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KILLING TENSORS AND NONORTHOGONAL VARIABLE
SEPARATION FOR HAMILTON-JACOBI EQUATIONS*

E. G. KALNINSt AND WILLARD MILLER, JR.:

Abstract. Every separable coordinate system for the Hamilton-Jacobi equation on a Riemannian
manifold V, corresponds to a family of n- Killing tensors in involution, but the converse is false. For
general n we find a practical characterization of those involutive families of Killing tensors that correspond to
variable separation, orthogonal or not.

1. Introduction. We study the separation of variables problem for the Hamilton-
Jacobi equation

(1.1) gij Ox, WOxJW E, gij gi, 1 < i, ] < n

(n _--> 2) and the relation between variable separation and second order Killing tensors
on the (local) manifold Vn with metric tensor {gi} in the local coordinates {xi}. (We
allow all coordinates and tensors to be complex and adopt the tensor notation in
Eisenhart’s book 1 ].)

In this paper we treat the general separation problem for (1.1), with emphasis on
nonorthogonal separable coordinates. An analogous study for the more restricted
orthogonal separation problem was presented in [2], and we assume familiarity with the
basic definitions and results of that paper. Since every (multiplicative) separable system
for the Helmholtz equation

1
(1.2) --gOX,(/ggiOx,) Eq, g det(gi)

is an (additively) separable system for (1.1), our treatment has direct applicability to the
Helmholtz equation and the important families of special functions that arise as the
separable solutions of this equation. (See [2] for a discussion of the relationship between
these two equations together with additional references. The passage from (1.1) to (1.2)
is closely analogous to the passage from classical mechanics to quantum mechanics.)

It is easily verified that to every separable coordinate system for (1.1), orthogonal
or not, there corresponds a family of n- 1 Killing tensors in involution. (The precise
correspondence can be found in 2.) However, not every such involutive family is
associated with variable separation. In this paper we provide a solution to one of the
fundamental problems in the theory of variable separation. We develop a decision
procedure to determine precisely which families of Killing tensors are associated with
separation, and for Killing tensors so associated we show how to construct the
separable coordinates. Our procedure involves the determination of the eigenvaiues
and eigenforms of the Killing tensors, and is easy to implement for n 3, though less so
for n > 4.

It is important for many reasons to be able to compute separable coordinates
directly from Killing tensors. Indeed, for flat spaces and spaces of constant curvature all
second order Killing tensors can be expressed as second order polynomials in the Killing
vectors, so for such spaces the possible involutive families of Killing tensors can be
constructed explicitly through the use of Lie algebra techniques and then tested for
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618 E.G. KALNINS AND WILLARD MILLER, JR.

variable separation. Furthermore, in the Lie theory treatment of special functions
which arise through separation of variables in the Helmholtz equation [3] it is the
symmetry operators, not the separable coordinates, that are fundamental.

Nonorthogonal separable coordinates, though considered from the earliest days in
the classical literature (see, for example [4]), have received relatively little attention in
comparison with orthogonal coordinates. However, nonorthogonal separable coor-
dinates are of very frequent occurrence for the equations of mathematical physics, in
particular for the real Klein-Gordon, wave, heat and time-dependent Schr6dinger
equations and their Hamilton-Jacobi counterparts. The special definition of non-
orthogonal separation given in 2 is due to the authors [5], [6] and clearly exhibits the
nature of the separation. (Levi-Civita’s classical definition in its original form [4] is,
though intuitively appealing, very inconvenient for a detailed analysis of separable
coordinate types.) Independently, Benenti [7] has arrived at our same classification of
coordinates, which he calls "normal separable coordinates". He proves, roughly
speaking, that all separable coordinates in the sense of Levi-Civita are equivalent to
normal separable coordinates. (See [7], [8] for a more detailed discussion of the classical
literature.)

In 2 we discuss our definition of variable separation for the Hamilton-Jacobi
equation in some detail, and show how to construct the involutive family of Killing
tensors associated with a given separable system. In 3 we show how to check if a given
coordinate system {x j} permits variable separation in (1.1). Our results extend the
well-known test for Stckel form in the special case of orthogonal coordinates [1 ]. In 4
we present our principal result" necessary and sufficient conditions that a given
involutive family of Killing tensors determines a separable coordinate system. Our
Theorem 4 is much stronger than earlier such results which have appeared in the
literature 1 ], [8], because we have explicitly proved, rather than assumed, that the basis
of differential forms which appears naturally in this problem is normalizable. (Hainzl [9]
has studied variable separation for linear partial differential equations of arbitrary
order through use of the Stickel method and has obtained interesting partial analogues
of our Theorems 2 and 3. However, when specialized to the Helmholtz equation his
definition of separability omits the possibility of type 2 and nonorthogonal ignorable
coordinates.) In 5 we present a nontrivial example of the application of our Theorem 4
to three-dimensional Minkowski space.

