
September 7, 2012 7:43 WSPC - Proceedings Trim Size: 9in x 6in millersuperintegrablehamiltonians

1

STRUCTURE THEORY FOR EXTENDED

KEPLER–COULOMB 3D QUANTUM SUPERINTEGRABLE

SYSTEMS

WILLARD MILLER, JR.

School of Mathematics, University of Minnesota,

Minneapolis, MN 55455, USA
∗E-mail: mille003@umn.edu

A quantum superintegrable system is an integrable n-dimensional Hamilto-
nian system with potential: H = ∆n + V that admits 2n − 1 algebraically

independent partial differential operators commuting with the Hamiltonian,

the maximum number possible. The system is of order ` if the maximum order
of the symmetry operators, other than H, is `. Typically, the algebra gener-

ated by the symmetry operators and their commutators has been proven to
close polynomially. However the degenerate 3-parameter potential for the 3D

extended Kepler-Coulomb system (2nd order superintegrable) appeared to be

an exception as Kalnins et al. (2007) showed that it didn’t close polynomially.
The 3D 4-parameter potential for the extended Kepler-Coulomb system is not

even 2nd order superintegrable. However, Verrier and Evans (2008) showed it

was 4th order superintegrable, Tanoudis and Daskaloyannis (2011) showed it
closed polynomially. We consider an infinite class of quantum extended Kepler-

Coulomb systems that we show to be superintegrable of arbitrarily high order,

compute the structure algebras and demonstrate that algebraic closure is the
norm, whereas polynomial closure requires extra symmetry. This is a report

on joint work with Ernie Kalnins (University of Waikato) and Jonathan Kress

(University of new South Wales).
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1. Definitions

A quantum system is defined by a Schrödinger operator H = ∆ + V (x)

where ∆ = 1√
g

∑
ij ∂xi(

√
ggij)∂xj is the Laplace-Beltrami operator on an

n-dimensional Riemannian manifold, in local coordinates xj . The system is

superintegrable of order ` if it admits 2n−1 algebraically independent glob-

ally defined differential symmetry operators (the maximal number possible)

Sj , 1 ≤ j ≤ 2n− 1, n ≥ 2, with S1 = H and [H,Sj ] ≡ HSj − SjH = 0,

such that ` is the maximum order of the generating symmetries (other than
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H) as a differential operator. Systems associated with Lie algebras (` = 1)

and separation of variables (` = 2) are the simplest and best studied. An

integrable system has n algebraically independent commuting symmetry

operators whereas a superintegrable system has 2n − 1 independent sym-

metry operators which cannot all commute and this nonabelian structure is

critical for finding the spectral resolution of H by algebraic methods alone.

The importance of these systems is that they can be solved exactly.

2. The 4-parameter Kepler system

We shall start with the 4-parameter extended Kepler Coulomb system

H = ∂2
x + ∂2

y + ∂2
z +

α

r
+

β

x2
+

γ

y2
+

δ

z2
, (1)

where x, y, z are Cartesian coordinates and r =
√
x2 + y2 + z2. H is 4th or-

der superintegrable. We use the idea introduced in1,2 and extend the system

by passing to spherical coordinates and replacing each angular coordinate θi
by kiθi where ki is a fixed rational number. The extended Kepler-Coulomb

operator is HΨ = EΨ, where [L2, L3] = [Lj , H] = 0 and

H = ∂2
r +

2

r
∂r +

α

r
+

1− k2
1

4r2
+
L2

r2
, L3 = ∂2

θ2 +
β

cos2(k2θ2)
+

γ

sin2(k2θ2)
,

L2 = ∂2
θ1 + k1 cot(k1θ1)∂θ1 +

L3

sin2(k1θ1)
+

δ

cos2(k1θ1)
.

Here the 2nd order operators L2, L3 are just those that determine mul-

tiplicative separation of the Schrödinger equation. The scalar potential in

spherical coordinates is now taken as

Ṽ =
α

r
+

1− k2
1

4r2
+

1

r2
(

β

sin2(k1θ1) cos2(k2θ2)
+

γ

sin2(k1θ1) sin2(k2θ2)
+

δ

cos2(k1θ2)
).

