Finite Element Exterior Calculus and Applications

Part I

Douglas N. Arnold, University of Minnesota
Peking University / BICMR
August 15-18, 2015

Primary references

Two (long) papers with R. Falk and R. Winther:

Finite element exterior calculus, homological techniques, and applications. Acta Numer 15 (2006) pp. 1-155.

Finite element exterior calculus: from Hodge theory to numerical stability. Bull. AMS 47 (2010) pp. 281-354.
http://umn.edu/~arnold

Basic homology

Chain complexes

- Chain complex: seq. of vector spaces and linear maps

$$
\cdots \rightarrow V_{k+1} \xrightarrow{\partial_{k+1}} V_{k} \xrightarrow{\partial_{k}} V_{k-1} \rightarrow \cdots \quad \text { with } \partial_{k} \circ \partial_{k+1}=0 .
$$

- Alternative viewpoint: $V=\oplus_{k} V_{k}$ is a graded vector space and $\partial: V \rightarrow V$ is a graded linear operator of degree -1 such that $\partial \circ \partial=0$
- V_{k} :
k-chains
$\mathfrak{Z}_{k}=\mathcal{N}\left(\partial_{k}\right): \quad k$-cycles $\mathfrak{B}_{k}=\mathcal{R}\left(\partial_{k+1}\right): \quad k$-boundaries
$\mathcal{H}_{k}=\mathfrak{Z}_{k} / \mathfrak{B}_{k}: \quad k$-th homology space

Simplicial complexes

- A k-simplex in \mathbb{R}^{n} is the convex hull $f=\left[x_{0}, \ldots, x_{k}\right]$ of $k+1$ vertices in general position.
- A subset determines a face of $f:\left[x_{i_{0}}, \ldots, x_{i_{d}}\right]$.
- Simplicial complex: A finite set \mathcal{S} of simplices in \mathbb{R}^{n}, such that

1. Faces of simplices in \mathcal{S} are in \mathcal{S}.
2. If $f \cap g \neq \varnothing$ for $f, g \in \mathcal{S}$, then it is a face of f and of g.

- If we order all vertices of \mathcal{S}, then an ordering of the vertices of the simplex determines an orientation.

The boundary operator on chains

$\Delta_{k}(\mathcal{S}): \quad$ the set of k-simplices in \mathcal{S}
C_{k} (k-chains): formal linear combinations $c=\sum_{f \in \Delta_{k}(\mathcal{S})} c_{f} f$
$\partial_{k}: \Delta_{k} \rightarrow C_{k-1}: \quad \partial\left[x_{0}, x_{1}, \ldots, x_{k}\right]=\sum_{i=0}^{k}(-1)^{i}\left[\ldots, \hat{x}_{i}, \ldots\right]$
$\partial_{k}: C_{k} \rightarrow C_{k-1}: \quad \partial c=\sum c_{f} \partial f$

The simplicial chain complex

Every simplicial complex gives rise to an associated chain complex.

$$
\begin{aligned}
& 0 \rightarrow C_{n} \stackrel{\partial}{\rightarrow} C_{n-1} \stackrel{\partial}{\rightarrow} \cdots \stackrel{\partial}{\rightarrow} C_{0} \rightarrow 0 \\
& \beta_{k}:=\operatorname{dim} \mathcal{H}_{k}(C) \text { is the } k \text { th Betti number }
\end{aligned}
$$

$1,1,0,0$

$1,1,0,0$

1,2,1,0

$2,5,0,0$
$1,0,1,0$

Chain maps

$$
\begin{aligned}
& \cdots \longrightarrow V_{k+1} \xrightarrow{\partial_{k+1}} V_{k} \xrightarrow{\partial_{k}} V_{k-1} \longrightarrow \cdots \\
& f_{k+1} \downarrow \quad f_{k} \downarrow \quad f_{k-1} \downarrow \\
& \cdots \longrightarrow V_{k+1}^{\prime} \xrightarrow{\partial_{k+1}^{\prime}} V_{k}^{\prime} \xrightarrow{\partial_{k}^{\prime}} V_{k-1}^{\prime} \longrightarrow \cdots
\end{aligned}
$$