2. Nonorthogonal separation. Our definition of separation of variables for the
H-J equation (1.1) is identical with that presented in [5i, [6], [10] and is based on a
division of the separable coordinates into three classes’ ignorable, essential of type 1
and essential of type 2. Let {x ,. , x } be a coordinate system on the manifold with
metric (g’) such that the n coordinates x a, 1 <-a-< n l, are essential of type 1, the n2
coordinates x r, nl + 1 <-r<=nl + n2, are essential of type 2, and the n3 coordinates x,
n + n2 + 1-<_a -< n + n2 + n3 n, are ignorable. (In the following, indices a, b, c range
from 1 to n l, indices r, s, range from n + 1 to n + n2, indices a,/, y range from
nl + n2 + 1 to n, and indices i, j, k range from 1 to n.) This means that the metric (g’),
expressed in terms of coordinates {x k}, is independent of the x o and that the separation
equations take the form

a=nl+n2+l

(2.2)

a,/3 =nl+n2+l

2B’ (x r) WrW, + C’’ (X W W
a,/3 =n+n2+l

OOr(X; A 1, ", A ,+,), n + 1 <-- r <-- n + n2,
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KILLING TENSORS AND NONORTHOGONAL VARIABLE SEPARATION 619

(2.3) Wa =ha, nx+nz+l<-a<-n.
Here A’( A’a), BT, C7’ (= C’a) and i are defined and analytic in a neighbor-
hood N $

_
C"1+n2 C,1+,2, where N is a neighborhood of (x, ., x1+"2) and S is

a neighborhood of (0, , 0) in the Euclidean space with coordinates
The parameters ha are arbitrary. Furthermore, the complex parameters 1, ’, .n1+,2
are independent; i.e. the Jacobian

(2.4) (O(X A1,’" A,l+,)=det( 0r
\ OAf’ --i]

is nonzero in N $.

We say that the coordinates {x} are separable for the H-J equation if there exist
analytic functions A, B, C, above and functions Ua (xi), Vr(xg), analytic in N, such that
the H-J equation

(2.5)

can be written in the form

(2.6) , Ha (xi)tffa " E gr(xi)(r E

W(x)(identically in the parameters A1 E, A z, A,), where W i=a
OiW :OfW(i).

Comparison of (2.5) and (2.6) determines the functions U, Vr uniquely.
Furthermore, differentiating (2.6) with respect to At, we have

and this leads to the usual Stckel form
al rl

(a.7) U.(x’) Vr(X’)

where i is the (/m)-cofactor of the matrix (2.4). The nonzero components of the
contravariant matric tensor are thus

g g g B7 (xr),

al rl

(2.8) g" E aT’O(x) +E C7" (x r)

al rl

g =2A +2Cr

The generality of the functions l is illusory, due to the restrictive conditions (2.7)
ll/which require that the functions are independent of A x, ., A,+,:. Indeed,

setting Ol(X l) Ol(X l, 0)/0A, 1 < l, m <= nl + n2 and O(x i) (x,i 0), where 0
(0,.. , 0) s S, we have

OX 0rl

(2.9) U= 0, Vr=O.
Furthermore, since 0 0 in N there exist functions Gl(X, k), analytic in N + S, such that

nl+n
(2.10) (I)p(XP, k) Z G,(x,k)O,,,(x"), l<-p<-nl+n2.

m=l
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620 E. G. KALNINS AND WlLLARD MILLER, JR.

Substituting (2.9) and (2.10) in (2.6) we find Gl(X,h.)-E=hl. Furthermore,
OxmGl(X, O) ml and, from the fact that the minors 0al, 0r are nonzero in a neighbor-
hood of Xo, GiG(x, It)=-0 for 1,. , n + n2, 2,. , n + n2. Thus, GI(X, k)=---
Gt(2k) and, in terms of the new parameters Et Gl(Jk), 1,. nl + n2, E ha,
a nx + n2 + 1, ., n, the functions p assume the standard form

tll+n
(2.11) ,(x, k) (x p, E) Y’. ElOp(xt)).

