The consistency error is then $\left\|L_{h} U_{h}-f_{h}\right\|_{Y_{h}}$. The method is consistent if it tends to 0 .

The stability constant is $\left\|L_{h}^{-1}\right\|_{\mathcal{L}\left(Y_{h}, X_{h}\right)}$. The method is stable if it remains bounded as $h \rightarrow 0$.

Measuring convergence, consistency, and stability

To quantify convergence we use

1. A norm in the space X_{h}.
2. A representative U_{h} in X_{h}.

The discretization error is then $\left\|U_{h}-u_{h}\right\|_{X_{h}}$. The method is convergent if it tends to 0 as $h \rightarrow 0$.

To quantify consistency we use a norm in the space Y_{h}. The consistency error is then $\left\|L_{h} U_{h}-f_{h}\right\|_{Y_{h}}$. The method is consistent if it tends to 0 .

The stability constant is $\left\|L_{h}^{-1}\right\|_{\mathcal{L}\left(Y_{h}, X_{h}\right)}$. The method is stable if it remains bounded as $h \rightarrow 0$.

In this context the fundamental theorem is easy:

$$
\begin{gathered}
L_{h} u_{h}=f_{h} \Longrightarrow L_{h} U_{h}-L_{h} u_{h}=L_{h} U_{h}-f_{h} \Longrightarrow U_{h}-u_{h}=L_{h}^{-1}\left(L_{h} U_{h}-f_{h}\right) \\
\left\|U_{h}-u_{h}\right\|_{X_{h}} \leq\left\|L_{h}^{-1}\right\|_{\mathcal{L}\left(Y_{h}, X_{h}\right)}\left\|L_{h} U_{h}-f_{h}\right\|_{Y_{h}}
\end{gathered}
$$

Measuring convergence, consistency, and stability

To quantify convergence we use

1. A norm in the space X_{h}.
2. A representative U_{h} in X_{h}.

The discretization error is then $\left\|U_{h}-u_{h}\right\|_{X_{h}}$. The method is convergent if it tends to 0 as $h \rightarrow 0$.

To quantify consistency we use a norm in the space Y_{h}. The consistency error is then $\left\|L_{h} U_{h}-f_{h}\right\|_{Y_{h}}$. The method is consistent if it tends to 0 .

The tability constant is $\left\|L_{h}^{-1}\right\|_{\mathcal{L}\left(Y_{h}, X_{h}\right)}$. The method is stable if it remains bounded as $h \rightarrow 0$.
In this context the fundamental theorem is easy:

$$
\begin{aligned}
& L_{h} u_{h}=f_{h} \Longrightarrow \underset{\searrow}{X_{h} u_{h}-L_{h} u_{h}=L_{h} u_{h}-f_{h} \Longrightarrow U_{h}-u_{h} \doteq L_{h}^{-1}\left(L_{h} u_{h}-f_{h}\right) ~} \\
& \left\|U_{h}-u_{h}\right\|_{X_{h}} \leq\left\|L_{h}^{-1}\right\|_{\mathcal{L}\left(Y_{h}, X_{h}\right)}\left\|L_{h} U_{h}-f_{h}\right\|_{Y_{h}}
\end{aligned}
$$

Discretization of Hilbert complexes

Motivation: why mixed formulation?

$H^{1} \xrightarrow{\text { grad }} H(\operatorname{rot}) \xrightarrow{\text { rot }} L^{2} \quad\left(d d^{*}+d^{*} d\right) u=(-\operatorname{grad} \operatorname{rot}+\operatorname{curl} \operatorname{rot}) u=\lambda u$
Primal formulation: Find u such that $(d u, d v)+\left(d^{*} u, d^{*} v\right)=\lambda(u, v) \quad \forall v$

Motivation: why mixed formulation?

