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Abstract

We refine a method for finding a canonical form of symmetry operators of arbitrary order for
the Schrödinger eigenvalue equation HΨ ≡ (∆2 + V )Ψ = EΨ on any 2D Riemannian manifold,
real or complex, that admits a separation of variables in some orthogonal coordinate system. The
flat space equations with potentials V = α(x+ iy)k−1/(x− iy)k+1 in Cartesian coordinates, and
V = αr2 +β/r2 cos2 kθ+γ/r2 sin2 kθ (the Tremblay, Turbiner, and Winternitz system) in polar
coordinates, have each been shown to be classically superintegrable for all rational numbers
k. We apply the canonical operator method to give a constructive proof that each of these
systems is also quantum superintegrable for all rational k. We develop the classical analog of
the quantum canonical form for a symmetry. It is clear that our methods will generalize to
other Hamiltonian systems.

1 Introduction

We consider an n-dimensional classical superintegrable system as an integrable Hamiltonian system
that not only possesses n mutually Poisson - commuting constants of the motion, but in addition, the
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Hamiltonian Poisson-commutes with 2n − 1 functions on the phase space that are globally defined
and polynomial in the momenta. This notion can be extended to define a quantum superintegrable
system to be a quantum Hamiltonian which is one of a set of n independent mutually commuting
differential operators that commutes with a set of 2n− 1 independent differential operators of finite
order. We restrict to classical systems of the formH =

∑n
i,j=1 g

ijpipj+V and corresponding quantum

systems H = ∆n + Ṽ where Ṽ is related to V but in general is not equal to it for n > 2 due to
curvature corrections [1]. (Also there may be no classical or quantum analogs in some cases, [2].)
These systems, including the classical Kepler problem and the quantum hydrogen atom have great
historical importance, due to their remarkable properties. They are exactly analytically solvable
and in multiple ways. They can serve as the foundation for perturbation analysis, There are deep
connections with special functions. See [3, 4] for various applications of their theory and usage.
Superintegrable systems of 1st order, i.e., classical systems where the defining symmetries are first
order in the momenta and quantum systems where the symmetries are first order partial differential
operators, are directly related to Lie transformation groups and well understood. Superintegrable
systems of 2nd order have been well studied and there is now a structure and classification theory
[1, 5, 6, 7]. The connection between 2nd order symmetries and separation of variables has been of
crucial importance in finding examples and carrying out the classification [8, 9, 10]. However for 3rd
and higher order superintegrable systems much less is known. In particular there have been relatively
few examples and there is almost no structure theory, i.e., an understanding of the structure of the
Poisson algebra generated by the classical symmetries or the algebra generated by the quantum
symmetry operators and their commutators, and no classification theory.

This situation has changed recently with the discovery of many more examples of classical (especially)
and quantum superintegrable systems of order higher than two, [11, 12, 13, 14, 15, 16]. Also, the tool
of coupling constant metamorphosis (Stäckel transform) has been developed to map superintegrable
systems of higher order on one Riemannian space to superintegrable systems of the same order and
structure on a different Riemannian space [17, 18, 19, 20, 21]. In this paper we will concentrate on the
case n = 2 where the number of independent symmetries is 3, including the classical Hamiltonian or
quantum Schrödinger operator, respectively. In almost all of the families of new examples the second
symmetry is of 2nd order and defines an orthogonal separable coordinate system for the classical
Hamilton-Jacobi equation or the quantum Schrödinger equation. Only one defining symmetry is
of higher order. We are particularly considering the classical example of Tremblay, Turbiner, and
Winternitz [13, 14] where

V = αr2 +
β

r2 cos2 kθ
+

γ

r2 sin2 kθ

in polar coordinates. Due to the separation in polar coordinates there are two commuting 2nd
order symmetries. For certain rational values of the parameter k these authors found an additional
symmetry (usually of higher order), so that the system was superintegrable both in the classical
and quantum sense. They conjectured and provided impressive evidence that these systems were
classically and quantum superintegrable for all rational k. In [22] it was shown that, in fact all
of the classical TTW systems were superintegrable. Quesne [23] used a structure developed by
Dunkl to show that the TTW systems for k an odd integer were quantum superintegrable. As a
bi-product of the tools developed in this paper we will give a constructive proof that the TTW
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system is quantum superintegrable for all rational k. However, our main contribution is a tool for
the verification of classical and quantum superintegrability of higher order that can be applied to a
variety of Hamiltonian systems.

In Section 1 we review a construction of a canonical form for symmetry operators of all orders of a
time-independent Schrödinger equation that admits an orthogonal separation of variables [24, 25].
Then in Section 2 we apply this tool to the flat space potential V = α(x+ iy)k−1/(x− iy)k+1 in
Cartesian coordinates (separable in polar coordinates), that has recently been shown to be classically
superintegrable for all rational k [22]. We demonstrate that it is also quantum superintegrable for
all rational k.

In Section 3 we give the analogous construction of a canonical form for constants of the motion of all
orders for a classical Hamiltonian system. We again treat the example V = α(x+ iy)k−1/(x− iy)k+1

and give a new proof that it is classically superintegrable for all rational k. The special interest here
is the relation between the classical and quantum construction.

In Section 4 we apply the canonical operator method to the TTW case to demonstrate that it is
quantum superintegrable for all rational k. In Section 5 we discuss our overall strategy and prospects
for exploitation and generalization of our methods.

2 The canonical form for a symmetry operator

We consider a Schrödinger equation on a 2D real or complex Riemannian manifold with Laplace-
Beltrami operator ∆2 and potential V :

HΨ ≡ (∆2 + V )Ψ = EΨ (1)

that also admits an orthogonal separation of variables. If {u1, u2} is the orthogonal separable coor-
dinate system the corresponding Schrödinger operator has the form

H = L1 = ∆2 + V (u1, u2) =
1

f1(u1) + f2(u2)

(
∂2
u1

+ ∂2
u2

+ v1(u1) + v2(u2)
)
.

and, due to the separability, there is the second-order symmetry operator

L2 =
f2(u2)

f1(u1) + f2(u2)

(
∂2
u1

+ v1(u1)
)
− f1(u1)

f1(u1) + f2(u2)

(
∂2
u2

+ v2(u2)
)
,

i.e., [L2, H] = 0, and the operator identities

f1(u1)H + L2 = ∂2
u1

+ v1(u1), f2(u2)H − L2 = ∂2
u2

+ v2(u2). (2)

We look for a partial differential operator L̃(H,L2, u1, u2) that satisfies

[H, L̃] = 0. (3)
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We require that the symmetry operator take the standard form

L̃ =
∑
j,k

(
Aj,k(u1, u2)∂u1u2 +Bj,k(u1, u2)∂u1 + Cj,k(u1, u2)∂u2 +Dj,k(u1, u2)

)
HjLk2. (4)

Note that if the formal operators (4) contained partial derivatives in u1 and u2 of orders ≥ 2 we could
use the identities (2), recursively, and rearrange terms to achieve the unique standard form (4).

Using operator identities and writing ∂uj
= ∂j we have

[∂1, H] = − f ′1
f1 + f2

H +
v′1

f1 + f2

, [∂2, H] = − f ′2
f1 + f2

H +
v′2

f1 + f2

,

[∂1, L2] = − f ′1f2

f1 + f2

H +
f2v
′
1

f1 + f2

, [∂2, L2] =
f1f

′
2

f1 + f2

H − f1v
′
2

f1 + f2

,

[H, ∂12] =
f ′2

f1 + f2

∂1H +
f ′1

f1 + f2

∂2H −
1

f1 + f2

(v′2∂1 + v′1∂2),

[H,F (u1, u2)] =
1

f1 + f2

(Fu1u1 + Fu2u2 + 2Fu1∂1 + 2Fu2∂2).

From these results and (2) we obtain

(f1 + f2)[H,A∂12] = 2Au1(f1∂2H + ∂2L2 − v1∂2) + 2Au2(f2∂1H − ∂1L2 − v2∂1)

+A(f2∂1H + f ′1∂2H − v′2∂1 − v′1∂2) + (Au1u1 + Au2u2)∂12,

(f1 + f2)[H,B∂1] = B(f ′1H − v′1) + 2Bu1(f1H + L2 − v1) + (Bu1u1 +Bu2u2)∂1 + 2Bu2∂12,

(f1 + f2)[H,C∂2] = C(f ′2H − v′2) + 2Cu2(f2H − L2 − v2) + (Cu1u1 + Cu2u2)∂2 + 2Cu1∂12,

(f1 + f2)[H,D] = Du1u1 +Du2u2 + 2Du1∂1 + 2Du2∂2.