/=1

The separation equations (2.1)-(2.3) become

(2.12) W2 + A’’(x’)E,Eo Y. EG(xa),
a,/3 =nx+n2+l /=1

(2.14)

These expressions are the master equations for separation of variables in the Hamilton-
Jacobi equation (2.5).

Remarks.
1) Since the metric tensor (g’) is nonsingular, n3 -> n2.
2) From (2.11) we have

01
---:--dPl=Em, m 1, n+n2.

/=1

Thus,

(2.15) A,. (x. ) Era, m 1, ., nl + n2,

L(x, p) E,,, ce hi+n2+1, n,

where

A,(x, p)= . ai’)PiPi, L(x, p)= p,
(2.16) i.i=l

Pi =Ox,W

and the nonzero terms of the symmetric quadratic form (a (,)) are given by

ab
a() a() Br,

(2 17) 1/2a
0

0 0
a() =a

(Note that A E is the original Hamilton-Jacobi equation.)
nl+n3) By definition, the quadratic form H=l= H2p is in StKckel form if

H O/ 0t, where

is a Stckel matrix, 0 det O and 0 is the (l, 1) minor of O. It is well known [1] that
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KILLING TENSORS AND NONORTHOGONAL VARIABLE SEPARATION 621

necessary and sufficient conditions that H be in Stfickel form are

2
OxJ,,k In H2i -OxJ In H Oxk In H/2 + 0xJ In H2i Ox In H(2.18)

+0xk In H2 0x, In H, 0,

4) IfH is in Stickel form as in 3), theexpressions Ol"/O =- p m)0 ll / 0 p I’)H-{2 are
characterized by the equations

(2.19)
O,,kp (p, -pt) 0x(ln H}-2 ), k 1,

Oxlpl =0;

see [1]. In particular, (2.18) constitute the integrability conditions for the system (2.19),
and this system admits an (nl + nz)-dimensional space of vector-valued solutions

") =-1 there corresponds a(px, ",P,1+,2). To any basis of solutions (pi with
Stiickel matrix 19 with ol’/O p l’)H-f2.

5) To understand the significance of the quadratic forms A,, and linear forms L
(2.16), we use the natural symplectic structure on the cotangent bundle Qn of the
Riemannian manifold Vn. Corresponding to local coordinates {x} on Vn we have
coordinates {x i, pj} on Qn. If {k (X’)} is another local coordinate system on V, then it
corresponds to {k,/3} where/3 =plOx/O; k. The Poisson bracket of two functions
F(xi, Pi), G(xi, PJ) on , is the function

(2.20) IF, G] O,,,FO,,G

(We are employing the summation convention for variables that range from 1 to n.)
It is straightforward, though tedious, to verify the relations

(2.21) [Al, A.,] 0, [L,, Al] 0, [La, Lt3] 0.

(For n -< 4 these relations were already noted in [5] and [6]. We will give an explicit
proof for general n in 3.) Thus, the A, for m => 2 are second order Killing tensors
and the L are Killing vectors (first order Killing tensors) for the manifold V,.
Moreover, the family of n- 1 Killing tensors {A,,(m-> 2), L} is in involution.

The relations (2.21) associating separable coordinates on V, with an involutive
family of Killing tensors are not difficult to prove. Much more difficult is the charac-
terization of exactly those involutive families of Killing tensors that define variable
separation and the development of a constructive procedure to determine the coor-
dinates from a knowledge of the Killing tensors. For orthogonal separable coordinate
systems this problem was given an elegant solution in [2]. For the more general case in
which the coordinates may not be orthogonal, we provide a (less elegant) solution in the
following two sections.

3. Generalized Stiickei form. Here, we are given a Riemannian manifold V and
the contravariant metric tensor gi on V,, expressed in terms of the local coordinates
x , x We wish to determine necessary and sufficient conditions on the g’ in order
that the Hamilton-Jacobi equation (1.1) permit separation in these local coordinates.

If gi HT,z6i, i.e., if the coordinates {x} are orthogonal, then the necessary and
sufficient condition for separation is that H g’ppi be in Stickel form [1, App. 13]. In
other words, the relations (2.18) must be satisfied.

For nonorthogonal coordinates the conditions are somewhat more complicated.
To derive these conditions we need some preliminary lemmas related to Stfickel form.
Let ds2 h2 (dxi)2 gii dY dY be a metric that is in Stickel form with respect to the
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622 E. G. KALNINS AND WlLLARD MILLER, JR.

local coordinates y l, yS., i.e., there exists an N N Stfickel matrix 19 such that
h 2 O/0 il, where 0 det (R) and 0 il is the (i 1) minor of 0. A scalar valued function )(y) is
a Stiickel multiplier (for ds 2) if the metric dg fds fh )2(dy is also in Stackel form.