$H^{1} \xrightarrow{\text { grad }} H(\operatorname{rot}) \xrightarrow{\text { rot }} L^{2} \quad\left(d d^{*}+d^{*} d\right) u=(-\operatorname{grad} \operatorname{rot}+$ curl rot $) u=\lambda u$
Primal formulation: Find u such that $(d u, d v)+\left(d^{*} u, d^{*} v\right)=\lambda(u, v) \quad \forall v$

$\lambda_{1}=1.94$

$\lambda_{2}=2.02$

$\lambda_{3}=2.26$

Motivation: why mixed formulation?

$H^{1} \xrightarrow{\text { grad }} H(\operatorname{rot}) \xrightarrow{\text { rot }} L^{2} \quad\left(d d^{*}+d^{*} d\right) u=(-\operatorname{grad} \operatorname{rot}+\operatorname{curl} \operatorname{rot}) u=\lambda u$
Primal formulation: Find u such that $(d u, d v)+\left(d^{*} u, d^{*} v\right)=\lambda(u, v) \quad \forall v$

$\lambda_{1}=1.94$

$$
\lambda_{2}=2.02
$$

Eigenvalues of 1-form Laplacian computed with P_{1} elements

$$
\lambda_{3}=2.26
$$

Eigenvalues of the 1-form Hodge Laplacian (FEEC)

$$
\lambda_{1}=0 \quad \lambda_{2}=0.617 \quad \lambda_{3}=0.658
$$

Eigenvalues of 1-form Laplacian computed with FEEC

Motivation: why do we need special elements?

Mixed Poisson eq: $H(\operatorname{div}) \xrightarrow{\text { div }} L^{2} \rightarrow 0$.
The obvious choice of Lagrange \mathcal{P}_{1} for V^{0} and P_{0} for V^{1} is unstable. RT, BDM families are stable.

$\mathcal{P}_{1} \otimes \mathbb{V}$
(Lagrange)

\mathcal{P}_{0}

$\mathcal{P}_{1}^{-} \Lambda^{1}$
(RT)

Motivation: a real computation

- Solved time-dependent Maxwell equations using $\mathcal{Q}_{1}^{-} \Lambda^{1}$ for E and $\mathcal{Q}_{1}^{-} \Lambda^{2}$ for B (Nédélec elements of the first kind on bricks)
- 10,114,695,855 brick elements ($\approx 1 \mathrm{~cm}$ resolution)
- $\approx 60,000,000,000$ unknowns
- $\approx 12,000$ time steps of 14 picoseconds

Discretizing the mixed formulation

We therefore consider finite element discretizations of the mixed form:
Given $f \in W^{k}$, find $\sigma \in V^{k-1}, u \in V^{k}$, and $p \in \mathfrak{H}^{k}$ s.t.

$$
\begin{aligned}
\langle\sigma, \tau\rangle-\langle u, d \tau\rangle & =0, & & \tau \in V^{k-1}, \\
\langle d \sigma, v\rangle+\langle d u, d v\rangle+\langle p, v\rangle & =\langle f, v\rangle, & & v \in V^{k}, \\
\langle u, q\rangle & =0, & & q \in \mathfrak{H}^{k} .
\end{aligned}
$$

Discretizing the mixed formulation

We therefore consider finite element discretizations of the mixed form:
Given $f \in W^{k}$, find $\sigma \in V^{k-1}, u \in V^{k}$, and $p \in \mathfrak{H}^{k}$ s.t.

$$
\begin{aligned}
\langle\sigma, \tau\rangle-\langle u, d \tau\rangle & =0, & & \tau \in V^{k-1}, \\
\langle d \sigma, v\rangle+\langle d u, d v\rangle+\langle p, v\rangle & =\langle f, v\rangle, & & v \in V^{k}, \\
\langle u, q\rangle & =0, & & q \in \mathfrak{H}^{k} .
\end{aligned}
$$

- Choose f.d. subspaces $\quad V_{h}^{j} \subset V^{j}$
- Define $\mathfrak{Z}_{h}^{j}, \quad \mathfrak{B}_{h}^{j}, \quad \mathfrak{H}_{h}^{j}=\left\{v \in \mathfrak{Z}_{h}^{j} \mid v \perp \mathfrak{B}_{h}^{j}\right\}$

