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Basic homology



Chain complexes

Chain complex: seq. of vector spaces and linear maps

· · · → Vk+1
∂k+1−−→ Vk

∂k−→ Vk−1 → · · · with ∂k ◦ ∂k+1 = 0.

Alternative viewpoint: V =
⊕

k Vk is a graded vector space and
∂ : V → V is a graded linear operator of degree −1 such that
∂ ◦ ∂ = 0

Vk: k-chains
Zk = N (∂k): k-cycles
Bk = R(∂k+1): k-boundaries
Hk = Zk/Bk: k-th homology space
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Simplicial complexes

A k-simplex in Rn is the convex hull f = [x0, . . . , xk] of k + 1
vertices in general position.

A subset determines a face of f : [xi0 , . . . , xid ].

Simplicial complex: A finite set S of simplices in Rn, such that
1. Faces of simplices in S are in S .
2. If f ∩ g 6= ∅ for f , g ∈ S , then it is a face of f and of g.

If we order all vertices of S , then an ordering of the vertices of
the simplex determines an orientation.
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The boundary operator on chains

∆k(S): the set of k-simplices in S

Ck (k-chains): formal linear combinations c = ∑
f∈∆k(S)

cf f

∂k : ∆k → Ck−1: ∂[x0, x1, . . . , xk] = ∑k
i=0(−1)i[. . . , x̂i, . . .]

∂k : Ck → Ck−1: ∂c = ∑ cf ∂f

+

-
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The simplicial chain complex

Every simplicial complex gives rise to an associated chain complex.

0→ Cn
∂−→ Cn−1

∂−→ · · · ∂−→ C0 −→ 0
βk := dimHk(C) is the kth Betti number

1, 1, 0, 0 1, 1, 0, 0 1, 2, 1, 0 2, 5 , 0, 0 1, 0, 1, 0
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Chain maps

· · · −−−−→ Vk+1
∂k+1−−−−→ Vk

∂k−−−−→ Vk−1 −−−−→ · · ·

fk+1

y fk

y fk−1

y
· · · −−−−→ V′k+1

∂′k+1−−−−→ V′k
∂′k−−−−→ V′k−1 −−−−→ · · ·

f (Z) ⊂ Z′, f (B) ⊂ B′, so f induces f̄ : H(V)→ H(V′).

If V′ is a subcomplex (V′k ⊂ Vk and ∂′ = ∂|V), and fv = v for
v ∈ V′, we call f a chain projection.

PROPOSITION

A chain projection induces a surjection on homology.
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Cochain complexes

A cochain complex is like a chain complex but with increasing indices.

· · · → Vk−1 dk−1
−−→ Vk dk

−→ Vk+1 → · · ·

cocycles Zk, coboundaries Bk, cohomologyHk, . . .

The dual of a chain complex is a cochain complex:

∂k+1 : Vk+1 → Vk =⇒ ∂∗k+1 : V∗k → V∗k+1

dk Vk
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The de Rham complex for a domain in Rn

1-D: 0→ C∞(Ω)
d/dx−−→ C∞(Ω)→ 0

2-D: 0→ C∞(Ω)
grad−−→ C∞(Ω, R2)

rot−→ C∞(Ω)→ 0

3-D: 0→ C∞(Ω)
grad−−→ C∞(Ω, R3)

curl−−→ C∞(Ω, R3)
div−→ C∞(Ω)→ 0

n-D: 0→ Λ0(Ω)
d−→ Λ1(Ω)

d−→ Λ2(Ω)
d−→ · · · d−→ Λn(Ω)→ 0

The space Λk(Ω) = C∞(Ω, Rn×···×n
skw ), the space of smooth

differential k-forms on Ω.

Exterior derivative: dk : Λk(Ω)→ Λk+1(Ω)

Integral of a k-form over an oriented k-simplex:
∫

f v ∈ R

Stokes theorem:
∫

c du =
∫

∂c u, u ∈ Λk−1, c ∈ Ck

All this works on any smooth manifold
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De Rham’s Theorem

De Rham map: Λk(Ω) −→ Ck(S) := Ck(S)∗

u 7−→ (c 7→
∫

c u)

Stokes theorem
says it’s a cochain
map, so induces a
map from de Rham
to simplicial cohomology.