LEMMA 1. f is a Stackel multiplier for ds 2 if and only if it satisfies the relations

(3.1) f+f In h +f In h 0, j k.

Proof. These relations follow directly from the fact that (2.18) must hold for
H h and also for H fh if f is a Stfickel multiplier.

LEMMA 2. f is a Stdckel multiplier for ds g and only g there exist local analytic
functions l /(Y/) such that

N

(3.2) f(Y) E l(yl)h2.
/=1

Proof. Suppose [ is a Stfickel multiplier for ds. Then there exists a St5ckel matrix
such that fh &Ol. But h 0/0 l, so fO/= oll/ll, a function independent of yl.

Since the preceding relation holds for all we have fO/ ol/l { C and, without
loss of generality, we can renormalize so that 1. Thus,

and we obtain (3.2) with
Conversely, if f can be expressed in the f6rm (3.2), where h 0/011 is in Sthckel

form, then it follows directly from (2.18) withH h that relations (3.1) are satisfied.
Hence, f is a Stfickel multiplier.

Note that (3.2) is the general solution of (3.1).
Let (gi) be a given contravariant metric in the coordinates x , x ". We wish to

determine if these coordinates permit separation for the Hamilton-Jacobi equation. It
is convenient to reorder the coordinates in a standard form. Let n3 be the number of
ignorable variables x (recall that x is ignorable if Oxg =0 for all i, ). Of the
remaining n- n3 variables, suppose n2 variables x have the property grr= 0 and the
remaining n variables x satisfy g
n+ lrn+n2, and n+n2+1n+n2+n3=n.

THEOREM 1. Suppose (g) is in smndardform with respect to the variables {xi}. The
Hamilton-Jacobi equation (1.1) is separable for this system if and only if:

1) The contravariant metric assumes the form

(g") 0

n3

0 nl

H-2B n2

gal3
where B B= (X r)

2) The metric

nl hi+n2
r2dff2 ., HI (dx’*):z + , H (dx

a=l r=nx+l

is in Stiickel form i.e., relations (2.18) hold ]’or 1 <= i, ], k <-_ nx + n2.
3) Each g(x) is a Stiickel multiplier ]:or the metric d2.
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KILLING TENSORS AND NONORTHOGONAL VARIABLE SEPARATION 623

Proof. The theorem follows immediately from expressions (2.8) and Lemmas 1
and 2.

Note that Theorem 1 reduces the problem of determining whether the Hamilton-
Jacobi equation is separable in given coordinates to the verification of two systems of
partial differential equations. If the coordinates are orthogonal, then nz 0 and the
separation requirement is simply that the metric be in St/ickel form.

Let A a i] (x)pip], B b i (x)pipi be symmetric quadratic functions on lT"n. It follows
from (2.20) that these functions are in involution with respect to the Poisson bracket if
and only if

(3.3) a[g’iOib=b[’]Oia, l<-i,k,l<=n,

where

a[i,ic3ib ,l aii oib kl q_ alic3]b ik q_ akiOib li.

A scalar-valued function p(x) is a root of the form a ij(x) if

(3.4) det (aii(x)-p(x)gii(x)) 0

in a coordinate neighborhood, where (gi]) is the metric on Vn. A form O Ai(x) dx such
that

(a ij ij-pg )hi=0, O0
in the same coordinate neighborhood is an eigenform corresponding to the root p.

THEOREM 2. Let (gii) be the contravariant metric tensor on Vn in the coordinates
{xi}. If the Hamilton-Jacobi equation is separable in these coordinates, then there exists a
Q-dimensional vector space of second order Killing tensors on V, such that

(1) [A, B 0 for each A, B
(2) For each of the n essential coordinates of type 2, x , the form dx is a

Asimultaneous eigenform for every A , with root p
(3.5) (3) For each of the nz essential coordinates of type 1, x r, the form dx is a

simultaneous eigenform for every A sg, with root pA. The root p,A has
multiplicity 2 but corresponds to only one eigenform.

(4) c3i(aat3)--piAOigt3 -0, i= 1,..., nl+n2 for all A e g, and all n3 ignorable
variables a, fl n + n2 + 1,. , n.

(5) [A, L] 0 for each A eg and L p, a n + n2 + 1,..., n.
(6) Q rt + n3(n3-1)/2.