Given $f \in W^{k}$, find $\sigma_{h} \in V_{h}^{k-1}, u_{h} \in V_{h^{\prime}}^{k}$ and $p_{h} \in \mathfrak{H}_{h}^{k}$ s.t.

$$
\begin{array}{rlrl}
\left\langle\sigma_{h}, \tau\right\rangle-\left\langle u_{h}, d \tau\right\rangle & =0, & & \tau \in V_{h}^{k-1}, \\
\left\langle d \sigma_{h}, v\right\rangle+\left\langle d u_{h}, d v\right\rangle+\left\langle p_{h}, v\right\rangle & =\langle f, v\rangle, & v \in V_{h^{\prime}}^{k} \\
\left\langle u_{h}, q\right\rangle & =0, & & q \in \mathfrak{H}_{h^{k}}^{k} .
\end{array}
$$

Choice of subspaces

For any choice of the V_{h}^{j} there exists a unique solution.
However, the consistency and stability of the numerical method depends vitally on the choice of subspaces.

Remark:
Note that $\mathfrak{Z}_{h} \subset \mathfrak{Z}, \quad \mathfrak{B}_{h} \subset \mathfrak{B}$, but in general $\mathfrak{H}_{h} \nsubseteq \mathfrak{H}$. So the mixed method is slightly nonconforming, and this also contributes to the consistency error.

Key assumptions

We need the spaces $V_{h}^{j} \subset V^{j}$ (at least for $j=k-1, k, k+1$) to satisfy three properties:

1. Approximation property: Of course V_{h}^{j} must afford good approximation of elements of V^{j}. This can be formalized with respect to a family of subspaces parametrized by h by requiring

$$
\lim _{h \rightarrow 0} \inf _{v \in V_{h}^{j}}\|w-v\|_{V}=0, \quad w \in V^{j}
$$

(or $=O\left(h^{r}\right)$ for w in some dense subspace, or \ldots)
2. Subcomplex property: $d V_{h}^{k-1} \subset V_{h}^{k}$ and $d V_{h}^{k} \subset V_{h}^{k+1}$, so

$$
V_{h}^{k-1} \xrightarrow{d} V_{h}^{k} \xrightarrow{d} V_{h}^{k+1}
$$

is a subcomplex.

Bounded cochain projection

3. Bounded cochain projection: Most important, we assume that there exists a cochain map from the H-complex to the subcomplex which is a projection and is bounded.

$$
\begin{aligned}
& V^{k-1} \xrightarrow{d} V^{k} \xrightarrow{d} V^{k+1} \\
& \pi_{h}^{k-1} \downarrow \quad \pi_{h}^{k} \downarrow \quad \pi_{h}^{k+1} \downarrow \\
& V_{h}^{k-1} \xrightarrow{d} V_{h}^{k} \xrightarrow{d} V_{h}^{k+1}
\end{aligned}
$$

- For now, boundedness is in V-norm: $\left\|\pi_{h} v\right\|_{V} \leq c\|v\|_{V}$. But later we will need W-boundedness, which is a stronger requirement.
- A bounded projection is quasioptimal:

$$
\left\|v-\pi_{h} v\right\|_{V} \leq c \inf _{w \in V_{h}^{j}}\|v-w\|_{V}, \quad v \in V^{j}
$$

First consequences from the assumptions

From the subcomplex property

$$
V_{h}^{k-1} \xrightarrow{d} V_{h}^{k} \xrightarrow{d} V_{h}^{k+1}
$$

is itself a closed H-complex. (We take $W_{h}^{k}=V_{h}^{k}$ but with the W-norm.)
Therefore there is a discrete adjoint operator d_{h}^{*} (its domain is all of W_{h}^{k}), a discrete Hodge decomposition

$$
V_{h}^{k}=\mathfrak{B}_{h}^{k} \oplus \mathfrak{H}_{h}^{k} \oplus \mathfrak{B}_{k h}^{*} .
$$

and a discrete Poincaré inequality

$$
\|z\|_{V} \leq c_{h}^{P}\|d z\|, \quad z \in \mathfrak{Z}_{h}^{k \perp_{V_{h}}} .
$$