It differs from the classical potential V by the term
1−k21
4r2 which corresponds

to R/8 where R is the scalar curvature of the manifold, just the correction

term needed for the conformally invariant Laplacian. It is also needed for

superintegrability. Note that for k1 6= 1 the space isn’t flat.

Our basic tasks are 1) to demonstrate that this generalized 4-parameter

Kepler-Coulomb problem is superintegrable for all rational k1, k2 by con-

structing the two remaining basic generating symmetries explicitly, and

2) to investigate the closure of the symmetry algebra generated by the

basic symmetries and compute the structure equations. The fundamental
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difficulty is the construction and manipulation of symmetry operators of

arbitrarily high order.

The separated solutions for the eigenvalue equations HΨ = EΨ, L3Ψ =

−µ2Ψ, L2Ψ = λΨ are Ξp,m,n = Rk1ρp (r)Φ
(c,b)
m (cos(2k2θ2))

Ψ(µ/k1,d)
n (cos k1θ1)√

sin(k1θ1)
,

Φ
(c,b)
m = sinc+1/2(k2θ2) cosb+1/2(k2θ2)P

(c,b)
m (cos(2k2θ2)),

Ψ
(µ/k1,d)
n = sinµ/k1+1/2(k1θ1) cosd+1/2(k1θ1)P

(µ/k1,d)
n (cos(2k1θ1)),

Rk1ρp = e−
√
Err(k1ρ+1)/2

2
√
Er

Lk1ρp (2
√
Er).

Here β = k2
2( 1

4 −b
2), γ = k2

2( 1
4 −c

2), δ = k2
2( 1

4 −d
2), µ = k2(2m+b+c+1),

β = k2
2( 1

4 − b
2), λ =

k21
4 (1− ρ2); P

(µ/k1,d)
n , P

(c,b)
m are Jacobi functions, Lk1ρp

are associated Laguerre functions; ρ = 2(2n+ µ
k1

+ d+ 1) and the energy is

E = α2/(2[p+ 2k1n+ 2k2m] + 2k1[d+ 1] + 2k2[b+ c+ 1] + 1)2.

A basic insight here is that formal eigenspaces of the Hamiltonian are in-

variant under action of any symmetry operator, so the operator must induce

recurrence relations for the basis of separated eigenfunctions. Our strategy

is to use the known recurrence relations for hypergeometric functions to re-

verse this process and determine a symmetry operator from the recurrence

relations. We look for recurrence operators that change the eigenvalues of

L2, L3 but preserve E. For k1 = p1/q1, k2 = p2/q2 we use the mappings

1) : p → p + 2p1, m → m, n → n − q1, 2) : p → p − 2p1, m →
m, n → n + q1, 3) : p → p, m → m − p1q2, n → n + q1p2, 4) :

p → p, m → m + p1q2, n → n − q1p2. We first look at recurrences for

associated Laguerre functions. To effect the r-dependent transformations

1) and 2) we use Y (1)±p: (τ = − 4α
2p+k1ρ+1 )

Y (1)
p
−R

k1ρ
p = [2(k1ρ+ 1)∂r + (2α+

1− k2
1ρ

2

r
)]Rk1ρp = τRk1ρ+2

p−1 ,

Y (1)
p
+R

k1ρ
p = [2(−k1ρ+1)∂r+(2α+

1− k2
1ρ

2

r
)]Rk1ρp = τ(p+1)(p+k1ρ)Rk1ρ−2

p+1 .

Similarly for Jacobi functions with z = cos(2k1θ1), we can find first

order parameter–dependent recursion operators Z(1)n−, Z(1)n+ such that

Z(1)n−
Ψ
µ/k1,d
n√

sin(k1θ1)
= −2(

µ

k1
+ n)(d+ n)

Ψ
µ/k1,d
n−1√

sin(k1θ1)
,

Z(1)n+
Ψ
µ/k1,d
n√

sin(k1θ1)
= −2(

µ

k1
+ d+ n+ 1)(n+ 1)

Ψ
µ/k1,d
n+1√

sin(k1θ1)
.