- $f(\mathfrak{Z}) \subset \mathfrak{Z}^{\prime}, f(\mathfrak{B}) \subset \mathfrak{B}^{\prime}$, so f induces $\bar{f}: \mathcal{H}(V) \rightarrow \mathcal{H}\left(V^{\prime}\right)$.
- If V^{\prime} is a subcomplex $\left(V_{k}^{\prime} \subset V_{k}\right.$ and $\left.\partial^{\prime}=\left.\partial\right|_{V}\right)$, and $f v=v$ for $v \in V^{\prime}$, we call f a chain projection.

Proposition

A chain projection induces a surjection on homology.

Cochain complexes

A cochain complex is like a chain complex but with increasing indices.

$$
\cdots \rightarrow V^{k-1} \xrightarrow{d^{k-1}} V^{k} \xrightarrow{d^{k}} V^{k+1} \rightarrow \cdots
$$

- cocycles \mathfrak{Z}^{k}, coboundaries \mathfrak{B}^{k}, cohomology \mathcal{H}^{k}, \ldots
- The dual of a chain complex is a cochain complex:

$$
\partial_{k+1}: V_{k+1} \rightarrow V_{k} \quad \Longrightarrow \partial_{d^{k}}^{*}: \underbrace{V_{k}^{*} \rightarrow V_{k+1}^{*}}_{V_{k+1}^{k}}
$$

The de Rham complex for a domain in \mathbb{R}^{n}

1-D: $\quad 0 \rightarrow C^{\infty}(\Omega) \xrightarrow{d / d x} C^{\infty}(\Omega) \rightarrow 0$
2-D: $\quad 0 \rightarrow C^{\infty}(\Omega) \xrightarrow{\text { grad }} C^{\infty}\left(\Omega, \mathbb{R}^{2}\right) \xrightarrow{\text { rot }} C^{\infty}(\Omega) \rightarrow 0$
3-D: $\quad 0 \rightarrow C^{\infty}(\Omega) \xrightarrow{\text { grad }} C^{\infty}\left(\Omega, \mathbb{R}^{3}\right) \xrightarrow{\text { curl }} C^{\infty}\left(\Omega, \mathbb{R}^{3}\right) \xrightarrow{\text { div }} C^{\infty}(\Omega) \rightarrow 0$
n-D: $\quad 0 \rightarrow \Lambda^{0}(\Omega) \xrightarrow{d} \Lambda^{1}(\Omega) \xrightarrow{d} \Lambda^{2}(\Omega) \xrightarrow{d} \cdots \xrightarrow{d} \Lambda^{n}(\Omega) \rightarrow 0$
The space $\Lambda^{k}(\Omega)=C^{\infty}\left(\Omega, \mathbb{R}_{\text {skw }}^{n \times \cdots \times n}\right)$, the space of smooth differential k-forms on Ω.

- Exterior derivative: $\quad d^{k}: \Lambda^{k}(\Omega) \rightarrow \Lambda^{k+1}(\Omega)$
- Integral of a k-form over an oriented k-simplex: $\int_{f} v \in \mathbb{R}$
- Stokes theorem: $\int_{c} d u=\int_{\partial c} u, \quad u \in \Lambda^{k-1}, c \in C_{k}$
- All this works on any smooth manifold

De Rham's Theorem

- De Rham map:

$$
\Lambda^{k}(\Omega) \quad \longrightarrow \quad C^{k}(\mathcal{S}):=C_{k}(\mathcal{S})^{*}
$$

$$
u \quad \longmapsto \quad\left(c \mapsto \int_{c} u\right)
$$

- Stokes theorem says it's a cochain map, so induces a map from de Rham

to simplicial cohomology. $\ldots \xrightarrow{\partial^{*}} C^{k} \xrightarrow{\partial^{*}} C^{k+1} \xrightarrow{\partial^{*}}$

THEOREM (DE RHAM'S THEOREM)

The induced map is an isomorphism on cohomology.