Thus we have

(f1(u1) + f2(u2))[H,A(u1, u2)∂12 +B(u1, u2)∂1 + C(u1, u2)∂2 +D(u1, u2)] =

(Au1u1 + Au2u2 + 2Bu2 + 2Cu1)∂12 + (Bu1u1 +Bu2u2 − 2Au2v2 + 2Du1 − Av′2)∂1

+(2Au2f2 + Af ′2)∂1H − 2Au2∂1L2 + (Cu1u1 + Cu2u2 − 2Au1v1 + 2Du2 − Av′1)∂2

+(2Au1f1 + Af ′1)∂2H + 2Au1∂2L2

+(Du1u1 +Du2u2 − 2Bu1v1 − 2Cu2v2 −Bv′1 − Cv′2)

+(2Bu1f1 + 2Cu2f2 +Bf ′1 + Cf ′2)H + (2Bu1 − 2Cu2)L2.

The symmetry condition (3) is equivalent to the system of equations

∂11A
j,k + ∂22A

j,k + 2∂2B
j,k + 2∂1C

j,k = 0, (5)
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∂11B
j,k + ∂22B

j,k − 2∂2A
j,kv2 + 2∂1D

j,k − Aj,kv′2 +

(2∂2A
j−1,kf2 + Aj−1,kf ′2)− 2∂2A

j,k−1 = 0, (6)

∂11C
j,k + ∂22C

j,k − 2∂1A
j,kv1 + 2∂2D

j,k − Aj,kv′1+
(2∂1A

j−1,kf1 + Aj−1,kf ′1) + 2∂1A
j,k−1 = 0, (7)

∂11D
j,k + ∂22D

j,k − 2∂1B
j,kv1 − 2∂2C

j,kv2 −Bj,kv′1 − Cj,kv′2 (8)

+(2∂1B
j−1,kf1 + 2∂2C

j−1,kf2 +Bj−1,kf ′1 + Cj−1,kf ′2) + (2∂1B
j,k−1 − 2∂2C

j,k−1) = 0.

Note that condition (4) makes sense, at least formally, for infinite order differential equations. Indeed,
one can consider H,L2 as parameters in these equations. Then once L̃ is expanded as a power
series in these parameters, the terms are reordered so that the powers of the parameters are on the
right, before they are replaced by explicit differential operators. Alternatively one can consider the
operator L̃ as acting on a simultaneous eigenbasis of the commuting operators H and L2, in which
case the parameters are the eigenvalues. Of course (4) is defined rigorously for finite order symmetry
operators.

In this view we can write

L̃(H,L2, u1, u2) = A(u1, u2, H, L2)∂12+B(u1, u2, H, L2)∂1+C(u1, u2, H, L2)∂2+D(u1, u2, H, L2), (9)

and consider L̃ as an at most second-order order differential operator in u1, u2 that is analytic in the
parameters H,L2. Then the above system of equations can be written in the more compact form

Au1u1 + Au2u2 + 2Bu2 + 2Cu1 = 0, (10)

Bu1u1 +Bu2u2 − 2Au2v2 + 2Du1 − Av′2 + (2Au2f2 + Af ′2)H − 2Au2L2 = 0, (11)

Cu1u1 + Cu2u2 − 2Au1v1 + 2Du2 − Av′1 + (2Au1f1 + Af ′1)H + 2Au1L2 = 0, (12)

Du1u1 +Du2u2 − 2Bu1v1 − 2Cu2v2 −Bv′1 − Cv′2 (13)

+(2Bu1f1 + 2Cu2f2 +Bf ′1 + Cf ′2)H + (2Bu1 − 2Cu2)L2 = 0.

We can view (10) as an equation for A,B,C and (11), (12) as the defining equations for Du1 , Du2 .
Then L̃ is L̂ with the terms in H and L2 interpreted as (4) and considered as partial differential
operators.

We can simplify this system by noting that there are two functions F (u1, u2, H, L2), G(u1, u2, H, L2)
such that (10) is satisfied by

A = F, B = −1

2
∂2F − ∂1G, C = −1

2
∂1F + ∂2G,

Then the integrability condition for (11), (12) is (with the shorthand ∂jF = Fj, ∂j`F = Fj`, etc., for
F and G),

2G1222 +
1

2
F2222 + 2F22(v2 − f2H + L2) + 3F2(v

′
2 − f ′2H) + F (v′′2 − f ′′2H) =

−2G1112 +
1

2
F1111 + 2F11(v1 − f1H − L2) + 3F1(v

′
1 − f ′1H) + F (v′′1 − f ′′1H), (14)
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and equation (13) becomes

1

2
F1112 + 2F12(v1 − f1H) + F1(v

′
2 − f ′2H) +

1

2
G1111 + 2G11(v1 − f1H − L2) +G1(v

′
1 − f ′1H) = (15)

−1

2
F1222 − 2F12(v2 − f2H)− F2(v

′
1 − f ′1H) +

1

2
G2222 + 2G22(v2 − f2H + L2) +G2(v

′
2 − f ′2H).

We remark that any solution of (14), (15) with A,B,C not identically 0 corresponds to a symmetry
operator that does not commute with L2, hence is algebraically independent of the symmetries H,L2.

2.1 The commutator [L2, L̃]

A straight-forward computation shows that if L̃ is a symmetry operator in canonical form (9) then
the operator commutator L̂ = [L2, L̃] has the canonical form

L̂(H,L2, u1, u2) = Â(u1, u2, H, L2)∂12 + B̂(u1, u2, H, L2)∂1 + Ĉ(u1, u2, H, L2)∂2 + D̂(u1, u2, H, L2),
(16)

where

Â =
1

f1 + f2

[f2A11 − f1A22 − 2f1B2 + 2f2C1] ,

B̂ = −B22 + Av′2 + 2A2v2 − (f ′2A+ 2f2A2)H + 2A2L2

Ĉ = C11 − Av′1 − 2A1v1 + (f ′1A+ 2f1A1)H + 2A1L2,

D̂ =
1

f1 + f2

[−f2Bv
′
1 − 2f2B1 − f1f

′
2C + f1v

′
2C + 2f1C2 + f2D11 − f1D22

+(f ′1f2B + 2f1f2B1 − 2f1f2C2)H + (2f2B1 + 2f1C2)L2] .

In terms of the functions F,G we have

F̂ = 2G12, Ĝ = G11 −G22 +
1

2
F12 − 2D.

Since L̂ is also a constant of the motion, the mapping L̃→ L̂ takes symmetry operators to symmetry
operators.

2.2 Formal self-adjointness properties

The forgoing construction is purely algebraic and does not address self-adjoint or skew-adjoint prop-
erties of the symmetry operators. To see how these properties relate to our construction we note
that there is a natural bilinear form determined by the metric, namely

(Φ,Ψ) =

∫ ∫
Φ(u1, u2)Ψ(u1, u2)(f1(u1) + f2(u2))du1 du2.
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Here Φ,Ψ are arbitrary C∞ functions with compact support. If K is a finite order partial differential
operator on the manifold, we define its formal adjoint K∗ by

(KΦ,Ψ) = (Φ, K∗Ψ)

for all Φ,Ψ. Thus K∗ is obtained by integration by parts where all boundary terms are assumed to
vanish. If K∗ = K we say that K is formally self-adjoint. If K∗ = −K we say that K is formally
skew-adjoint. For specific real Riemannian manifolds we can modify these definitions to obtain the
usual definitions of self- and skew-adjointness, but this general definition serves well for our work
where we are considering all manifolds as complex and local. Note that both H and L2 are formally
self-adjoint. If L̃ is a symmetry operator, then so is L̃∗. It follows that the symmetry operator
S = 1

2
(L̃ + L̃∗) is formally self-adjoint and the symmetry operator A = 1

2
(L̃− L̃∗) is formally skew-

adjoint. If the highest-order nonzero derivative occurring in the expansion of L̃ is order N , and N is
even, then S will necessarily be a non-zero self-adjoint symmetry operator. If N is odd, then A will
necessarily be a non-zero skew-adjoint symmetry operator.