Preservation of cohomology

THEOREM

Given: a closed H-complex, and a choice off.d. subspaces satisfying the subcomplex property and admitting a V-bdd cochain projection π_{h}. Assume also the (very weak) approximation property

$$
\left\|q-\pi_{h} q\right\|<\|q\|, \quad 0 \neq q \in \mathfrak{H}^{k}
$$

Then π_{h} induces an isomorphism from \mathfrak{H}^{k} onto \mathfrak{H}_{h}^{k}.
Moreover,

$$
\operatorname{gap}\left(\mathfrak{H}, \mathfrak{H}_{h}\right) \leq \sup _{\substack{q \in \mathfrak{H} \\\|q\|=1}}\left\|q-\pi_{h} q\right\|_{V}
$$

$$
\operatorname{gap}\left(\mathfrak{H}, \mathfrak{H}_{h}\right):=\max \left(\sup _{\substack{u \in \mathfrak{H}_{3} \\\|u\|=1}} \inf _{v \in \mathfrak{H}_{h}}\|u-v\|_{V}, \sup _{\substack{v \in \mathfrak{H}_{h} \\\|v\|=1}} \inf _{u \in \mathfrak{H}}\|u-v\|_{V}\right)
$$

Uniform Poincaré inequality and stability

THEOREM

Given: a closed H-complex, and a choice of f.d. subspaces satisfying the subcomplex property and admitting a V-bdd cochain projection π_{h}. Then

$$
\|v\|_{V} \leq c^{P}\left\|\pi_{h}\right\|\|d v\|_{V}, \quad v \in \mathfrak{Z}_{h}^{k \perp} \cap V_{h}^{k}
$$

COROLLARY (STABILITY AND QUASIOPTIMALITY OF THE MIXED METHOD)

The mixed method is stable (uniform inf-sup condition) and satisfies

$$
\begin{aligned}
& \left\|\sigma-\sigma_{h}\right\|_{V}+\left\|u-u_{h}\right\|_{V}+\left\|p-p_{h}\right\| \\
& \leq C\left(\inf _{\tau \in V_{h}^{k-1}}\|\sigma-\tau\|_{V}+\inf _{v \in V_{h}^{k}}\|u-v\|_{V}+\inf _{q \in V_{h}^{k}}\|p-q\|_{V}\right. \\
&
\end{aligned}
$$

where $\mu=\mu_{h}=\sup _{r \in \mathfrak{H}^{k},\|r\|=1}$

Improved error estimates

In addition to $\mu=\left\|\left(I-\pi_{h}\right) P_{\mathfrak{H}}\right\|$, define $\delta, \eta=o(1)$ by

$$
\delta=\left\|\left(I-\pi_{h}\right) K\right\|_{\operatorname{Lin}(W, W)}, \quad \eta=\left\|\left(I-\pi_{h}\right) d^{[*]} K\right\|_{\operatorname{Lin}(W, W)} .
$$

When $V_{h}^{k} \supset \mathcal{P}_{r}, \quad \mu=O\left(h^{r+1}\right), \quad \eta=O(h), \quad \delta= \begin{cases}O\left(h^{2}\right), & r>0, \\ O(h), & r=0,\end{cases}$

THEOREM

Given: an H-complex satisfying the compactness property, and a choice of f.d. subspaces satisfying the subcomplex property and admitting a W-bdd cochain projection π_{h}. Then

$$
\begin{gathered}
\left\|d\left(\sigma-\sigma_{h}\right)\right\| \leq c E(d \sigma), \quad\left\|\sigma-\sigma_{h}\right\| \leq c[E(\sigma)+\eta E(d \sigma)] \\
\left\|d\left(u-u_{h}\right)\right\| \leq c\{E(d u)+\eta[E(d \sigma)+E(p)]\} \\
\left\|u-u_{h}\right\| \leq c\{E(u)+\eta[E(d u)+E(\sigma)] \\
\left.\quad+\left(\eta^{2}+\delta\right)[E(d \sigma)+E(p)]+\mu E\left(P_{\mathfrak{B}} u\right)\right\} .
\end{gathered}
$$