Nonzero cohomology classes

$$
u=\operatorname{grad} \theta, 0 \neq \bar{u} \in \mathcal{H}^{1}
$$ on cylindrical shell

Unbounded operators on
 Hilbert space

Unbounded operators

- X, Y H-spaces (extensions to Banach spaces, TVSs,...)
- $T: D(T) \rightarrow Y$ linear, $D(T) \subseteq X$ subspace (not necessarily closed), T not necessarily bounded
- Not-necessarily-everywhere-defined-and-not-necessarily-bounded linear operators
- Densely defined: $\overline{D(T)}=X$
- Ex: $X=L^{2}(\Omega), Y=L^{2}\left(\Omega ; \mathbb{R}^{n}\right), D(T)=H^{1}(\Omega), T v=\operatorname{grad} v$ (changing $D(T)$ to $H^{1}(\Omega)$ gives a different example)
- S, T unbdd ops $X \rightarrow Y \Longrightarrow D(S+T)=D(S) \cap D(T)$ (may not be d.d.)
- $X \xrightarrow{S} Y, Y \xrightarrow{T} Z$ unbdd ops $\Longrightarrow D(T \circ S)=\{v \in D(S) \mid S v \in D(T)\}$
- Graph norm (and inner product): $\|v\|_{D(T)}^{2}:=\|v\|_{X}^{2}+\|T v\|_{Y}^{2}, v \in D(T)$
- Null space, range, graph: $\mathcal{N}(T), \quad \mathcal{R}(T), \quad \Gamma(T)$

Closed operators

- T is closed if $\Gamma(T)$ is closed in $X \times Y$.
- Equivalent definitions:

1. If $v_{1}, v_{2}, \ldots \in D(T)$ satisfy $v_{n} \xrightarrow{X} x$ and $T v_{n} \xrightarrow{Y} y$ for some $x \in X$ and $y \in Y$, then $x \in D(T)$ and $T x=y$.
2. $D(T)$ endowed with the graph norm is complete.

- If $D(T)=X$, then T is closed $\Longleftrightarrow T$ is bdd (Closed Graph Thm)

Many properties of bounded operators extend to closed operators. E.g.,

PROPOSITION

Let T be a closed operator X to Y.

1. $\mathcal{N}(T)$ is closed in X.
2. $\exists \gamma>0$ s.t. $\|T x\|_{Y} \geq \gamma\|x\|_{X} \Longleftrightarrow \mathcal{N}(T)=0, \mathcal{R}(T)$ closed
3. If $\operatorname{dim} Y / \mathcal{R}(T)<\infty$, then $\mathcal{R}(T)$ is closed

Adjoint of a d.d.unbdd operator

Let T be a d.d.unbdd operator $X \rightarrow Y$. Define
$D\left(T^{*}\right)=\left\{w \in Y \mid\right.$ the map $v \in D(T) \mapsto\langle w, T v\rangle_{Y} \in \mathbb{R}$ is bdd in X-norm $\}$
For $w \in D\left(T^{*}\right) \quad \exists!T^{*} w \in X$ s.t.

$$
\left\langle T^{*} w, v\right\rangle_{\mathrm{X}}=\langle w, T v\rangle_{Y}, \quad v \in D(T), w \in D\left(T^{*}\right)
$$

T^{*} is a closed operator (even if T is not). Define the rotated graph

$$
\tilde{\Gamma}\left(T^{*}\right)=\left\{\left(-T^{*} w, w\right) \mid w \in D\left(T^{*}\right)\right\} \subset X \times Y,
$$

Then $\Gamma(T)^{\perp}=\tilde{\Gamma}\left(T^{*}\right), \overline{\Gamma(T)}=\tilde{\Gamma}\left(T^{*}\right)^{\perp}$.

