Math 1571H, Fall 2005
 Solution of Quiz 1 (September 15)

1) [6 points] Sketch the graph of $y=x^{2}-4$. Find the equations of the two lines through the point $(3,1)$ that are tangent to the curve $y=x^{2}-4$. Use the fact that if $f(x)=x^{2}-4$, then $f^{\prime}\left(x_{0}\right)=2 x_{0}$.

Take a point, $\left(x_{0}, x_{0}^{2}-4\right)$, on the graph of $y=x^{2}-4$. The slope of the tangent line is $\left(x_{0}^{2}-4-1\right) /\left(x_{0}-3\right)$, which is equal to $2 x_{0}$. Equating both, you get a quadratic equation, $x_{0}^{2}-5=2 x_{0}^{2}-6 x_{0}$. Solve it, you get $\left(x_{0}-5\right)\left(x_{0}-1\right)=0$. Therefore, $x_{0}=1$, or $x_{0}=5$. Now, you have the coordinates of two points, $(1,-3)$ and $(5,21)$. Use the equation of the line to get the equations of the two tangents.
2) [4 points] Is $f(x)=x$ equal to $g(x)=(\sqrt{x})^{2}$? Justify.

NO. Since the domain of f is all real numbers, while the domain of g is all nonnegative real numbers.
[2 points] Bonus: Determine whether the following is True or False. Explain.

1) If f is a function, then $f(s+t)=f(s)+f(t)$.

FALSE. As a counter-example consider $f(x)=x^{2}$.
2) If f is a function and $f(s)=f(t)$, then $s=t$.

FALSE. Also, $f(x)=x^{2}$ can serve as a counter-example. The statement is true, if $f(x)$ is a one-to-one function.