· · · d−−−−→ Λk(Ω)
d−−−−→ Λk+1(Ω)

d−−−−→ · · ·y y
· · · ∂∗−−−−→ Ck ∂∗−−−−→ Ck+1 ∂∗−−−−→ · · ·

THEOREM (DE RHAM’S THEOREM)

The induced map is an isomorphism on cohomology.
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Nonzero cohomology classes

u = grad θ, 0 6= ū ∈ H1

on cylindrical shell
u = grad

1
r

, 0 6= ū ∈ H2

on spherical shell
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Unbounded
operators on
Hilbert space



Unbounded operators

X,Y H-spaces (extensions to Banach spaces, TVSs,. . . )

T : D(T)→ Y linear, D(T) ⊆ X subspace (not necessarily closed),
T not necessarily bounded

Not-necessarily-everywhere-defined-and-not-necessarily-bounded
linear operators

Densely defined: D(T) = X

Ex: X = L2(Ω), Y = L2(Ω; Rn), D(T) = H1(Ω), Tv = grad v
(changing D(T) to H̊1(Ω) gives a different example)

S, T unbdd ops X→ Y =⇒ D(S + T) = D(S) ∩D(T)
(may not be d.d.)

X S−→ Y, Y T−→ Z unbdd ops =⇒ D(T ◦ S) = {v ∈ D(S) | Sv ∈ D(T)}
Graph norm (and inner product): ‖v‖2

D(T) := ‖v‖2
X + ‖Tv‖2

Y, v ∈ D(T)

Null space, range, graph: N (T), R(T), Γ(T)
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Closed operators

T is closed if Γ(T) is closed in X× Y.

Equivalent definitions:

1. If v1, v2, . . . ∈ D(T) satisfy vn
X−→ x and Tvn

Y−→ y for some
x ∈ X and y ∈ Y, then x ∈ D(T) and Tx = y.

2. D(T) endowed with the graph norm is complete.

If D(T) = X, then T is closed ⇐⇒ T is bdd (Closed Graph Thm)

Many properties of bounded operators extend to closed operators. E.g.,

PROPOSITION

Let T be a closed operator X to Y.
1. N (T) is closed in X.
2. ∃γ > 0 s.t. ‖Tx‖Y ≥ γ‖x‖X ⇐⇒ N (T) = 0,R(T) closed
3. If dim Y/R(T) < ∞, thenR(T) is closed
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Adjoint of a d.d.unbdd operator

Let T be a d.d.unbdd operator X→ Y. Define

D(T∗) = {w ∈ Y | the map v ∈ D(T) 7→ 〈w, Tv〉Y ∈ R is bdd in X-norm }

For w ∈ D(T∗) ∃! T∗w ∈ X s.t.

〈T∗w, v〉X = 〈w, Tv〉Y, v ∈ D(T), w ∈ D(T∗).

T∗ is a closed operator (even if T is not). Define the rotated graph

Γ̃(T∗) = { (−T∗w, w) |w ∈ D(T∗) } ⊂ X× Y,

Then Γ(T)⊥ = Γ̃(T∗), Γ(T) = Γ̃(T∗)⊥.

PROPOSITION

Let T be a closed d.d. operator X→ Y. Then
1. T∗ is closed d.d.
2. T∗∗ = T.
3. R(T)⊥ = N (T∗), N (T)⊥ = R(T∗),

R(T∗)⊥ = N (T), N (T∗)⊥ = R(T).
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Closed Range Theorem

THEOREM

Let T be a closed d.d.operator X→ Y. IfR(T) is closed in Y, thenR(T∗) is
closed in X.

Proof.
1. Reduce to case T is surjective.

2. Restrict to orthog comp of N (T) in D(T) (w/ graph norm). Get
bounded linear isomorphism. ∃ bounded inverse:

∀y ∈ Y ∃x ∈ X s.t. Tx = y, ‖x‖X ≤ c‖y‖Y

3. This implies ‖y‖Y ≤ c‖T∗y‖X, y ∈ D(T∗).
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Grad, curl, and div

Assume Ω ⊂ R3 with Lipschitz boundary (so trace theorem holds).

(grad, H1) is closed. Its adjoint is (−div, H̊1).

(curl, H(curl)) is closed, with adjoint (curl, H̊(curl))

(div, H(div)) is closed, with adjoint (− grad, H̊1)
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Hilbert complexes



Hilbert complexes

DEFINITION

A Hilbert complex is a sequence of Hilbert spaces Wk and a sequence
of closed d.d.linear operators dk from Wk to Wk+1 such that
R(dk) ⊂ N (dk+1).

Vk = D(dk) H-space with graph norm: ‖v‖2
Vk = ‖v‖2

Wk + ‖dkv‖2
Wk+1

The domain complex

0→ V0 d−→ V1 d−→ · · · d−→ Vn → 0

is a bounded Hilbert complex (with less information).
It is a cochain complex, so it has (co)cycles, boundaries, and homology.