Numerical tests

$-\operatorname{grad} \operatorname{div} u+\operatorname{curl} \operatorname{rot} u=f$ in Ω (unit square), $u \cdot n=\operatorname{rot} u=0$ on $\partial \Omega$ (magnetic BC)

$$
0 \rightarrow H^{1} \xrightarrow{\mathrm{grad}} H(\mathrm{rot}) \xrightarrow{\text { rot }} L^{2} \rightarrow 0
$$

$\sigma_{h} \in V_{h}^{0} \subset H^{1}, \quad u_{h} \in V_{h}^{1} \subset H(\operatorname{rot})$

$$
\begin{aligned}
\left\langle\sigma_{h}, \tau\right\rangle-\left\langle u_{h}, \operatorname{grad} \tau\right\rangle & =0, & & \tau \in V_{h}^{k-1}, \\
\left\langle\operatorname{grad} \sigma_{h}, v\right\rangle+\left\langle\operatorname{rot} u_{h}, \operatorname{rot} v\right\rangle & =\langle f, v\rangle, & & v \in V_{h}^{k} .
\end{aligned}
$$

V_{h}^{0} Lagrange

$V_{h}^{1} \quad$ R-T

$V_{n}^{2} \mathrm{DG}$

All hypotheses are met...

Numerical solution of vector Laplacian, magnetic BC

$\left\\|\sigma-\sigma_{h}\right\\|$	rate	$\left\\|\nabla\left(\sigma-\sigma_{h}\right)\right\\|$	rate	$\left\\|u-u_{h}\right\\|$	rate	$\left\\|\operatorname{rot}\left(u-u_{h}\right)\right\\|$	rate
$2.16 \mathrm{e}-04$	3.03	$2.63 \mathrm{e}-02$	1.98	$2.14 \mathrm{e}-03$	1.99	$1.17 \mathrm{e}-02$	1.99
$2.70 \mathrm{e}-05$	3.00	$6.60 \mathrm{e}-03$	1.99	$5.37 \mathrm{e}-04$	1.99	$2.93 \mathrm{e}-03$	2.00
$3.37 \mathrm{e}-06$	3.00	$1.65 \mathrm{e}-03$	2.00	$1.34 \mathrm{e}-04$	2.00	$7.33 \mathrm{e}-04$	2.00
$4.16 \mathrm{e}-07$	3.02	$4.14 \mathrm{e}-04$	2.00	$3.36 \mathrm{e}-05$	2.00	$1.83 \mathrm{e}-04$	2.00
	3		2		2		2

Numerical solution of vector Laplacian,

For Dirichlet boundary conditions, $\sigma=-\operatorname{div} u$ is sought in H^{1}, u is sought in H (rot) (the BC $u \cdot t=0$ is essential, $u \cdot n=0$ is natural).

There is no complex, so our theory does not apply.

$\left\\|\sigma-\sigma_{h}\right\\|$	rate	$\left\\|\nabla\left(\sigma-\sigma_{h}\right)\right\\|$	rate	$\left\\|u-u_{h}\right\\|$	rate	$\left\\|\operatorname{rot}\left(u-u_{h}\right)\right\\|$	rate
$1.90 \mathrm{e}-02$	1.62	$2.53 \mathrm{e}+00$	0.63	$1.22 \mathrm{e}-03$	2.01	$1.55 \mathrm{e}-02$	1.58
$6.36 \mathrm{e}-03$	1.58	$1.68 \mathrm{e}+00$	0.60	$3.05 \mathrm{e}-04 \mathrm{r}$	2.00	$5.33 \mathrm{e}-03$	1.54
$2.18 \mathrm{e}-03$	1.54	$1.14 \mathrm{e}+00$	0.56	$7.63 \mathrm{e}-05$	2.00	$1.85 \mathrm{e}-03$	1.52
$7.58 \mathrm{e}-04$	1.52	$7.89 \mathrm{e}-01$	0.53	$1.91 \mathrm{e}-05$	2.00	$6.49 \mathrm{e}-04$	1.51
	1.5		0.5		2		1.5