This theorem is easily obtained from the proof of the following deeper result. Let
{x i} be a coordinate system on V, with coordinates divided into three classes, containing
nl, n2, and n3 variables respectively (n nl + n2+n3). (We will call them essential
variables of type 1, essential variables of type 2 and ignorable variables, respectively,
even though at this point they have nothing to do with separation.) Let H g’lpipi.

THEOREM 3. Suppose there exists a Q-dimensional vector space g of second order
Killing tensors on V, such that H 1 and conditions (1)-(6) in (3.5), are satisfied.
Furthermore, suppose gab__ 0 if 1 <--a < b <= n and gar._ g grS 0 for 1 <--a <= nl,

n + 1 <= r, s <= n + n2, n + n2 + 1 <= ce <--_ n. Then the Hamilton-Jacobi equation (1.1) is
separable in the coordinates {xi}. The Killing tensors A,, m 1, ., nl + n2, (2.16), and
LL pp, n + n2 + 1 <- <- <- n, form a basis for

Proof. From conditions (2), (3) and our assumptions on the vanishing of certain
matrix elements of (gJ), we see that the matrix corresponding to any A takes the
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624 E. G. KALNINS AND WILLARD MILLER, JR.

form

nl t2 n3

(3.6) (a") 0

If (p) (p) for A, B e , it follows from (3.6) and condition (4) that A -B is a linear
combination of the n(n + 1)/2 Killing tensors LL pp, a ft. It follows that for
each x the set of (n + n2)-tuples {(p (x)), A } spans C"+".

The relation [H, A] 0 is equivalent to

(3.7) g[i,i

Setting (i, k, l) (a, b, c) in (3.7) and utilizing (3.6) we obtain

(3.8) Opb (p Pb)O (InH2 ), Op O.

Setting (i, k, l)= (a, r, a) in (3.7) we find

(3.9) Opr (p pr)O In gr if gr O.

For (i, j, k) (r, a, fl) we obtain

(3.10) gSgOsPr+grgOsPr=(p--pr)gOsgr +(ps--Pr)gSOsgr (sumons).

The case (i, j, k) (a, a, a) leads to

(3.11) Orp (Pr--p)Or In H22.
The cases (i, j, k)= (a, a, fl), (a, fl, y) are satisfied as a consequence of condition (4),
and all remaining cases are satisfied identically.

Multiplying both sides of (3.10) by gRgS, (n + 1 R, S n + hE), and summing
on a and fl we find

(3.12) 8OSPR + 8ORPS (PS --Pr)gROSg + (PR --Pr)gs,ORgr.
Setting R =r, S s in (3.12), solving for OsPR, substituting this result in (3.10) and
equating coefficients of ps, s r, we find after some manipulation

(3.13) 0(ln gS) 0r(ln g) gOr(gS), r S

for all a, y such that gSg 0.
Since (g) is nonsingular, for each s, n + 1 Sn+ hE, there is at least one

a a(s) such that g 0. We defineH2 g(S)S. It follows from (3.9) and (3.13) that
there exist functions B (x r) such that

gV g* HE (x)B (x n + l < r < n + n2,

Thus, expressions (3.8), (3.9), (3.11) and (3.12) reduce to

(3.14) Oip (pi- p)0(lnH2 ), 1 i, ] n + hE.

The integrability conditions for the system (3.14) are precisely (2.18); i.e., the metric
nl+n2 2 i)2dy2== Hi (dx must be in Stfickel form. Similarly, the integrability require-

ments OOa OOia for condition (4) are (through use of (3.14)) simply that eachg
be a Stfickel multiplier for the metric d2. Thus the contravariant metric (g) takes the
form (2.8); hence the Hamilton-Jacobi equation separates in the coordinates x. The
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KILLING TENSORS AND NONORTHOGONAL VARIABLE SEPARATION 625

stated relation between the A M and the quadratic forms A, of 2 is provided by
(2.17) and (2.19). In particular, expressions (2.17) for the a satisfy conditions (4) and
are determined by these conditions to within additive constants.

The role of condition (4) needs clarification. It is not difficult to construct examples
of Killing tensors that satisfy conditions (2), (3) and (5) but violate condition (4).
However, we have

COROLLARY 1. Let (gij) be the metric for Vn in the separable coordinates {xi}, the
coordinates ordered as in Theorems 2 and 3, and letM be the space ofsecond orderKilling
tensors described in Theorem 2. Suppose C is a second order Killing tensor satisfying
conditions (2), (3) and (5) of Theorem 2 and such that [C, A] 0 for all A M. Then
C ; i.e., C satisfies condition (4).