An H-complex is closed if Bk is closed in Wk (or Vk).

An H-complex is Fredholm if dimHk < ∞.

Fredholm =⇒ closed
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The dual complex

Define d∗k : V∗k ⊂ Wk → Wk−1 as the adjoint of dk−1 : Vk ⊂ Wk−1 → Wk.

It is closed d.d.and, sinceR(dk−1) ⊂ N (dk),

R(d∗k+1) ⊂ R(d∗k+1) = N (dk)⊥ ⊂ R(dk−1)⊥ = N (dk
∗),

so we get a Hilbert chain complex with domain complex

0→ V∗n
d∗n−→ V∗n−1

d∗n−1−−→ · · ·
d∗1−→ V∗0 → 0.

If (W, d) is closed, then (W, d∗) is as well, by the Closed Range
Theorem.

From now on we mainly deal with closed H-complexes. . .
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Harmonic forms

The Hilbert structure of a closed H-complex allows us to identify the
homology spaceHk = Zk/Bk with a subspace Hk of Wk:

Hk := Zk ∩Bk⊥ = Zk ∩ Z∗k = {u ∈ Vk ∩V∗k | du = 0, d∗u = 0}.

An H-complex has the compactness property if Vk ∩V∗k is dense and
compact in Wk. This implies dimHk < ∞.

compactness property =⇒ Fredholm =⇒ closed
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Two key properties of closed H-complexes

THEOREM (HODGE DECOMPOSITION)

For any closed Hilbert complex:

Wk = Bk
�Hk︸ ︷︷ ︸
Zk

� B∗k︸︷︷︸
Zk⊥

Vk =
︷ ︸︸ ︷
Bk
�Hk

�Zk⊥V

THEOREM (POINCARÉ INEQUALITY)

For any closed Hilbert complex, ∃ a constant cP s.t.

‖z‖V ≤ cP‖dz‖, z ∈ Zk⊥V .
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L2 de Rham complex on Ω ⊂ R3

k Wk dk Vk d∗k V∗k dimHk

0 L2(Ω) grad H1 0 L2 β0

1 L2(Ω; R3) curl H(curl) −div H̊(div) β1

2 L2(Ω; R3) div H(div) curl H̊(curl) β2

3 L2(Ω) 0 L2 − grad H̊1 0

0→ H1 grad−−−−→ H(curl) curl−−−−→ H(div) div−−−−→ L2 → 0

0← L2 −div←−−−− H̊(div) curl←−−−− H̊(curl)
− grad←−−−− H̊1 ← 0
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The abstract Hodge Laplacian

Wk−1
d
�
d∗

Wk
d
�
d∗

Wk+1 L := d∗d + dd∗ Wk L−→ Wk

D(Lk) = { u ∈ Vk ∩V∗k | du ∈ V∗k+1, d∗u ∈ Vk−1 }

N (Lk) = Hk, Hk ⊥ R(Lk)

Strong formulation: Find u ∈ D(Lk) s.t. Lu = f − PHf , u ⊥ H.

Primal weak formulation: Find u ∈ Vk ∩V∗k ∩Hk⊥ s.t.

〈du, dv〉+ 〈d∗u, d∗v〉 = 〈f − PHf , v〉, v ∈ Vk ∩V∗k ∩Hk⊥.

Mixed weak formulation. Find σ ∈ Vk−1, u ∈ Vk, and p ∈ Hk s.t.

〈σ, τ〉 − 〈u, dτ〉 = 0, τ ∈ Vk−1,

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f , v〉, v ∈ Vk,

〈u, q〉 = 0, q ∈ Hk.
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Equivalence and well-posedness

THEOREM

Let f ∈ Wk. Then u ∈ Wk solves the strong formulation ⇐⇒ it solves the
primal weak formulation. Moreover, in this case, if we set σ = d∗u and
p = PHu, then the triple (σ, u, p) solves the mixed weak formulation.
Finally, if some (σ, u, p) solves the mixed weak formulation, then σ = d∗u,
p = PHu, and u solves the strong and primal formulations of the problem.

THEOREM

For each f ∈ Wk there exists a unique solution. Moreover

‖u‖+ ‖du‖+ ‖d∗u‖+ ‖dd∗u‖+ ‖d∗du‖ ≤ c‖f − PHf‖.

The constant depends only on the Poincaré inequality constant cP.
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Proof of well-posedness

We used the mixed formulation. Set

B(σ, u, p; τ, v, q) = 〈σ, τ〉− 〈u, dτ〉− 〈dσ, v〉− 〈du, dv〉− 〈p, v〉− 〈u, q〉

We must prove the inf-sup condition: ∀ (σ, u, p) ∃ (τ, v, q) s.t.