If L̃ has the canonical form (4) then L̃∗ has canonical form

L̃∗ =
∑
j,k

HjLk2

(
A∗j,k(u1, u2)∂u1u2 +B∗j,k(u1, u2)∂u1 + C∗j,k(u1, u2)∂u2 +D∗j,k(u1, u2)

)
(17)

where

A∗ = A, B∗ = −B + A2 +
Af ′2

f1 + f2

, C∗ = −C + A1 +
Af ′1

f1 + f2

,

D∗ = D + A12 +
A1f

′
2 + A2f

′
1

f1 + f2

−B1 − C2 −
Bf ′1 + Cf ′1
f1 + f2

.

Note that the terms in (17) are ordered so that the powers of the parameters H,L2 are on the left.
Though the expressions for the symmetry operators S and A are cumbersome to write down, for
any reasonably low dimensional N in the constructions to follow, Maple can easily compute S and
A from L̃ in the standard form for partial differential operators.

3 The potential V = α (x+iy)k−1

(x−iy)k+1

We consider the flat space Schrödinger operator

H = ∂xx + ∂yy + V, V = α
(x+ iy)k−1

(x− iy)k+1
, (18)

where x, y are Cartesian coordinates. We have shown that the corresponding classical systems are
superintegrable for all rational k, [22].

In the special case k = 3 we have explicitly established quantum superintegrability. Indeed, we
obtained the symmetry operators

K1 = (∂x − i∂y)3 +
α

(x− iy)3
[−(3x+ iy)∂x + (ix− 3y)∂y], (19)
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K2 = (x∂y − y∂x)(∂x − i∂y)3 +
α

(x− iy)3
[i(2y2 − 3ixy − 3x2)∂2

x − (3iy + x)(iy + 3x)∂x∂y+

i(2x2 + 3ixy − 3y2)∂2
y − 2i(3iy + x)∂x − 2(iy + 3x)∂y − 8i] + iα2 (x+ iy)3

(x− iy)6
,

K3 = (x∂y − y∂x)2 + 2iαy
(−y2 + 3x2)

(x− iy)3
,

H = ∂2
x + ∂2

y + α
(x+ iy)6

(x2 + y2)4
,

with the commutation relations

[K1, K2] = 3iK2
1 , [K1, K3] = 6iK2 − 9K1,

[K2, K3] = 3i{K1, K2}+ i(27 + 6α)K1 + 9K2,

and the analogue of the constraint

1

2
{K1, K1, K3} − 3K2

2 − i
9

2
{K1, K2}+ (

63

2
+ 3α)K2

1 − 3αH3 = 0.

All of these quantum systems separate in polar coordinates:

u1 = R, u2 = θ, x = eR cos θ, y = eR sin θ.

The corresponding symmetry operator is

−L2 = ∂2
θ + αe2ikθ

(For k = 3 we have −L2 = K3 + α.) Furthermore,

H = e−2R
(
∂2
R − L2

)
,

and
f1 = e2R, f2 = 0, v1 = 0, v2 = αe2ikθ.

We assume k = p/q for positive relatively prime integers p, q. Based on the known expressions for
the classical higher order constants of the motion, derived in [22], we look for an operator constant
of the motion L̃, (9), where

F =
∑
a,b

Aa,b(α,H,L2)e
2(aR+ibkθ), G =

∑
a,b

Ba,b(α,H,L2)e
2(aR+ibkθ). (20)

We require that there are only a finite number of nonzero terms in the sums and that the sums are
of the form a = a0 +m, b = b0 + n where m,n run over a subset of the non-negative integers. (Thus
Ca0,b0 will be an analog of a lowest weight vector. Substituting all these expressions into equations
(14), (15) and equating coefficients of terms e2(aR+ibkθ), we obtain the matrix recursion

2(a2 − k2b2)

(
iakb a2 + k2b2 − L2

−a2 − k2b2 + L2 4iakb

)(
Aa,b
Ba,b

)
+ (21)
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(2a− 1)H

(
−ikb 1− a
a 0

)(
Aa−1,b

Ba−1,b

)
+

αk(2b− 1)

(
ia k(b− 1)
−kb 0

)(
Aa,b−1

Ba,b−1

)
= 0,

or, solving for

Ca,b =

(
Aa,b
Ba,b

)
,

Ca,b +
(2a− 1)H

J(a.b)

(
a(L2 + 3k2b2 − a2) 4i(1− a)akb
−ikb(L2 + k2b2) −(a− 1)(L2 + a2 + k2b2)

)
Ca−1,b (22)

+
αk(2b− 1)

J(a, b)

(
−kb(L2 − k2b2 + 3a2) 4i(b− 1)ak2b

ia(L2 + a2) k(b− 1)(L2 + a2 + k2b2)

)
Ca,b−1 = 0,

where
J(a, b) = 2(a2 − k2b2)((a− kb)2 − L2)((a+ kb)2 − L2).

Consider first the case where p, q are both odd. We see from (21) that we can choose the 2-tuple
C−p/2,q/2 arbitrarily, i.e., it is not a consequence of a recursion. Thus we set a0 = −p/2, b0 = −q/2,
so that a2

0 − k2b20 = 0. Further we set Ca,b = 0 unless it can be computed explicitly from Ca0,b0 by a
sequence of recursions (22).

Think of the elements Ca,b as laid out on an infinite grid, with rows labeled by a and columns by b.
The value of Ca0+m,b0+n for m, 6= 0 can be obtained via (22) as the sum of the contributions from
all regular paths that lead from gridpoint (a0, b0) to gridpoint a0 +m, b0 + n. A regular path is a
connected sequence of vertical moves upward: (ã− 1, b̃)→ (ã, b̃) and horizontal moves to the right:
(ã, b̃−1)→ (ã, b̃), in arbitrary order. All contributions from gridpoints below or to the left of (a0, b0)
are assumed zero. The contribution of a path to the value of Ca0+m,b0+n is the ordered product of the
contributions of the vertical and horizontal segments that make up the regular path.

We have assumed first that p and q are odd, so that p/2, q/2 are half-integers. Now notice that
any regular path connecting (a0, b0) = (−p/2,−q/2) to some gridpoint (1/2, b) necessarily contains
a vertical segment (−1/2, b̃)→ (1/2, b̃) and contributes the factor 0, so that the contribution of the
path to the sum is 0. Thus, necessarily, C1/2,b = 0. Similarly, any regular path connecting (a0, b0) =

(−p/2,−q/2) to some gridpoint (a, 1/2) necessarily contains an horizontal segment (b̃,−1/2) →
(b̃, 1/2) and contributes the factor 0, so that the contribution of the path to the sum is 0. Thus,
Ca,1/2 = 0. We conclude that the only possible nonzero 2-tuples are those in the grid (−p/2 +
m,−q/2 + n) where 0 ≤ m < p/2, 0 ≤ n < q/2, and these terms are uniquely determined by the
choice of C−p/2,−q/2. We get polynomial constants of the motion by taking the terms in C−p/2,−q/2 to
be suitable finite products of the form ∏

a,b

[J(a, b)],

to cancel the denominator terms in the the expressions for Ca0+m,b0+n which come from recursion (22).
Thus we have constructed a 2-parameter family of finite order constants of the motion. It is a simple
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exercise to show that the commutators of these symmetries with L2 are nonzero, so that the system
is operator superintegrable. (Note that this last fact follows also from our original construction of
the symmetries L̃. We must have A ≡ B ≡ C = 0 unless L̃ is functionally independent of H and
L2.)

If k = −p/q with p, q both odd, the same construction works with (a0, b0) = (−p/2,−q/2).