Proposition

Let T be a closed d.d. operator $X \rightarrow Y$. Then

1. T^{*} is closed d.d.
2. $T^{* *}=T$.
3.

$$
\begin{array}{ll}
\mathcal{R}(T)^{\perp}=\mathcal{N}\left(T^{*}\right), & \mathcal{N}(T)^{\perp}=\overline{\mathcal{R}\left(T^{*}\right)}, \\
\mathcal{R}\left(T^{*}\right)^{\perp}=\mathcal{N}(T), & \mathcal{N}\left(T^{*}\right)^{\perp}=\overline{\mathcal{R}(T)}
\end{array}
$$

Closed Range Theorem

THEOREM

Let T be a closed d.d.operator $X \rightarrow Y$. If $\mathcal{R}(T)$ is closed in Y, then $\mathcal{R}\left(T^{*}\right)$ is closed in X.

Proof.

1. Reduce to case T is surjective.
2. Restrict to orthog comp of $\mathcal{N}(T)$ in $D(T)$ (w/ graph norm). Get bounded linear isomorphism. \exists bounded inverse:

$$
\forall y \in Y \exists x \in X \text { s.t. } T x=y, \quad\|x\|_{X} \leq c\|y\|_{Y}
$$

3. This implies $\|y\|_{Y} \leq c\left\|T^{*} y\right\|_{X}, y \in D\left(T^{*}\right)$.

Grad, curl, and div

Assume $\Omega \subset \mathbb{R}^{3}$ with Lipschitz boundary (so trace theorem holds).

- (grad, $\left.H^{1}\right)$ is closed. Its adjoint is $\left(-\operatorname{div}, \stackrel{H}{H}^{1}\right)$.
- (curl, $H($ curl $))$ is closed, with adjoint (curl, $H($ curl $))$
- (div, $H(\operatorname{div}))$ is closed, with adjoint $\left(-\operatorname{grad}, \mathrm{H}^{1}\right)$

Hilbert complexes

Hilbert complexes

Definition

A Hilbert complex is a sequence of Hilbert spaces W^{k} and a sequence of closed d.d.linear operators d^{k} from W^{k} to W^{k+1} such that $\mathcal{R}\left(d^{k}\right) \subset \mathcal{N}\left(d^{k+1}\right)$.

- $V_{k}=D\left(d^{k}\right)$ H-space with graph norm: $\|v\|_{V^{k}}^{2}=\|v\|_{W^{k}}^{2}+\left\|d^{k} v\right\|_{W^{k+1}}^{2}$
- The domain complex

$$
0 \rightarrow V^{0} \xrightarrow{d} V^{1} \xrightarrow{d} \cdots \xrightarrow{d} V^{n} \rightarrow 0
$$

is a bounded Hilbert complex (with less information).

- It is a cochain complex, so it has (co)cycles, boundaries, and homology.
- An H-complex is closed if \mathfrak{B}^{k} is closed in W^{k} (or V^{k}).
- An H-complex is Fredholm if $\operatorname{dim} \mathcal{H}^{k}<\infty$.

$$
\text { Fredholm } \Longrightarrow \text { closed }
$$

The dual complex

Define $d_{k}^{*}: V_{k}^{*} \subset W^{k} \rightarrow W^{k-1}$ as the adjoint of $d^{k-1}: V^{k} \subset W^{k-1} \rightarrow W^{k}$. It is closed d.d.and, since $\mathcal{R}\left(d^{k-1}\right) \subset \mathcal{N}\left(d^{k}\right)$,

$$
\mathcal{R}\left(d_{k+1}^{*}\right) \subset \overline{\mathcal{R}\left(d_{k+1}^{*}\right)}=\mathcal{N}\left(d^{k}\right)^{\perp} \subset \mathcal{R}\left(d^{k-1}\right)^{\perp}=\mathcal{N}\left(d_{*}^{k}\right),
$$

so we get a Hilbert chain complex with domain complex

$$
0 \rightarrow V_{n}^{*} \xrightarrow{d_{n}^{*}} V_{n-1}^{*} \xrightarrow{d_{n-1}^{*}} \cdots \xrightarrow{d_{1}^{*}} V_{0}^{*} \rightarrow 0 .
$$

If (W, d) is closed, then $\left(W, d^{*}\right)$ is as well, by the Closed Range Theorem.

From now on we mainly deal with closed H-complexes...