Proof. Let (pc) be the roots of C. Then there exists a B such that (pc)=_(p).
Thus, the Killing tensor F C B has roots p/r _= 0 and takes the formF fpp. The
condition IF, A 0 for all A becomes

(3.5) "og O,’(f3"/)+oAgv"O,’(.f’)+oAgt3"Or(fW)=O, Oaf3=O.
The coefficient of pA in (3.15) must vanish, so we have

(3.16) g’"O,.f3’ +gro,.f’t3 +g3"O,.f/’=O (no sum on r).

(Recall that for fixed r there is at least one y such that greta 0.)
Supposeg0. Setting (a,/3, 3,) (, a, a) in (3.16) we find g’"O,.f =0, so that

Orf =--0. On the other hand, if gr----O but g0, then setting (a,/, y) in (3.16)
g/rOrf,a 0. Thus in all cases C3rfaa= O.

If g,r O, then setting (a,/, y) (a, B, a) in (3.16) we find g’"Orf’ O, SO Orf’
0. However, if gr=--O but g"r-o, then, since OrfO’=Orf’=--O, (3.16) becomes
g,ro,.f, 0. Thus in all cases O,.f ---O.

We have shown that fo is a constant, hence that F f’Oppo
Remark. It is sufficient to require that condition (4) of Theorem 2 be valid for

nl + 1,. , nl + Ha, since the requirement [H, A] 0 for (i,/’, k) (a, a,/) yields
this condition for 1,..., nl.

4. The main result. We come now to the fundamental question’ given an involu-
tive family of n 1 Killing tensors, how do we determine if this family corresponds to a
separable coordinate system for the Hamilton-Jacobi equation?

Let {x j} be a local coordinate system on the Riemannian manifold Vn and let
0(. hi(j)dx i, 1 < ] <= n, be a local basis of one-forms on V. The dual basis of vector
fields is X Ai(h)Ox ,, 1 < h < n, where Ai(h)Ai(i) 8 (h). We say that the forms {0} are
normalizable if there exist local analytic functions gCj, y such that 0j gCj dy j, (no
sum). (Equivalently, Xh g-(Or.) It is classical that the forms are normalizable if and
only if the coefficient ofXI is zero in the expansion of [Xh, Xk] in terms of the {X
basis whenever h, k # l; see [1, 35].

LEMMA 3. The one-forms {Oi} are normalizable if and only if
(h) (k)(4.1) (Ox,At) OxiAj(l))A A O, h, k # 1.

This condition can also be expressed in terms of the inner products

(4.2) G(h,l) A (h)Ai(1).
,_ A(h) Ai(h) (l,h) (h) Thus conditionWe have hi(0 ,.1(h,l)lX] or hlG where G(h’I)G(I,i) o(i).

(4.1) can be written in the form

(4.3) G(h’h’)G(k’k’)(7(lh,k,)--’Y(lk,h,)) O, h, k # l,
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626 E. G. KALNINS AND WlLLARD MILLER, JR.

where

(4.4) 7(lhk) i(1),]’ (h)l k)

and A(1), is the flh covariant derivative of li(l) [1]. Let H g’Ipipj.
THEOREM 4. Suppose there exists a Q-dimensional vector space of second order

Killing tensors on V, such that H M and:
(1) [A, B 0 for each A, B M.
(2) There is a basis of one forms O(h)= li(h) dx i, 1 < h =<n such that

(a) the n forms O(a), 1 <- a <= n are simultaneous eigenforms for every A M
Awith root p

(a ij Ap, g1)h(,) O,

(b) the n2-forms O(r), n l+ 1 <=r<=nl+ n2, are simultaneous eigenforms for
Aevery A 4 with root p

(4 5) (aiJ A ij
p g )h() O.

The root p has multiplicity 2 but corresponds to only one eigenform.
(3) x(h)(Ai(a)aiiAi(13) o’X(h)(Ai(,)g A(t)), h 1, , n + n2 ]:or all A .. and

all a, fl n + n2 "[- 1, , n.
(4) [L,, Lt 0 where L, Ai(’)pi.
(5) [A, L] 0 ]:or each A ..
(6) Q=1/2(2n+n-n3), where na=n-nl-n2.
(7) G(ab) 0 if 1 <= a b <-_ ha, and G(ar) G(a,) G<rs) 0 for 1 <- a <- n, nx +

l<=r, snl+n2, n+n2+ l<=ce =<n.
Then there exist local coordinates {y} for V, such that 00 f(i(y) dy for suitably

chosen functions f(i), and the Hamilton-Jacobi equation is separable in these coordinates.
Conversely, to every separable coordinate system {y J} for the Hamilton-Jacobi equation
there corresponds a family ofsecond order Killing tensors on V, with properties (1)-(7).