The case k = 2sp/q with s ≥ 1 and p, q relatively prime odd integers requires a modified analysis.
Now we set a0 = −2s−1p, b0 = −q/2, so that a2

0 − k2b20 = 0, a0 is an integer and, as before, b0 is half
integer. Further we set Ca,b = 0 unless it can be computed explicitly from Ca0,b0 by a sequence of
recursions (22). As before, the value of Ca0+m,b0+n for m, 6= 0 can be obtained via (22) as the sum of
the contributions from all regular paths that lead from gridpoint (a0, b0) to gridpoint a0 +m, b0 + n.
Now notice that any vertical segment connecting a gridpoint (−1, b̃) to gridpoint (0, b̃) maps C−1,b̃ to

C0,b̃ =

(
0

B̃0,b̃

)
,

i.e., to a 2-vector with upper component 0. Further, if this segment is followed by the horizontal
segment connecting (0, b̃) to (0, b̃ + 1) the upper component of the 2-vector will remain 0. Thus all
regular paths that lead from gridpoint (a0, b0) to any gridpoint (0, b) on row a = 0 will produce a
2-vector of the form

C0,b =

(
0
B0,b

)
. (23)

Next, note that any vertical segment (0, b̃) → (1, b̃) will map a special 2-vector (23) to the zero
vector. This means that Ca,b = 0 for all integers a ≥ 1. Just as before, Ca,b = 0 for all half-integers
b ≥ 1/2. Thus the only possible nonzero 2-tuples are those in the grid (−2s−1p+m,−q/2 +n) where
0 ≤ m ≤ 2s−1p, 0 ≤ n < q/2, and these terms are uniquely determined by the choice of C−p/2,−q/2.
We get polynomial constants of the motion by taking the terms in C−p/2,−q/2 to be suitable finite
products of the form ∏

a,b

[J(a, b)],

to cancel the denominator terms in the the expressions for Ca0+m,b0+n. Thus we have again con-
structed a 2-parameter family of finite order constants of the motion and the system is operator
superintegrable.

It is easy to extend these arguments to the cases k = −2sp/q and k = ±p/2sq where p, q are relatively
prime odd integers. Thus the system (18) is operator superintegrable for all rational k. It is also
tedious but straight-forward to verify from the results of Subsection 2.1 that for any of our symmetry
operators L̃ for this system the commutator [L2, L̃] also belongs to the algebra of solutions that we
have constructed.

Example: We consider the case k = 3 where explicit operators proving superintegrability are known
to be given by (19). The third order operator K1 can be cast into canonical form to give

A = 12ie−3(R+iθ), B = (8 + e2RH + 4L2)e
−3(R+iθ),
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C = −(8i+ 3ie2RH + 4iL2)e
−3(R+iθ), D = −(4e2RH + 12L2)e

−3(R+iθ).

It is straightforward to check that equations (10), (11), (12), (13) are satisfied, as well as the re-
currence relations (21). Here, K1 is a skew symmetry operator. We can also find other solutions of
the recurrence relations and construct symmetry operators, though they will generally be of higher
order. For example, a solution is

A =
9i

4
He−R−3iθ, B =

3

4
(2He2R + 4L2

2 + 20L2 + 16−HL2e
2R)e−3(R+iθ),

C =
3i

4
(6He2R − 4L2

2 − 20L2 − 16 + 3HL2e
2R)e−3(R+iθ), D = −3

4
H(8 + 5L2)e

−R+3iθ.

The corresponding operator is

L̃ = A∂2
Rθ +B∂R + C∂θ +D =

9

8
K1K3 −

3

8
K3K1 +

3

4
(α +

13

2
)K1,

clearly a symmetry. Since K3 is a second order self-adjoint operator we see that

L̃∗ = −9

8
K3K1 +

3

8
K1K3 −

3

4
(α +

13

2
)K1.

Thus S = 11
8

[K1, K3], which is fourth order self-adjoint (and proportional to the commutator of L2

with K1), and A = 3
8
(K1K3 +K3K1) + 3

4
(α+ 13

2
)K1, which is fifth order skew-adjoint. Neither one of

these symmetries is of minimal order, but both are functionally independent of the generators H,K3,
so they each verify superintegrability.

4 The classical analog

Here we first describe the classical analog of our infinite order symmetry operator construction and
then apply it to the same example as in the previous section. We construct constants of the motion
of all orders for the Hamiltonian system

H =
2∑

j,k=1

gjkpjpk + V = E (24)

that admits a separation of variables. If {u1, u2} defines an orthogonal additive separable coordinate
system for the Hamilton-Jacobi equation in some Riemannian space, the corresponding Hamiltonian
system has the form [26]

H = L1 =
1

f1(u1) + f2(u2)

(
p2
u1

+ p2
u2

+ v1(u1) + v2(u2)
)
.

and, due to the separability, there is the second-order constant of the motion

L2 =
f2(u2)

f1(u1) + f2(u2)

(
p2
u1

+ v1(u1)
)
− f1(u1)

f1(u1) + f2(u2)

(
p2
u2

+ v2(u2)
)
,

11



i.e., {L2,H} = 0, where {·, ·} is the usual Poisson bracket, and we have phase space identities

f1(u1)H + L2 = p2
u1

+ v1(u1), f2(u2)H−L2 = p2
u2

+ v2(u2). (25)

We look for a constant of the motion L̃(H,L2, u1, u2), i.e., a function on the phase space that satisfies

{H, L̃} = 0. (26)

We require that the constant of the motion take the standard form

L̃ =
∑
j,k

(
Aj,k(u1, u2)pu1pu2 +Bj,k(u1, u2)pu1 + Cj,k(u1, u2)pu2 +Dj,k(u1, u2)

)
HjLk2. (27)

Note that if the formal symmetries (27) contained polynomial terms in pu1 or pu2 of orders ≥ 2 we
could use the identities (25), recursively, and rearrange terms to achieve the unique standard form
(27).

We find that the symmetry condition (26) is equivalent to the system of equations

∂2B
j,k + ∂1C

j,k = 0, (28)

−2∂2A
j,kv2 + 2∂1D

j,k − Aj,kv′2 + 2∂2A
j−1,kf2 + Aj−1,kf ′2 − 2∂2A

j,k−1 = 0, (29)

−2∂1A
j,kv1 + 2∂2D

j,k − Aj,kv′1 + 2∂1A
j−1,kf1 + Aj−1,kf ′1 + 2∂1A

j,k−1 = 0, (30)

−2∂1B
j,kv1 − 2∂2C

j,kv2 −Bj,kv′1 − Cj,kv′2 + 2∂1B
j−1,kf1 (31)

+2∂2C
j−1,kf2 +Bj−1,kf ′1 + Cj−1,kf ′2 + 2∂1B

j,k−1 − 2∂2C
j,k−1 = 0.

Note that condition (27) makes sense, at least formally, for infinite order constants of the motion,
and one can consider H,L2 as parameters in these equations.

In this view we can write

L̃(H,L2, u1, u2) = A(u1, u2,H,L2)p1p2 +B(u1, u2,H,L2)p1

+ C(u1, u2,H,L2)p2 +D(u1, u2,H,L2), (32)

and consider L̃ as an at most second-order constant of the motion that is analytic in the parameters
H,L2. Then the above system of equations can be written in the more compact form

Bu2 + Cu1 = 0, (33)

−2Au2v2 + 2Du1 − Av′2 + (2Au2f2 + Af ′2)H − 2Au2L2 = 0, (34)

−2Au1v1 + 2Du2 − Av′1 + (2Au1f1 + Af ′1)H + 2Au1L2 = 0, (35)

−2Bu1v1 − 2Cu2v2 −Bv′1 − Cv′2 (36)

+(2Bu1f1 + 2Cu2f2 +Bf ′1 + Cf ′2)H + (2Bu1 − 2Cu2)L2 = 0.

12



We can view (33) as an equation for B,C and (34), (35) as the defining equations for Du1 , Du2 .

We can simplify this system, and easily compare it to the operator system, by noting that there are
two functions F (u1, u2,H,L2), G(u1, u2,H,L2) such that (33) is satisfied by

A = F, B = −∂1G, C = ∂2G,

Then the integrability condition for (34), (35) is (with the shorthand ∂jF = Fj, ∂j`F = Fj`, etc., for
F and G),

2F22(v2 − f2H + L2) + 3F2(v
′
2 − f ′2H) + F (v′′2 − f ′′2H) =

2F11(v1 − f1H−L2) + 3F1(v
′
1 − f ′1H) + F (v′′1 − f ′′1H), (37)

and equation (36) becomes

2G11(v1 − f1H−L2) +G1(v
′
1 − f ′1H) = (38)

2G22(v2 − f2H + L2) +G2(v
′
2 − f ′2H).