Harmonic forms

The Hilbert structure of a closed H-complex allows us to identify the homology space $\mathcal{H}^{k}=\mathfrak{Z}^{k} / \mathfrak{B}^{k}$ with a subspace \mathfrak{H}^{k} of W^{k} :

$$
\mathfrak{H}^{k}:=\mathfrak{Z}^{k} \cap \mathfrak{B}^{k \perp}=\mathfrak{Z}^{k} \cap \mathfrak{Z}_{k}^{*}=\left\{u \in V^{k} \cap V_{k}^{*} \mid d u=0, d^{*} u=0\right\} .
$$

An H-complex has the compactness property if $V^{k} \cap V_{k}^{*}$ is dense and compact in W^{k}. This implies $\operatorname{dim} \mathfrak{H}^{k}<\infty$.
compactness property \Longrightarrow Fredholm \Longrightarrow closed

Two key properties of closed H-complexes

THEOREM (HODGE DECOMPOSITION)
For any closed Hilbert complex:

$$
\begin{aligned}
W^{k} & =\underbrace{\mathfrak{B}^{k} \oplus \mathfrak{H}^{k}}_{\mathfrak{Z}^{k}} \oplus \underbrace{\mathfrak{B}_{k}^{*}}_{\mathfrak{Z}^{k \perp}} \\
V^{k} & =\overbrace{\mathfrak{B}^{k} \oplus \mathfrak{H}^{k}} \oplus \mathfrak{Z}^{k \perp_{V}}
\end{aligned}
$$

THEOREM (POINCARÉ INEQUALITY)
For any closed Hilbert complex, $\exists a$ constant c^{P} s.t.

$$
\|z\|_{V} \leq c^{P}\|d z\|, \quad z \in \mathfrak{Z}^{k \perp_{V}}
$$

L^{2} de Rham complex on $\Omega \subset \mathbb{R}^{3}$

k	W^{k}	d^{k}	V^{k}	d_{k}^{*}	V_{k}^{*}	$\operatorname{dim} \mathfrak{H}^{k}$
0	$L^{2}(\Omega)$	grad	H^{1}	0	L^{2}	β_{0}
1	$L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$	curl	H (curl)	$-\operatorname{div}$	$\check{H}($ div $)$	β_{1}
2	$L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$	div	$H($ div $)$	curl	$\check{H}($ curl $)$	β_{2}
3	$L^{2}(\Omega)$	0	L^{2}	- grad	\grave{H}^{1}	0

$$
\begin{aligned}
& 0 \rightarrow H^{1} \xrightarrow{\text { grad }} H(\text { curl }) \xrightarrow{\text { curl }} H(\text { div }) \xrightarrow{\text { div }} L^{2} \rightarrow 0 \\
& 0 \leftarrow L^{2} \stackrel{\text { div }}{\longleftarrow} H(\text { div }) \stackrel{\text { curl }}{\longleftarrow} H(\text { curl }) \stackrel{\text { grad }}{\longleftarrow} \stackrel{\circ}{1}^{1} \leftarrow 0
\end{aligned}
$$

The abstract Hodge Laplacian

- $W^{k-1} \underset{d^{*}}{\stackrel{d}{\rightleftarrows}} W^{k} \underset{d^{*}}{\stackrel{d}{\rightleftarrows}} W^{k+1} \quad L:=d^{*} d+d d^{*} \quad W^{k} \xrightarrow{L} W^{k}$
- $D\left(L^{k}\right)=\left\{u \in V^{k} \cap V_{k}^{*} \mid d u \in V_{k+1}^{*}, d^{*} u \in V^{k-1}\right\}$
- $\mathcal{N}\left(L^{k}\right)=\mathfrak{H}^{k}, \quad \mathfrak{H}^{k} \perp \mathcal{R}\left(L^{k}\right)$
- Strong formulation: Find $u \in D\left(L^{k}\right)$ s.t. $L u=f-P_{\mathfrak{H}} f, \quad u \perp \mathfrak{H}$.
- Primal weak formulation: Find $u \in V^{k} \cap V_{k}^{*} \cap \mathfrak{H}^{k \perp}$ s.t.