Proof. It is enough to show that conditions (1)-(7) imply that the one-forms 0(i are
normalizable; the remainder of the proof follows immediately from Theorems 2 and 3.

From conditions (4) and (5) it follows that there exists a coordinate system {x i} on
hi+n2 a, r) h X(a)V, such that 0(,,) dx +h=l i(ot)h(X X dx and 0x. Clearly, conditions

(4.1) hold for h a and any values of k, I.
Some other conditions (4.1) follow directly from [2, proof of Theorem 5]. It

follows from that proof that conditions (1), (2) and (7) imply "}/(lhk)--" Y(lkh)-’0 for
pairwise distinct numbers l, h, k such that 1 <_-l, h, k _-< n + hE. Thus, (4.1) holds for
l= 1," ’, nl+n2 and l=<h, k<-nx, h,

The remainder of the proof is essentially a systematic exploitation of condition (1)
for A, B e . Writing this condition in the form (3.3), multiplying by
and summing for i, ], k 1, n, we obtain an identity AE,’.,,,. This identity can be
simplified through use of conditions (2) and (3). In particular, condition (2) leads to

(4.6) O.a’ =-aWA’(Z)Ouhw(z)+Ou(p(Z)gW)A’(Z)hw(z)+p(Z)gjWAV(Z)o,hw(z),

where in this and the following expressions u, v, w, z range from 1 to n + n2 and 0i Ox,.
Condition (3) leads to

(4.7) Ou(Ai(a)a ’Ai(13)) A(z)A(Z)p (z)ov(Ai(a)gi"Ai(13)).
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KILLING TENSORS AND NONORTHOGONAL VARIABLE SEPARATION 627

Furthermore, convariant differentiation of (4.2) leads to the relation

(4.8) ]/(hlk) q- "}/(lhk) A {k)G(hl),].
Through use of these relations we can express the identities a nEm’,mg_,m3 in terms of
Ai(u), (u) i]p and g alone.

Let A, B e M have roots {0i}, {#}, respectively. Equating coefficients of Or/xs in
A,BEc,,,o we find

(4.9) G(rh’)G(s’k’)(T(ch’k’)- "Y(ck’h’)) 0;
A,Bi.e., (4.1) holds for (h, k, l) (r, s, c). Equating coefficients of 0dzr in E,,, a b, we

find similarly that (4.1) holds for (h, k, l) (r, a, c). Thus the forms 0()are normalizable.
A,BEquating coefficients of pr/zs in E,,,o, r, s, pairwise distinct, we verify that (4.1)

A,Hholds for (h, k, l) (r, s, t). Finally, equating coefficients of 0r in E,,, r t, we verify
that (4.1) holds for (h, k, l) (r, a, t). This shows that the forms 0(t) are normalizable.

We see at this point that, by renormalization of 0(3, O(r) if necessary, we can find
local coordinates {y} such that

0(,,) dy", a 1,.. , nl, O(r) dy r, r nl + I,. , nl + n2,

(4.10)
0,) dy + Y Ah(,) dy h.

h=l

-,na+nReplacing 0( by d( 0--z.r=nl+l Ar0r), we see that the new forms 0 (dropping
the hat) satisfy conditions (1)-(7), since G(ar} 0, and further that Ar 0 for the new
forms. Equating coefficients of iob in A HEbf:,,, b c, we find ObA(c) OcAb(), and equating

A,Bcoefficients of PcId, in Ec.. we obtain Or’(B)c --O. Thus 0 dy + df, where df
Y’.1=1 Ac)dy c. Setting

(4.11) Z
h yh, h 1, H1 q- hE, Z y +f,

we have 0(i) dz , X( Oz, ] 1,. , n and our one-forms are normalizable.
Remark. It is sufficient to require that condition (3) of Theorem 4 be valid for

A,Hh, + 1, , nl + n2 since the identity Ea,,0 yields this condition for h 1, , n.
Thus condition (3) is unnecessary when n2 0.

5. An example. To show how Theorem 4 can be employed in practice we treat a
single example in some detail. The real Hamilton-Jacobi equation

Wx

admits the pseudo-Euclidean algebra e (2, 1) as its symmetry algebra of Killing vectors.
A basis for the symmetry algebra is

K1 xpt + tpx, K2 YPt + tpy, L3 YPx -xpy
(5.2)

Po Pt, P1 Px, P2 Py.