Now we use this classical construction to study the flat space Hamiltonian system

H = p2
x + p2

y + V, V = α
(x+ iy)k−1

(x− iy)k+1
, (39)

where x, y are Cartesian coordinates. We have already shown that this system is superintegrable for
all rational k, [22].

All of these classical systems separate in polar coordinates:

u1 = R, u2 = θ, x = eR cos θ, y = eR sin θ,

with corresponding constants of the motion

−L2 = p2
θ + αe2ikθ.

Furthermore,
H = e−2R

(
p2
R − L2

)
,

and
f1 = e2R, f2 = 0, v1 = 0, v2 = αe2ikθ.

We assume k = p/q for relatively prime integers p, q. Based on the known expressions for the classical
higher order constants of the motion, derived in [22], we look for a standard form constant of the
motion L̃, (32), where

F =
∑
a,b

Aa,b(α,H,L2)e
2(aR+ibkθ), G =

∑
a,b

Ba,b(α,H,L2)e
2(aR+ibkθ). (40)
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We require that there are only a finite number of nonzero terms in the sums and that the sums are of
the form a = a0+m, b = b0+n where m,n run over a subset of the non-negative integers. Substituting
all these expressions into equations (37), (38) and equating coefficients of terms e2(aR+ibkθ), we obtain
the matrix recursion

2L2(a
2 − k2b2)

(
Aa,b
Ba,b

)
+ (2a− 1)H

(
a 0
0 a− 1

)(
Aa−1,b

Ba−1,b

)
(41)

−αk2(2b− 1)

(
b 0
0 b− 1

)(
Aa,b−1

Ba,b−1

)
= 0.

Although this system of equations is much simpler than the corresponding operator equations (21),
(22), it shares essential features with them so that the details of the proof of superintegrability are
essentially unchanged. As before we set

Ca,b =

(
Aa,b
Ba,b

)
.

Consider first the case where p, q are both odd and positive. We see from (41) that we can choose
the 2-tuple C−p/2,q/2 arbitrarily. Thus we set a0 = −p/2, b0 = −q/2, so that a2

0− k2b20 = 0 and we set
Ca,b = 0 unless it can be computed explicitly from Ca0,b0 by a sequence of recursions (41).

The value of Ca0+m,b0+n for m, 6= 0 can be obtained via (41) as the sum of the contributions from
all regular paths that lead from gridpoint (a0, b0) to gridpoint a0 +m, b0 + n. Since p/2, q/2 are
half-integers, any regular path connecting (a0, b0) = (−p/2,−q/2) to some gridpoint (1/2, b) nec-
essarily contains a vertical segment (−1/2, b̃) → (1/2, b̃) and contributes the factor 0, so that the
contribution of the path to the sum is 0. Thus, necessarily, C1/2,b = 0. Similarly, any regular path
connecting (a0, b0) = (−p/2,−q/2) to some gridpoint (a, 1/2) necessarily contains an horizontal seg-
ment (b̃,−1/2) → (b̃, 1/2) and contributes the factor 0, so that the contribution of the path to the
sum is 0. Thus, Ca,1/2 = 0. We conclude that the only possible nonzero 2-tuples are those in the grid
(−p/2 +m,−q/2 +n) where 0 ≤ m < p/2, 0 ≤ n < q/2, and these terms are uniquely determined by
the choice of C−p/2,−q/2. We get polynomial constants of the motion by taking the terms in C−p/2,−q/2
to be suitable powers of L2 to cancel the denominator terms in the the expressions for Ca0+m,b0+n

which come from recursion (41). Thus we have constructed a 2-parameter family of finite order
constants of the motion. It is easy to show that the Poisson brackets of these symmetries with L2

are nonzero, so that the system is classically superintegrable. There is a special simplification here
in that the recursion (41) decouples into separate equations for Aa,b and for Ba,b.

If k = −p/q with p, q both odd, the same construction works with (a0, b0) = (−p/2,−q/2).

For case k = 2sp/q with s ≥ 1 and p, q relatively prime odd positive integers, we set a0 = −2s−1p,
b0 = −q/2, so that a2

0 − k2b20 = 0, a0 is an integer and, as before, b0 is half integer. Again we set
Ca,b = 0 unless it can be computed explicitly from Ca0,b0 by a sequence of recursions (41). As before,
the value of Ca0+m,b0+n for m, 6= 0 can be obtained via (41) as the sum of the contributions from
all regular paths that lead from gridpoint (a0, b0) to gridpoint a0 +m, b0 + n. However, any vertical
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segment connecting a gridpoint (−1, b̃) to gridpoint (0, b̃) maps C−1,b̃ to

C0,b̃ =

(
0

B̃0,b̃

)
,

i.e., to a 2-vector with upper component 0. If this segment is followed by the horizontal segment
connecting (0, b̃) to (0, b̃+ 1) the upper component of the 2-vector will remain 0, so all regular paths
that lead from gridpoint (a0, b0) to any gridpoint (0, b) on row a = 0 will produce a 2-vector of the
form

C0,b =

(
0
B0,b

)
. (42)

Note that any vertical segment (0, b̃) → (1, b̃) will map a special 2-vector (42) to the zero vector.
Thus Ca,b = 0 for all integers a ≥ 1, and as before, Ca,b = 0 for all half-integers b ≥ 1/2. Thus the
only possible nonzero 2-tuples are those in the grid (−2s−1p + m,−q/2 + n) where 0 ≤ m ≤ 2s−1p,
0 ≤ n < q/2, and these terms are uniquely determined by the choice of C−p/2,−q/2. We get polynomial
constants of the motion by taking the terms in C−p/2,−q/2 to be suitable powers of L2 to cancel the
denominator terms in the the expressions for Ca0+m,b0+n. We have again constructed a 2-parameter
family of finite order constants of the motion and the system is classically superintegrable. There is
a significant simplification here, due to the decoupling of (41) into separate equations for Aa,b and
for Ba,b. If we choose Ba0,b0 = 0 then all vectors C0,b = 0, so that row 0 can be removed from the grid.

Again it is easy to extend these arguments to the cases k = −2sp/q and k = ±p/2sq where p, q
are relatively prime odd integers. Thus we have a new proof that the system (39) is classically
superintegrable for all rational k, and have clarified the relation between the classical and operator
symmetries for this system.

Example: For system (39) with k = 3 the recurrence relations can be solved easily to give

F = L2e
−3R−3iθ +

1

4
He−R−3iθ, G = L2e

−3R−3iθ +
3

4
He−R−3iθ,

so

A = F, B = 3L2e
−3R−3iθ+

3

4
He−R−3iθ, C = −3iL2e

−3R−3iθ−9

4
He−R−3iθ, D =

i

4
L2(4L2+3e2RH)e−3R−3iθ.

This gives us the canonical forms for the 3rd and 4th order constants of the motion K1, K2 as given
in [22]. Indeed, ApRpθ +D = 3

4
K1, BpR + Cpθ = 1

4
K2.

5 The quantum TTW system

Now we apply our constructions to the quantum TTW system, [13, 14]. Here,

u1 = R, u2 = θ, f1 = e2R, f2 = 0, v1 = αe4R, (43)
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v2 =
β

cos2(kθ)
+

γ

sin2(kθ)
=

2(γ + β)

sin2(2kθ)
+

2(γ − β) cos(2kθ)

sin2(2kθ)
.

Based on the results of [22] for the classical case, we postulate expansions of F,G in finite series

F =
∑
a,b,c

Aa,b,cEa,b,c(R, θ), G =
∑
a,b,c

Ba,b,cEa,b,c(R, θ), (44)

Ea,b,0 = e2aR sinb(2kθ), Ea,b,1 = e2aR sinb(2kθ) cos(2kθ).

The sum is taken over terms of the form a = a0 +m, b = b0 +n, and c = 0, 1, where m,n are integers.
The point (a0, b0) could in principle be any point in R2, however, for reasons discussed below, we will
take a0 to be a positive integer and b0 to be a negative integer.