We now form the operators

J± =
(
Y (1)p±2p1−1

± Y (1)p±2p1−2
± · · ·Y (1)p±1

+ Y (1)p±

)(
Z(1)

n∓(q1−1)
∓ · · ·Z(1)n∓

)
,
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We can observe that J+ and J− switch places under ρ → −ρ so J2 =

J+ + J−, J1 = (J− − J+)/ρ are even functions of both ρ and µ and

can be interpreted as differential operators. Similarly we can find raising

and lowering recurrences satisfying properties 3) and 4), acting on ba-

sis functions Ψ
µ/k1,d
n , Φ

(c,b)
m to construct ladder operators K+, K−, even

functions of ρ2 that switch places under the reflection µ → −µ. Thus

K2 = K+ +K−, K1 = (K−−K+)/µ are even functions in both ρ and µ

so are differential operators. This proves superintegrability.

The action of J− on a generalized eigenbasis is given in terms of the

rising factorial (α)n by:

J−Ξp,m,n =
(2)4p1+q1(−1)q1α2p1(n+ 1)q1(µ/k1 + d+ n+ 1)q1

(2p+ k1ρ+ 1)2p1
Ξp−2p1,m,n+q1

with similar formulas for J+,K±. Recalling the actions of H,L2, L3 on this

eigenbasis we have J+J−Ξp,m,n = 44p1+q1E2p1(
ρ/2− µ

k1
−d+1

2 )q1×
(
ρ/2+ µ

k1
+d+1

2 )q1(
ρ/2+ µ

k1
−d+1

2 )q1(
ρ/2− µ

k1
+d+1

2 )q1(
k1ρ− α√

E
+1

2 )2p1(
k1ρ+

α√
E

+1

2 )2p1

×Ξp,m,n and similarly for J−J+Ξp,m,n, K+K−Ξp,m,n, K−K+Ξp,m,n. Thus,

each of J+J−, J−J+ is a polynomial in µ2 and E and since these opera-

tors switch places under the reflection ρ → −ρ, P1 = J+J− + J−J+,

P2 = J+J−−J−J+

ρ are polynomials in H,L2, L3. Also K+K−,K−K+ are

polynomials in ρ2 and in µ and switch places under the reflection µ→ −µ
so P3 = K+K− +K−K+, P4 = K+K−−K−K+

µ are polynomials in L2, L3.

To determine the structure relations it is sufficient to establish them

on the generalized eigenbases. The results can then be shown valid in-

dependent of basis,3 For example [J1, J2] = −2q1J
2
1 − 2P2(H,L2, L3),

[K1,K2] = −2p1p2K
2
1 − 2P4(L2, L3), and the unsymmetrized structure re-

lations J2
1 ( 1

4 − k−2
1 L2) = J2

2 − 2P1(H,L2, L3) − 2q1J1J2, K2
1 = −K2

2 +

2P3(L2, L3) + 2p1p2K1K2. Eventually, we find for h, ` = 1, 2,

[K`, Jh]Q = {J1,K1}Ph`11 + {J1,K2}Ph`12 + {J2,K1}Ph`21 + {J2,K2}Ph`22 ,

where Q, Ph`jk are explicit polynomials in L2, L3 and {A,B} ≡ AB − BA.

Here, Q is defined by B(d, µ)B(d,−µ)B(−d, µ)B(−d,−µ) where B(d, µ) =

(−d2−
µ
k1
−2q1p2 + 1

2 )q1 +(−d2−
µ
k1

+ 1
2 )q1 on a generalized eigenbasis. These

identities can be symmetrized, but they show clearly that double commuta-

tors of algebra generators cannot be expressed as polynomials in the gener-

ators. Rather the double commutators satisfy polynomial equations in the

generators. In this sense the algebra closes, but it closes algebraically.

However, there is another problem: the generators {H,L2, L3, J1,K1}
are not of minimal order. In particular, for the case k1 = k2 = 1 we have
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found a system of generators of orders (2, 2, 2, 3, 5) whereas it is known that

a generating set of orders (2, 2, 2, 2, 4) exists. It is easy to see that J1 is of

order 5 and J2 is of order 6, whereas K1 is of order 3 and K2 is of order 4.