$$
\langle d u, d v\rangle+\left\langle d^{*} u, d^{*} v\right\rangle=\left\langle f-P_{\mathfrak{H}} f, v\right\rangle, v \in V^{k} \cap V_{k}^{*} \cap \mathfrak{H}^{k \perp} .
$$

- Mixed weak formulation. Find $\sigma \in V^{k-1}, u \in V^{k}$, and $p \in \mathfrak{H}^{k}$ s.t.

$$
\begin{aligned}
\langle\sigma, \tau\rangle-\langle u, d \tau\rangle & =0, & & \tau \in V^{k-1}, \\
\langle d \sigma, v\rangle+\langle d u, d v\rangle+\langle p, v\rangle & =\langle f, v\rangle, & & v \in V^{k}, \\
\langle u, q\rangle & =0, & & q \in \mathfrak{H}^{k} .
\end{aligned}
$$

Equivalence and well-posedness

THEOREM

Let $f \in W^{k}$. Then $u \in W^{k}$ solves the strong formulation \Longleftrightarrow it solves the primal weak formulation. Moreover, in this case, if we set $\sigma=d^{*} u$ and $p=P_{\mathfrak{H}} u$, then the triple (σ, u, p) solves the mixed weak formulation. Finally, if some (σ, u, p) solves the mixed weak formulation, then $\sigma=d^{*} u$, $p=\mathcal{P}_{\mathfrak{H}} u$, and u solves the strong and primal formulations of the problem.

THEOREM

For each $f \in W^{k}$ there exists a unique solution. Moreover

$$
\|u\|+\|d u\|+\left\|d^{*} u\right\|+\left\|d d^{*} u\right\|+\left\|d^{*} d u\right\| \leq c\left\|f-P_{\mathfrak{S}} f\right\| .
$$

The constant depends only on the Poincaré inequality constant c^{P}.

Proof of well-posedness

We used the mixed formulation. Set

$$
B(\sigma, u, p ; \tau, v, q)=\langle\sigma, \tau\rangle-\langle u, d \tau\rangle-\langle d \sigma, v\rangle-\langle d u, d v\rangle-\langle p, v\rangle-\langle u, q\rangle
$$

We must prove the inf-sup condition: $\forall(\sigma, u, p) \exists(\tau, v, q)$ s.t.

$$
B(\sigma, u, p ; \tau, v, q) \geq \gamma\left(\|\sigma\|_{V}+\|u\|_{V}+\|p\|\right)\left(\|\tau\|_{V}+\|v\|_{V}+\|q\|\right)
$$

with $\gamma=\gamma\left(c^{P}\right)>0$. Via the Hodge decomposition,

$$
u=u_{\mathfrak{B}}+u_{\mathfrak{H}}+u_{\mathfrak{B}^{*}}=d \rho+u_{\mathfrak{H}}+u_{\mathfrak{B}^{*}}
$$

with $\rho \in \mathfrak{Z}^{\perp_{V}}$. Then take

$$
\tau=\sigma-\frac{1}{\left(c^{P}\right)^{2}} \rho, \quad v=-u-d \sigma-p, \quad q=p-u_{\mathfrak{H}}
$$

Hodge Laplacian and Hodge decomposition

- $f=d d^{*} u+P_{\mathfrak{H}} f+d^{*} d u$ is the Hodge decomposition of f
- Define $K: W^{k} \rightarrow D\left(L^{k}\right)$ by $K f=u$ (bdd lin op).
- $P_{\mathfrak{B}}=d d^{*} K, \quad P_{\mathfrak{B}^{*}}=d^{*} d K$
- If $f \in V$, then $K d f=d K f$.
- If $f \in \mathfrak{B}$, then $d K f=0$. Since $K f \perp \mathfrak{H}, K f \in \mathfrak{B}$.
- \mathfrak{B} problem: If $f \in \mathfrak{B}$, then $u=K f$ solves