Taking coefficients with respect to the basis (44) in each of equation (14) and (15) gives recurrence
relations for these coefficients. For example, the coefficient of e2aR sinb−2(2kθ) cos(2kθ) in equation
(14) gives the equation

8bk2 (b− 1)
(
L2 − 2(k2(b2 + 1) + γ + β)

)
Aa,b,1 + 32ak3b

(
b2 − 1

)
Ba,b+1,0

+ 8k2
(
b2 − 1

) (
b2k2 + 2bk2 + 2β + 2γ

)
Aa,b+2,1 + 16k2

(
b2 − 1

)
(γ − β)Aa,b+2,0

− 8k2 (2b− 1) (b− 1) (γ − β)Aa,b,0 + 8
(
a2 − k2(b− 1)2

) (
L2 − a2 − k2(b− 1)2

)
Aa,b−2,1

+ 4Ha (2a− 1)Aa−1,b−2,1 − 8aα (a− 1)Aa−2,b−2,1 + 32ak (b− 1)
(
a2 − k2(b− 1)2

)
Ba,b−1,0 = 0.

The shifts in the indices of A and B are integers and so we can view this as an equation on a
two-dimensional lattice with integer spacings. While the shifts in the indices are of integer size, we
haven’t required that the indices themselves be integers, although they may be integers in particular
examples.

Taking the coefficient of e2aR sinb(2kθ) in equation (14) and the coefficients of e2aR sinb−1(2kθ) cos(2kθ)
and e2aR sinb−1(2kθ) in equation (15) gives a further three recurrence relations. At a general point
in the lattice there are 4 coefficients, and these 4 equations will be shown to be independent. The
equations are linear and homogeneous and so there must be some points where the independence of
the equations breaks down and allows at least one coefficient to be arbitrarily chosen.

The different powers of sin(2kθ) used in obtaining these equations have been chosen as a matter of
convenience after many experiments conducted using the computer algebra package Maple.

All four recurrence relations are of a similar complexity, but rather than write them out separately,
we will combine them into a matrix recurrence relation by defining

Ca,b =


Aa,b,0
Ba,b−1,0

Aa,b−2,1

Ba,b−1,1

 .
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We can now write the 4 recurrence relations in matrix form as

0 = Ma,bCa,b +Ma,b−2Ca,b−2 +Ma,b−4Ca,b−4 +Ma,b−6Ca,b−6

+Ma−1,bCa−1,b +Ma−1,b+2Ca−1,b+2 +Ma−2,bCa−2,b +Ma−2,b+2Ca−2,b+2, (45)

where each Mi,j is a 4 × 4 matrix given below. It is useful to visualize the the set of points in the
lattice which enter into this recurrence for a given choice of (a, b). These are represented in Figure 1
in which the upper left corner is the point (a, b). From this it is clear that when Ma,b is nonsingular,
the value of Ca,b can be uniquely determined from the 8 points to its right and below. In that case,

Ca,b = −M−1
a,b

(
Ma,b−2Ca,b−2 +Ma,b−4Ca,b−4 +Ma,b−6Ca,b−6

+Ma−1,bCa−1,b +Ma−1,b+2Ca−1,b+2 +Ma−2,bCa−2,b +Ma−2,b+2Ca−2,b+2

)
. (46)

This allows us to construct an iterative procedure that calculates the values of Ca,b at points in the
lattice using only other points where the values of Ci,j are already known. Since the point (a, b)
corresponds to the top left corner of the collection of points in Figure 1, this process will calculate
the coefficients in a sequence that moves from right to left and bottom to top. Note that the matrices
corresponding to the right hand ‘corners’ of the set of points in Figure 1 (Ma,b+6 and Ma−2,b+2) are
singular and so could not be used in the same way, while the matrix corresponding to the bottom
left corner is generically not singular, it has properties that we will use for another purpose. The
explicit expressions for the matrices Ma′,b′ are listed in the Appendix.

We are interested in finding a solution to the recurrence relation that gives F and G as finite sums
and hence we seek solutions that are confined to a finite rectangle in the lattice. Since the equations
for the Ai,j,k and Bi,j,k are linear and homogeneous, they always admit the trivial solution and so we
need to demonstrate that a nonzero solution can be found. Our approach is as follows.

For a finite solution, there must be a lowest nonzero row and in that row, a rightmost nonzero
element. Label this rightmost point in the bottom row as (a0, b0). Since all elements to the right and
below this point are zero, Ma0,b0 must be singular, otherwise we could use (46) to show that Ca0,b0

must vanish, contradicting its definition.

Since

det(Ma,b) = −4096
(
a2 − k2b2

)2 (
a2 − k2(b− 1)2

)2 (
L2 − (a+ k(b− 1))2

) (
L2 − (a− k(b− 1))2

)
×

×
(
L2 − (a+ kb)2

) (
L2 − (a− kb)2

)
(47)

we must choose our starting point so that either a2 = k2b2 or a2 = k2(b − 1)2, that is, if k = p/q
with p and q a pair of relatively prime positive integers, we can choose (a0, b0) to be one of (ηp, ηq),
(−ηp, ηq), (ηp, ηq + 1) or (ηp,−ηq + 1) for any real number η. At all of these points, the rank of
Ma0,b0 is 2 and hence at these points we can choose 4 − Rank(Ma,b) = 2 components of Ca,b to be
arbitrary parameters.

In order to have a finite solution, we must eventually reach a point in the lattice beyond which all
entries vanish or can be chosen to vanish. Examining the matrices defining the recurrence, we see
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that it may be possible to achieve this on a left hand boundary due to the many terms with factors
such as b − 1, b + 1, b + 3 and on an upper boundary because of factors of a and a − 1. For this
reason, we will now take a0 to be −p and b0 to be q or q + 1 and examine how the cut offs on the
left and top occur.

As the recurrence relations (45) and (46) only involve shifts of multiples of two units in second index,
it is easy to verify that all entries in columns that are an odd number of steps away from column b0
must vanish or can be chosen to vanish. Furthermore, we have two candidates for b0, q and q+1. We
will choose b0 to be which ever of these is odd. We can then assume that even numbered columns
have only vanishing entries and can traverse the lattice in steps of two to the left starting from
column b0.

We now work our way across row a0 starting from column b0 taking steps of two units to the left.
At the first point, (a, b) = (a0, b0), Ma,b has rank 2 and so the components of Ca,b depend linearly
on two arbitrary parameters. At other points in the bottom row, Ma,b is nonsingular (unless we
reach b = −b0) and so we can solve for Ca0,b. At the points when b = 1,−1,−3, this takes a special
form. Note that in the bottom row, all lower points have vanishing Ci,j and so we need only consider
contributions from the points (a, b + 2), (a, b + 4) and (a, b + 6). We will initially assume that
q 6= 1, 2, 3, 4, 5, 6 so that M−p,1, M−p,−1, M−p,−3 and M−p,−5 are all nonsingular. This is not essential,
but the argument is simpler in this case.

First consider b = 1. The form of the matrices giving contributions from points to the right are the
first two matrices in Table 1. It is clear from these that the third component of Ca0,1 must vanish.
Next consider b = −1. The only nonzero matrix elements occur in column 3 of M−1

a0,−1Ma0,1 and so

Ca0,−1 = M−1
a0,−1Ma0,1Ca0,1 +M−1

a0,−1Ma0,3Ca0,3 +M−1
a0,−1Ma0,5Ca0,5 = 0.

A similar calculation shows that Ca0,−3 = Ca0,−5 = 0 and hence Ca0,j = 0 for all j ≤ −1.

Next we repeat the process for the row above, that is, row a0 + 1 starting from the right hand end,
and then again for row a0 + 2 and so on. The argument showing that all Ci,j vanish for j ≤ −1 is
essentially the same as for row a0 except there are a few extra terms to consider since the elements
in the two rows below are no longer all zero.

To see how the cut off occurs at the top, start at the right hand end of the 0 row, that is in position
(0, b0). All elements to the right are zero and so the only contributions to C0,b0 come from below,
that is from (−1, b0) and (−2, b0). It is clear from the corresponding matrices in Table 2 that the
first and third components of C0,b0 are zero. Stepping across the row in step of two to the left, it is
easy to check that this is maintained for all elements of this row.

Next consider row 1. From the form of the matrices given for a = 1 in Table 2 it is clear that the only
the first and third components of C0,j can contributed to any C1,j′ . However, since these components
have already been shown to vanish we conclude that C1,j = 0 for all j.