We know that there must be other lower order symmetries J0,K0 for this

case, such that

[L2, J0] = J1, [L3, J0] = 0, L3,K0] = K1, [L2,K0] = 0.

In3 we show how to obtain these symmetries from the raising and lowering

operators J±,K±, for all rational k1, k2. Now we consider the symmetry

algebra generated by H,L2, L3,K0, J0. We can find algebraic relations be-

tween [J1,K0] and the generators, so that the symmetry algebra closes

algebraically. However, it doesn’t close polynomially.

3. The caged Kepler problem: k1 = k2 = 1

In the case k1 = k2 = 1, (1), we are in Euclidean space and our system has

additional symmetry. Note that in this case any permutation of the ordered

pairs (x, β), (y, γ), (z, δ) leaves the Hamiltonian unchanged. This leads to

additional structure in the symmetry algebra. This system was shown to

be superintegrable by Verrier and Evans,4 The basic symmetries are:

L3 = Ixy = (x∂y − y∂x)2 +
β(x2 + y2)

x2
+
γ(x2 + y2)

y2
.

By permutation symmetry, Ixz, Iyz are also symmetry operators, and L2 =

Ixy + Ixz + Iyz − (β + γ + δ). The constant of the motion K0 is 2nd order:

K0 = − 1
32 (Iyz − Ixz), and J0 is 4th order: J0 = −4M2

3 − 1
2×

{({x, ∂x}+{y, ∂y}+{z, ∂z})2,
δ

z2
}+2H

(
Ixz + Iyz − (β + γ +

3

4
)

)
+5

δ

z2
+
α2

2
,

M3 =
1

2
{(y∂z − z∂y), ∂y}−

1

2
{(z∂x− x∂z), ∂x}− z

(
α

2r
+

β

x2
+

γ

y2
+

δ

z2

)
.

The symmetries H,L2, L3, J0,K0 form a generating (algebraic) basis for the

symmetry operators. Under the transposition (x, β)↔ (z, δ) the operators

H,L2, L3,K0 transform to linear combinations of themselves. However, J0

is mapped to a new symmetry J ′0 linearly independent of the original basis

symmetries. Tanoudis and Daskaloyannis5 show that the algebra generated

by the 6 algebraically dependent symmetries H,L2, L3, J0,K0 and J ′0 closes

polynomially, in the sense that all double commutators of the generators are

again expressible as polynomials in the generators. However more is true. All

formally self-adjoint symmetry operators, such as {K1, J1}, K2
1 , J2

1 , [K1, J1]
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are expressible as symmetrized polynomials in the generators. Further we

can deduce an explicit polynomial relation among the 6 generators, an oper-

ator identity of order 12, quadratic in J ′0: 0 ≡ Q5 +{Q, J2}+32{K0, J0}2−

16{L2+L3−δ−1, {J, {K0, J0}}}+{Q1,K
2
0}+{Q2, J

2
0}+{Q3,K0}+{Q4, J0},

where J = −8(J0 + 2J ′0 + 1
2H −

α2

2 ), and Q1, Q2, Q3, Q4, Q5 are explicit

polynomials in H,L2, L3 of orders 2,4,5,4,6, respectively.

4. Conclusions and Outlook

The recurrence relation method developed by Kalnins, Kress and Miller6

for proving superintegrability and determining the structure equations for

families of 2D quantum superintegrable systems can be extended to the 3D

case. The construction appears to be quite general and not restricted to

Kepler-Coulomb analogs. For these higher order superintegrable systems it

appears that algebraic closure is the norm. For polynomial closure, extra

symmetry is needed. We have not proved in all cases that there do not

exist other generators of lower order but, if they exist, they must also be

obtainable in terms of recurrence relations of hypergeometric functions. A

crucial role is played by the raising and lowering operators. They are not

defined independent of eigenbasis and are not even symmetries, but all

symmetries are built from them.
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