As is well known (e.g., [2]), the space of second order Killing tensors for the
pseudo-Riemannian manifold with (5.1) as its associated equation is spanned by
products of Killing vectors (5.2). Thus, it is easy to display the second order Killing
tensors for this manifold.

Recall that two separable coordinate systems for a Hamilton-Jacobi equation are
considered as equivalent if the defining symmetry operators for the two systems are
equivalent under the adjoint action of the local Lie symmetry group of the equation [5],
[6], 10]. Thus, if we are looking for all separable coordinate systems with one ignorable
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628 E. G. KALNINS AND WILLARD MILLER, JR.

variable we can limit our search to those cases where the Killing vectorX correspond-
ing to this variable is an explicitly chosen representative of one of the conjugacy classes
of one-dimensional subalgebras of e (2, 1). We consider the particularly interesting case
whereL P0 + P2. (As shown in [5], all nonorthogonal separable coordinates for (5.1)
correspond to this case. Moreover, it is easily shown that any coordinate system with
P0 + P2 as a generator for an ignorable coordinate must necessarily be nonorthogonal
[10].) For such a system the Killing tensor A must commute with L. Thus A can be
chosen from the real vector space of homogeneous second order polynomials in the
symmetries (5.2). Furthermore, we can identify two Killing tensors that lie on the same
orbit under the adjoint action of the normalizer for P0 + P2. The normalizer has basis
{K2, L3-K1, P0+P2, P1, P0-P2}. (See [11] for a more detailed discussion of this
problem.) One family of orbit representatives is

(5.3) (L3-KI)2 +4P + a(L3-K)(Po-P2) + b(Po-P2)2 + c(Po + P2)2 + dp(Po-P2).

(That is, two such representatives lie on the same orbit if and only if they are identical.
We could, of course, easily compute all possible families of orbit representatives and
apply the following considerations to each such family.) Group theory can take us no
further than this point. We still have to determine which, if any, of the Killing tensors
(5.3) actually correspond to separable coordinates.

In the following it is convenient to choose new coordinates {x, 7., w} such that
7" 1/2(y q- t), W 21-(y t), SO p py + Pt, Pw Py Pt. In terms of these coordinates,

(5.4)

d4w2+4+0 -2xw -aw --ax +p
A -pH -2xw x 2 + c

2
d ax +p

b-aw
2 2

Since O2 is a double root, we must have f(02)-" 0. Also, f(p) 1/4(O --02)2(O --01). It is
orthogonal, we must have n nz 1 for any separable coordinates. Thus A must have
a single root px and a distinct root pz of multiplicity 2 which has only one eigenform. The
characteristic equation f(p)= det (A-oH)= 0 reads

3 2-- W + 1 + P bx2--4-X2 2ax + cb axw + dxw
(5.5)

+ dacw-c(4b-a2)w2+-4b+a2+ x2+-----4cb =0.

Since 02 is a double root, we must have "(02)= 0. Also, ’(0)=1/4(0-0a)2(0-01). It
is straightforward, though tedious, to verify that these conditions on 0,0. are
inconsistent unless a b c d 0, in which case

(5.6) pa -4(wz + 1), p2 0.

Thus,

(5.7)
4w2+4 -2xw 01A -2xw x 2 0

0 0 0
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KILLING TENSORS AND NONORTHOGONAL VARIABLE SEPARATION 629

and 0(1)-- (2w 2 + 2) dx -2xw dw, 0(2)"-" dw. To satisfy conditions (5) and (7)of Theorem
4 we must require 0(3)-xw(w2+ 1)-1 dx + dz+fdw. We choose f such that 0(3) is a
perfect differential and obtain

2w2+2 0

(5.8) (x))

xw
(w2+ 1)

0 0 1

-2xw 1
X2(1-- W 2

2(1 + w2)2

(A(/)])

1
2w 2 + 2 2(w2 + 1)2

2
XW
2w + 1 2(1 + w)

0 1

Condition (3) can be verified directly.
Finally, Q 3 and 4 has the basis {A, H, X(3)}.
We conclude that among the operators (5.3) only A =(L3-K1)e+4p cor-

responds to a separable coordinate system. Furthermore, in this case it is now
straightforward to derive the separable coordinates. They are {x 1, x, x3}, where

(5.9) x xl[l+(x2)2]/2 [x3-(xl)2x2] 2
7"-- W--X

2

Indeed,

(5.10) X(1)= (1 + w)-3/01, X(2)-- 02, X(3)-- 201.
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