The last step is to consider row 2. As for row 1, when a = 2 the form of the matrices given for a = 2
in Table 2 clearly shows that only the first and third components of C0,j can contributed to any C2,j′ .
As these components have already been shown to vanish we conclude that C2,j = 0 for all j.
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Since we have two completely zero rows, it is now clear that Ci,j = 0 for all i ≥ 1.

The above argument needs modification to see that the left hand cut off can be achieved when
treating the bottom row for q = 1, 2, 3, 4, 5 or 6 as Ma,b will be singular in one of the columns b = −1,
−3 or −5. However, it is a simple matter to use the original matrix recurrence relations (45) to check
that the same conclusions can be reached in each of these cases, that is, the third component of Ca0,1

vanishes and each entry of Ca0,j for j ≤ 1 is either required to vanish or can be chosen to vanish.

Thus we have shown that by our construction the coefficients Ca,b vanish outside a rectangle with
left column 0, right column q or q + 1 (depending on which is odd), bottom row −p and top row 0.,
but that they are not all 0 within or on the boundaries of the rectangle.

It is again tedious but straight-forward to verify from the results of Subsection 2.1 that for any of our
symmetry operators L̃ for this system the commutator [L2, L̃] also belongs to the algebra of solutions
that we have constructed.

Example 1: It is well known that the TTW system is quantum superintegrable in the case k = 2,
(p = 2, q = 1), [13, 22]. The generating operators, expressed in Cartesian coordinates are

H = ∂2
x + ∂2

y + α(x2 + y2) + β
(x2 + y2)

(x2 − y2)2
+ γ

(x2 + y2)

4x2y2

−L2 = (x∂y − y∂x)2 + 4β
x2y2

(x2 − y2)2
+ γ

(x4 + y4)

4x2y2
+ β +

γ

2
,

L̃ = (∂2
x − ∂2

y)
2 + (2αx2 + 2β

(x2 + y2)

(x2 − y2)2
− γ (x2 − y2)

2x2y2
)∂2
x+

(−4αxy +
8βxy

(x2 − y2)2
)∂x∂y + (2αy2 + 2β

(x2 + y2)

(x2 − y2)2
+ γ

(x2 − y2)

2x2y2
)∂2
y

+(2αx− γ

x3
)∂x + (2αy − γ

y3
)∂y + α2(x2 − y2)2 +

β2

(x2 − y2)2
+
γ2(x2 − y2)

16x4y4

2

+

8αβ
x2y2

(x2 − y2)2
+

βγ

2x2y2
+ 3γ(

1

2x4
+

1

2y4
).

By expressing the fourth order self-adjoint symmetry operator L̃ in polar coordinates and converting
to canonical form we can read off the functions A,B,C,D and then determine F, G and the nonzero
expansion coefficients. The results are

C−2,1 =


−44− 4L2

4(γ − β)
0

−28− 8L2

 , C−1,1 =


−2H

0
0
−4H

 , C0,1 =


0
0
0

2α

 .

It is easy to check that these terms satisfy all our recurrence relations.
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Example 2: The nonzero vectors in the solution to the recurrence for the k = 1/3 quantum TTW
system are C−1,1, C−1,3, C0,3 and C0,1. The solution to the recurrence depends linearly on two
parameters that can be taken to be A−2,1,0 and B−2,0,1. To obtain solutions for A, B, C and D that
are polynomial in H and L2, we must choose the free parameters so as to cancel any denominators.
With the choice

B−2,0,1 = 36H(18L2 + 13) and A−2,1,0 = 8(81L2
2 + 765L2 + 274),

we find that L̃ is a 6th order symmetry and the expressions for A, B, C and D are given below
written in terms of the u1 = R and u2 = θ coordinates.

A = 8
(
81L2

2 + 765L2 + 274
)
e−2R sin3

(
2

3
θ

)
− 144(γ − β) (9L2 + 26) e−2R sin

(
2

3
θ

)
cos

(
2

3
θ

)
+ 6

(
6 (23 + 9L2) (γ + β)− 81(γ − β)2 − 81L2

2 − 765L2 − 274
)

sin

(
2

3
θ

)
e−2R

B = +40
(
8 + 81L2

2 + 135L2

)
e−2R sin2

(
2

3
θ

)
cos

(
2

3
θ

)
+ 48 (101 + 144L2) (γ − β)e−2R sin2

(
2

3
θ

)
(
12 (315L2 + 229) (γ + β)− 2754(γ − β)2 − 80− 810L2

2 − 1350L2

)
e−2R cos

(
2

3
θ

)
+ 12 (162(γ − β)(γ + β)− (450L2 + 319) (γ − β)) e−2R

C = −40
(
8 + 81L2

2 + 135L2

)
e−2R sin3

(
2

3
θ

)
+ 144 (27L2 + 8) (γ − β) cos

(
2

3
θ

)
sin

(
2

3
θ

)
e−2R

+ 6
(
6 (−27L2 − 5) (γ + β) + 81(γ − β)2 + 405L2

2 + 40 + 675L2

)
e−2R sin

(
2

3
θ

)
− 72H (18L2 + 13) sin3

(
2

3
θ

)
+ 1296H(γ − β) sin

(
2

3
θ

)
cos

(
2

3
θ

)
+ 54H (−6(γ + β) + 18L2 + 13) sin

(
2

3
θ

)

D = −
(
12
(
81L2

2 + 423L2 + 40
)

(γ + β)− 162 (9L2 + 8) (γ − β)2) cos

(
2

3
θ

)
e−2R

+ 12 (9L2 + 40) (9L2 + 1) (γ − β) cos

(
4

3
θ

)
e−2R + 2

(
81L2

2 + 765L2 + 274
)
L2 cos (2θ) e−2R(

36 (−27L2 − 23) (γ − β)(γ + β) + 162(γ − β)3 + 6
(
81L2

2 + 441L2 + 40
)

(γ − β)
)
e−2R

+ 81
(
−2 (3L2 + 7) (γ + β) + 9(γ − β)2)H cos

(
2

3
θ

)
+ 486 (L2 + 2)H(γ − β) cos

(
4

3
θ

)
+
(
81L2

2 + 441L2 + 40
)
H cos (2θ)
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These give the operator L̃, (9). In order to construct the symmetry operator in standard form (4),
the H and L2, which have been treated as parameters throughout the calculation, must be moved
to the right. For example, after expanding C, the coefficient of HL2 is

−1296 sin3

(
2

3
θ

)
+ 972 sin

(
2

3
θ

)
and so this contributes the term(

−1296 sin3

(
2

3
θ

)
+ 972 sin

(
2

3
θ

))
∂

∂θ
HL2

to the differential operator L̃, in which H and L2 are now treated as differential operators. We have
used Maple to verify that the this operator does in fact commute with the k = 1/3 quantum TTW
Hamiltonian. In this case S = 1

2
(L̃+ L̃∗) is sixth order self-adjoint.

6 Discussion

Key to our method for proof of superintegrability is the canonical form for symmetry operators
of all orders. It enables us to replace the computation of the commutator of H with operators of
arbitrary high order by verification of equations (14) and (15). In these equations H and L2 can be
treated as parameters until the very last step when the canonical form is reinterpreted as an operator.
Since (14) and (15) are linear and homogeneous in F and G the solutions of these equations form
a vector space. There are, of course, many solutions but most are not polynomials in H,L2. To
prove superintegrability we have to find a nontrivial solution F (u1, u2, H, L2), G(u1, u2, H, L2) that
has polynomial dependence on H,L2. If there is one such solution, there will be an infinite number of
others, since any polynomial function of a finite symmetry is a finite symmetry, as is the commutator
of L2 with a finite symmetry. To prove superintegrability we need find only one such solution. We
choose the simplest ansatz that leads to success. The method we employ leads to an algebra of
symmetry operators, virtually any one of which proves superintegrability. It will not necessarily lead
to the symmetry operator of lowest order. It is a nontrivial issue to select out of this algebra the
operator of lowest possible order.