B(σ, u, p; τ, v, q) ≥ γ(‖σ‖V + ‖u‖V + ‖p‖)(‖τ‖V + ‖v‖V + ‖q‖),

with γ = γ(cP) > 0. Via the Hodge decomposition,

u = uB + uH + uB∗ = dρ + uH + uB∗

with ρ ∈ Z⊥V . Then take

τ = σ− 1
(cP)2 ρ, v = −u− dσ− p, q = p− uH.
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Hodge Laplacian and Hodge decomposition

f = dd∗u + PHf + d∗du is the Hodge decomposition of f

Define K : Wk → D(Lk) by Kf = u (bdd lin op).

PB = dd∗K, PB∗ = d∗dK

If f ∈ V, then Kdf = dKf .

If f ∈ B, then dKf = 0. Since Kf ⊥ H, Kf ∈ B.

B problem: If f ∈ B, then u = Kf solves

dd∗u = f , du = 0, u ⊥ H.

B∗ problem: If f ∈ B∗, then u = Kf solves

d∗du = f , d∗u = 0, u ⊥ H.
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The Hodge Laplacian on a domain in 3D

0→ H1 grad−−−−→ H(curl) curl−−−−→ H(div) div−−−−→ L2 → 0

0← L2 −div←−−−− H̊(div) curl←−−−− H̊(curl)
− grad←−−−− H̊1 ← 0

k Lk = d∗d + dd∗ BCs imposed on. . . Vk−1 ×Vk

0 −∆ ∂u/∂n H1

1 curl curl− grad div u · n curl u× n H1 ×H(curl)

2 − grad div+ curl curl u× n div u H(curl)×H(div)

3 −∆ u H(div)× L2

essential BC for primal form. natural BC for primal form.
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The Hodge wave equation

Ü + (dd∗ + d∗d)U = 0, U(0) = U0, U̇(0) = U1

Then σ := d∗U, ρ := dU, u := U̇ satisfyσ̇
u̇
ρ̇

+

0 −d∗ 0
d 0 d∗

0 −d 0

σ
u
ρ

 = 0

Find (σ, u, ρ) : [0, T]→ V0×V1×W2 s.t.

〈σ̇, τ〉 − 〈u, dτ〉 = 0, τ ∈ V0,

〈u̇, v〉 + 〈dσ, v〉+ 〈ρ, dv〉 = 0, v ∈ V1,

〈ρ̇, η〉 − 〈du, η〉 = 0, η ∈ W2.

THEOREM

Given initial data (σ0, u0, ρ0) ∈ V0×V1×W2, ∃! solution
(σ, u, ρ) ∈ C0([0, T], V0×V1×W2) ∩ C1([0, T], W0×W1×W2).

Proof: Uniqueness: (τ, v, η) = (σ, u, ρ). Existence: Hille–Yosida.

strong

weak
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Example: Maxwell’s equations

Ḋ = curl H
div D = 0

D = εE

Ḃ = − curl E
div B = 0
B = µH

W0 = L2(Ω)

W1 = L2(Ω, V, ε dx)

W2 = L2(Ω, V, µ−1dx)

W0 grad−−→ W1 − curl−−−→ W2

(σ, E, B) : [0, T]×Ω→ R×V×V solves

〈σ̇, τ〉−〈εE, grad τ〉 = 0 ∀τ,

〈εĖ, F〉+〈ε grad σ, F〉 − 〈µ−1B, curl F〉 = 0 ∀F,

〈µ−1Ḃ, C〉+〈µ−1 curl E, C〉 = 0 ∀C.

THEOREM

If σ, div εE, and div B vanish for t = 0, then they vanish for all t, and E, B,
D = εE, and H = µ−1B satisfy Maxwell’s equations.
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Some other complexes

0→ L2 ⊗V L2 ⊗ S L2 ⊗ S L2 ⊗V→ 0
displacement strain stress load

sym grad curl T curl div

R3×3 symmetric

0→ L2 ⊗V
sym grad−−−−−→ L2 ⊗ S primal method for elasticity

L2 ⊗ S
div−→ L2 ⊗V→ 0 mixed method for elasticity

0→ L2 L2 ⊗ S L2 ⊗T L2 ⊗V→ 0
grad grad curl div

R3×3 trace-free

0→ L2 grad grad−−−−−→ L2 ⊗ S primal method for plate equation

L2 grad grad−−−−−→ L2 ⊗ S
curl−−→ L2 ⊗V Einstein–Bianchi eqs (GR)
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