$$
d d^{*} u=f, \quad d u=0, \quad u \perp \mathfrak{H} .
$$

- \mathfrak{B}^{*} problem: If $f \in \mathfrak{B}^{*}$, then $u=K f$ solves

$$
d^{*} d u=f, \quad d^{*} u=0, \quad u \perp \mathfrak{H} .
$$

The Hodge Laplacian on a domain in 3D

$$
\begin{aligned}
& 0 \rightarrow H^{1} \xrightarrow{\text { grad }} H(\text { curl }) \xrightarrow{\text { curl }} H(\text { div }) \xrightarrow{\text { div }} L^{2} \rightarrow 0 \\
& 0 \leftarrow L^{2} \stackrel{\text { div }}{\longleftarrow} H(\text { div }) \stackrel{\text { curl }}{\longleftarrow} H(\text { curl }) \stackrel{\text { grad }}{\longleftarrow} \dot{H}^{1} \leftarrow 0
\end{aligned}
$$

k	$L^{k}=d^{*} d+d d^{*}$	BCs imposed on...	$V^{k-1} \times V^{k}$
0	$-\Delta$	$\partial u / \partial n$	H^{1}
1	curl curl - grad div	$u \cdot n$	$\operatorname{curl} u \times n$
2	- grad div + curl curl	$u \times n$	$\operatorname{div} u$
3	$-\Delta$	u	$H($ curl $) \times H($ curl $)$

essential BC for primal form. natural BC for primal form.

The Hodge wave equation

$$
\ddot{U}+\left(d d^{*}+d^{*} d\right) U=0, \quad U(0)=U_{0}, \quad \dot{U}(0)=U_{1}
$$

Then $\sigma:=d^{*} U, \rho:=d U, u:=\dot{U}$ satisfy

$$
\left(\begin{array}{c}
\dot{\sigma} \\
\dot{u} \\
\dot{\rho}
\end{array}\right)+\left(\begin{array}{ccc}
0 & -d^{*} & 0 \\
d & 0 & d^{*} \\
0 & -d & 0
\end{array}\right)\left(\begin{array}{l}
\sigma \\
u \\
\rho
\end{array}\right)=0
$$

Find $\quad(\sigma, u, \rho):[0, T] \rightarrow V^{0} \times V^{1} \times W^{2} \quad$ s.t.

$$
\begin{array}{ll}
\langle\dot{\sigma}, \tau\rangle-\langle u, d \tau\rangle=0, & \tau \in V^{0} \\
\langle\dot{u}, v\rangle+\langle d \sigma, v\rangle+\langle\rho, d v\rangle=0, & v \in V^{1} \\
\langle\dot{\rho}, \eta\rangle-\langle d u, \eta\rangle=0, & \eta \in W^{2}
\end{array}
$$

weak

THEOREM

Given initial data $\left(\sigma_{0}, u_{0}, \rho_{0}\right) \in V^{0} \times V^{1} \times W^{2}, \exists$! solution
$(\sigma, u, \rho) \in C^{0}\left([0, T], V^{0} \times V^{1} \times W^{2}\right) \cap C^{1}\left([0, T], W^{0} \times W^{1} \times W^{2}\right)$.
Proof: Uniqueness: $(\tau, v, \eta)=(\sigma, u, \rho)$. Existence: Hille-Yosida.

Example: Maxwell's equations

\[

\]

THEOREM

If $\sigma, \operatorname{div} \epsilon E$, and $\operatorname{div} B$ vanish for $t=0$, then they vanish for all t, and E, B, $D=\epsilon E$, and $H=\mu^{-1} B$ satisfy Maxwell's equations.

Some other complexes

- $0 \rightarrow L^{2} \otimes \mathbb{V} \xrightarrow{\text { symgrad }} L^{2} \otimes \mathbb{S} \quad$ primal method for elasticity
- $L^{2} \otimes \mathrm{~S} \xrightarrow{\text { div }} L^{2} \otimes \mathbb{V} \rightarrow 0 \quad$ mixed method for elasticity

- $0 \rightarrow L^{2} \xrightarrow{\text { grad grad }} L^{2} \otimes S \quad$ primal method for plate equation
- $L^{2} \xrightarrow{\text { grad grad }} L^{2} \otimes \mathbb{S} \xrightarrow{\text { curl }} L^{2} \otimes \mathbb{V}$ Einstein-Bianchi eqs (GR)