Our strategy is to postulate a set of basis functions and to expand F and G in terms of it. The basis
has to be chosen so that (14), (15) reduce to a set of recurrence relations between the coefficients
of the basis functions. We will succeed if we can find some nonzero solution of these recurrences
such that only a finite number of the coefficients are nonzero. The coefficients will then be rational
functions of H, L2, but arbitrary up to a scale factor K(H,L). We choose K such that all coefficients
become polynomials in H,L2, and then we are done! We have used two different methods to solve
the recurrences in our two examples. The template method for the more complicated TTW problem
is more general and its step-by-step evaluation of the expansion coefficients probably makes it the
preferred tool to treat additional examples.
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How can one determine an appropriate set of basis functions? In the examples appearing in this
paper we used the known expressions for the corresponding classical superintegrable systems as
computed in [22] to determine the basis for the classical constants of the motion, and then used
the same basis for the quantum system. This worked although the classical expansion coefficients
differed from the quantum coefficients, as would be expected. We note that the canonical operator
construction permits easy generation of explicit expressions for the defining operators in a large
number of examples. Once the basic rectangle of nonzero solutions is determined it is easy to
compute dozens of explicit examples via Maple and simple Gaussian elimination. The generation of
explicit examples is easy; the proofs that the method works for all orders is more challenging.

It is clear that the methods of this paper will apply to many Hamiltonian systems, but each system
will have its own peculiarities. Also, the canonical form for symmetry operators can clearly be
extended to higher dimensions in the cases where the separable coordinates are of the subgroup type
as treated in [16]. Of particular interest is the relation between the classical constants of the motion
and the quantum symmetries. We intend to pursue these lines of inquiry.
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[19] A. Sergyeyev and M. B laszak. Generalized Stäckel transform and reciprocal transformations for
finite-dimensional integrable systems. J. Phys. A: Math. Teor. 41, 105205 (20pp), 2008.

[20] A. Sergyeyev and M. B laszak. Generalized Stäckel transform and reciprocal transformations
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7 Appendix. The M matrices for the quantum TTW system

Ma,b =


8k2 (2b− 1) (b− 1) (β − γ) 32ak (b− 1) (a2 − k2(b− 1)2)

8 (a2 − k2b2) (L2 − a2 − b2k2) 0
8abk (a2 − k2b2) 0

8ak (2b− 1) (β − γ) −8 (a2 − k2(b− 1)2) (L2 − a2 − k2(b− 1)2)

8 (a2 − k2(b− 1)2) (L2 − a2 − k2(b− 1)2) 0
0 −32abk (a2 − k2b2)
0 −8 (a2 − k2b2) (L2 − a2 − b2k2)

−8ak (b− 1) (a2 − k2(b− 1)2) 8bk2 (2b− 1) (β − γ)



Ma,b+2 =


16k2 (b2 − 1) (γ − β) 32ak3b (b2 − 1)

8 (b+ 1) k2 ((b+ 2)(L2 − 2k2(b2 + 2b+ 2))− 2b(β + γ)) 0
8ak (b+ 1) (k2(b+ 2) + 2(β + γ)) 8k2(b+ 1)(2b+ 1)(γ − β)

16ak (b+ 1) (γ − β) 8bk2 (b+ 1) (2(k2(b2 + 1) + β + γ)− L2)

8bk2 (b− 1) (L2 − 2(k2(b2 + 1) + β + γ)) 0
8bk2 (2b+ 1) (γ − β) 32ak (b+ 1) (a2 − 2k2(b+ 2)2)
8ak (2b+ 1) (β − γ) 8 (b+ 1) k2 (2(b+ 2)(β + γ) + 2bk2(b2 + 2b+ 2)− bL2)

8abk (a2 − 2(k2(b2 + 1) + β + γ)) 8k2 (b+ 1) (4b+ 3) (γ − β)



Ma,b+4 =


0 0

8k2 (b+ 3) (b+ 1) (k2(b+ 4)(b+ 2) + 2(β + γ)) 0
0 16k2 (b+ 3) (b+ 1) (β − γ)
0 −8k2 (b+ 3) (b+ 1) (bk2(b+ 2) + 2(β + γ))

8k2 (b− 1) (b+ 1) (bk2(b+ 2) + 2(β + γ)) 0
8k2 (4b+ 5) (b+ 1) (β − γ) 32ak3 (b+ 3) (b+ 2) (b+ 1)

16ak (b+ 1) (γ − β) −8k2 (b+ 3) (b+ 1) (bk2(b+ 2) + 2(β + γ))
8ak (b+ 1) (bk2(b+ 2) + 2(β + γ)) 16k2 (b+ 3) (b+ 1) (β − γ)
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Ma,b+6 =


0 0 0 0

0 0 16k2 (b+ 3) (b+ 1) (γ − β) 0

0 0 0 0

0 0 0 0



Ma−1,b =


0 0 4Ha (2a− 1) 0

4Ha (2a− 1) 0 0 0

−4Hbk (2a− 1) 0 0 −4H (2a− 1) (a− 1)

0 −4H (2a− 1) (a− 1) 4Hk (b− 1) (2a− 1) 0



Ma−1,b+2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 −4Hbk (2a− 1) 0



Ma−2,b =


0 0 −8aα (a− 1) 0

−8aα (a− 1) 0 0 0
8αkb (a− 1) 0 0 8α (a− 1) (a− 2)

0 8α (a− 1) (a− 2) −8αk (b− 1) (a− 1) 0



Ma−2,b+2 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 8αkb (a− 1) 0
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· • · • · • · • · • ·
· • · • · · · · · · ·
· • · • · · · · · · ·
· · · · · · · · · · ·

Figure 1: The template. Points contributing to the recurrence relation are marked with large dot
(•). The large dot in the upper left corner corresponds to the position (a, b).

b = 1:


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0
∗ ∗ ∗ ∗




0 0 ∗ 0
0 0 ∗ 0
0 0 0 0
0 0 ∗ 0



∗ 0 0 ∗
∗ ∗ 0 ∗
0 0 ∗ 0
∗ 0 0 ∗




0 0 0 0
0 0 ∗ 0
0 0 0 0
0 0 0 0


M−1

a,bMa,b+2 M−1
a,bMa,b+6 M−1

a,bMa−1,b M−1
a,bMa−1,b+2

M−1
a,bMa,b+4 M−1

a,bMa−2,b M−1
a,bMa−2,b+2

b = −1:


0 0 ∗ 0
0 0 ∗ 0
0 0 ∗ 0
0 0 ∗ 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 ∗ 0
0 0 ∗ 0
0 0 0 0


M−1

a,bMa,b+2 M−1
a,bMa,b+4 M−1

a,bMa−1,b+2

M−1
a,bMa,b+6 M−1

a,bMa−2,b+2

b = −3:


0 0 ∗ 0
0 0 ∗ 0
0 0 ∗ 0
0 0 ∗ 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


M−1

a,bMa,b+4 M−1
a,bMa,b+6

b = −5:


0 0 ∗ 0
0 0 ∗ 0
0 0 ∗ 0
0 0 ∗ 0


M−1

a,bMa,b+6

Table 1: Matrices giving contributions near the left boundary. A ‘∗’ represents a nonzero entry.
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a = 0:


∗ 0 ∗ 0
0 ∗ 0 ∗
∗ 0 ∗ 0
0 ∗ 0 ∗




0 0 ∗ 0
0 0 0 0
0 0 ∗ 0
0 0 0 0




0 0 0 0
∗ ∗ ∗ ∗
0 0 0 0
∗ 0 0 ∗




0 0 0 0
0 0 ∗ 0
0 0 0 0
0 0 0 0


M−1

a,bMa,b+2 M−1
a,bMa,b+6 M−1

a,bMa−1,b M−1
a,bMa−1,b+2

M−1
a,bMa,b+4 M−1

a,bMa−2,b M−1
a,bMa−2,b+2

a = 1:


∗ 0 0 0
∗ 0 ∗ 0
∗ 0 ∗ 0
∗ 0 0 0




0 0 0 0
0 0 ∗ 0
0 0 ∗ 0
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


M−1

a,bMa−1,b M−1
a,bMa−1,b+2 M−1

a,bMa−2,b

M−1
a,bMa−2,b−2

a = 2:


∗ 0 0 0
∗ 0 ∗ 0
∗ 0 ∗ 0
∗ 0 0 0




0 0 0 0
0 0 ∗ 0
0 0 ∗ 0
0 0 0 0


M−1

a,bMa−2,b M−1
a,bMa−2,b+2

Table 2: Matrices giving contributions near the top boundary. A ‘∗’ represents a nonzero entry.
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