DNA-Falk-Gopalakrishnan M3AS 2011

Eigenvalue problems

Find $\lambda \in \mathbb{R}, 0 \neq u \in D(L)$ s.t. $L u=\lambda u, u \perp \mathfrak{H}$

$$
\lambda\|u\|^{2}=\|d u\|^{2}+\left\|d^{*} u\right\|^{2}>0 \quad \text { so } \quad \lambda>0 \text { and } K u=\lambda^{-1} u .
$$

By the compactness property, $K: W^{k} \rightarrow W^{k}$ is compact and self-adjoint, so $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow \infty$.
Denote by v_{i} corresponding orthonormal eigenvalues, $E_{i}=\mathbb{R} v_{i}$.
Mixed discretization:
Find $\quad \lambda_{h} \in \mathbb{R}, \quad 0 \neq\left(\sigma_{h}, u_{h}, p_{h}\right) \in V_{h}^{k-1} \times V_{h}^{k} \times \mathfrak{H}_{h}^{k} \quad$ s.t.

$$
\begin{aligned}
\left\langle\sigma_{h}, \tau\right\rangle-\left\langle u_{h}, d \tau\right\rangle & =0, & & \tau \in V_{h}^{k-1}, \\
\left\langle d \sigma_{h}, v\right\rangle+\left\langle d u_{h}, d v\right\rangle+\left\langle p_{h}, v\right\rangle & =\lambda_{h}\left\langle u_{h}, v\right\rangle, & & v \in V_{h}^{k} \\
\left\langle u_{h}, q\right\rangle & =0, & & q \in \mathfrak{H}_{h}^{k} .
\end{aligned}
$$

$0<\lambda_{1 h} \leq \lambda_{2 h} \leq \ldots \leq \lambda_{N_{h} h}, \quad v_{i h}$ orthonormal, $\quad E_{i h}=\mathbb{R} v_{i h}$

Convergence of eigenvalue problems

Let $\sum_{i=1}^{m(j)} E_{i}$ be the span of the eigenspaces of the first j distinct eigenvalues. The method converges if $\forall j, \epsilon>0, \exists h_{0}>0$ s.t.

$$
\max _{1 \leq i \leq m(j)}\left|\lambda_{i}-\lambda_{i h}\right| \leq \epsilon \quad \text { and } \quad \operatorname{gap}\left(\sum_{i=1}^{m(j)} E_{i}, \sum_{i=1}^{m(j)} E_{i, h}\right) \leq \epsilon \quad \text { if } h \leq h_{0} .
$$

A sufficient (and necessary) condition for eigenvalue convergence is operator norm convergence of the discrete solution operator $K_{h} P_{h}$ to K (Kato, Babuska-Osborn, Boffi-Brezzi-Gastaldi):

$$
W \rightarrow W_{h} \text { orthog. }
$$

The mixed discretization of the eigenvalue problem converges if

$$
\lim _{h \rightarrow 0}\left\|K_{h} P_{h}-K\right\|_{\mathcal{L}(W, W)}=0
$$

Eigenvalue convergence follows from improved estimates

$$
\begin{gathered}
\left\|u-u_{h}\right\| \leq c\left\{E(\underset{\sim}{u})+\eta[E(d u)+E(\sigma)]+\left(\eta^{2}+\delta\right)[E(d \sigma)+E(p)]+\mu E\left(P_{\mathfrak{B}} u\right)\right\} \\
E(d \sigma)+E(p)+E\left(P_{\mathfrak{B}} u\right) \leq\|d \sigma\|+\|p\|+\|u\| \leq\|f\| \\
E(u) \leq \delta\|f\|, \quad E(d u)+E(\sigma) \leq \eta\|f\|
\end{gathered}
$$

Therefore

$$
\left\|\left(K-K_{h} P_{h}\right) f\right\| \leq \delta+\eta^{2}+\mu \rightarrow 0
$$

Rates of convergence also follow, included doubled convergence rates for eigenvalues...

