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Abstract—We show how to construct realizations (models) of quadratic algebras for 2D second order
superintegrable systems in terms of differential or difference operators in one variable. We demonstrate
how various models of the quantum algebras arise naturally from models of the Poisson algebras for the
corresponding classical superintegrable system. These techniques extend to quadratic algebras related to
superintegrable systems in n dimensions and are intimately related to multivariable orthogonal polynomi-
als.
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1. INTRODUCTION

The distinct classical and quantum second-order
superintegrable systems on real or complex spaces
of constant curvature in two dimensions have been
classified [1]. (Recall that a second-order superin-
tegrable system in n dimensions is one that admits
2n− 1 functionally independent constants of the mo-
tion quadratic in the momentum variables, the max-
imum possible, [2–4].) Indeed, all 2D second-order
superintegrable systems on all manifolds are known
and the classification for nondegenerate potentials on
3D conformally flat spaces is virtually complete, [5–
11]. Characteristic of these systems is that the first-
and second-order constants of the motion generate a
finite-dimensional algebra, polynomially closed under
commutation, the quadratic algebra. In several recent
papers [12, 13] the authors have launched a study of
the irreducible representations of these algebras and
their applications via models of the representations,
in terms of differential and difference operators. In this
paper, the first part of which is expository, we describe
this model construction in simple cases and show
how models for quantum systems follow directly from
models for the classical systems. Model construction
works for systems in all dimensions, [14], but here
we restrict attention to the 2D case to make the
presentation more transparent. The final sections on
elliptic models contain new results.
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2. AN EXAMPLE

We will use the following simple degenerate (1-
parameter potential) superintegrable system to mo-
tivate this article. Consider the classical Hamiltonian
on the two-sphere

H = J2
1 + J2

2 + J2
3 +

α

z2
,

where J1 = ypz − zpy, J2 = zpx − xpz, J3 = xpy −
ypx, and x2 + y2 + z2 = 1. If we seek all first- and
second-order constants of the motion for this classi-
cal Hamiltonian, we find three possibilities in addition
toH itself, viz.

A1 = J2
1 +

α

2z2
(1 + y2 − x2),

A2 = J1J2 −
αxy

z2
, X = J3.

The setX2,H,A1, andA2 is linearly independent, but
functionally dependent via

A1(H−A1 −X2) −A2
2 −

α

2
(X2 + H) +

α2

4
= 0,

and satisfies the Poisson algebra relations

{X,A1} = −2A2, (1)

{X,A2} = −H + X2 + 2A1,

{A1, A2} = −X(2A1 + α).

The quantum version of this system is uniquely
determined from the classical system through simple
quantization rules [15]. In this case

H = J2
1 + J2

2 + J2
3 +

α

z2
,
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where J1 = y∂z − z∂y , J2 = z∂x − x∂z , and J3 =
x∂y − y∂x. The symmetries of the corresponding
Schrödinger equation HΨ = EΨ are the analogs of
the associated constants of the motion, viz.

A1 = J2
1 +

α

2z2
(1 + y2 − x2),

A2 =
1
2
{J1, J2} −

αxy

z2
, X = J3.

The quadratic algebra generated by these symmetries
is

[X,A1] = −2A2, [X,A2] = X2 + 2A1 −H, (2)

[A1, A2] = −{A1,X} −
(

1
2

+ α

)
X.

Here, {A,B} = AB + BA is the operator sym-
metrizer. The analog of the classical constraint is the
Casimir condition

1
3
(X2A1 + XA1X + A1X

2) + A2
1 + A2

2 (3)

−
(

3
2
α +

11
12

)
X2 + H

(
−A1 +

α

2
− 1

6

)

− 2
3
A1 −

α

2

(α
2

+ 1
)

= 0.

What is this algebra good for? If we study the
spectral resolutions of the symmetry operators for
this physical system, e.g., the energy spectrum, the
representation theory of the algebra can be used to
compute the spectra algebraically and relate the var-
ious bases to each other, [16-22]. Also the represen-
tation theory for these algebras yields representations
other than those that occur in the physical case of the
Schrödinger equation, and these have independent
interest. As an example we present a one-variable
model of algebra (2),(3):

A1 = t(t + 1)2∂2
t + ((2 − α−m)t2 (4)

+ 2(1 −m)t + α−m)∂t + m(α− 1)t

+ α

(
m +

1
2

)
−m− 1

2
,

A2 = it(1 − t2)∂2
t + i[(α + m− 2)t2

+ α−m]∂t − im(α− 1)t,

X = i(t∂t −m), H = −(m + 1 − α)2 +
1
4
.

These operators satisfy identically all the relations
for the corresponding quantum algebra. This corre-
sponds to irreducible representations of the quadratic
algebra, and since H is in the center of the algebra it
is a constant in the model. To determine the spectral
resolutions of the various operators, we merely solve
the eigenvalue differential equations. Indeed, solving

A1Ψn = χnΨn for the finite-dimensional irreducible
representations we find

χn = α2 − 1
4
−

(
n− α +

1
2

)2

, (5)

n = 0, 1, . . . ,m,

with corresponding unnormalized eigenfunctions the
Jacobi polynomials

Ψn(t) = (1 + t)n2F1


 n− α n−m

α−m
;−t


 . (6)

The spectral resolution for ofX is trivial in the model:
Xfn = i(n−m)fn, fn(t) = tn, n = 0, 1, . . . ,m.
From this we see that (6) is a generating function for
the expansion of the A1 basis in terms of theX basis.

How can such simple models be found and classi-
fied? To answer the question we return to the classical
system with this potential and Hamiltonian H. We
look for models of the corresponding Poisson algebra
on a two-dimensional symplectic manifold, the ana-
log of a one-variable quantum model. We choose one
of our canonical variables to be X = c and take β as
the canonical (momentum) variable conjugate to c.
We requireH = E, a constant, and look for a realiza-
tion A1(c, β), A2(c, β) such that the Poisson algebra
relations (1) remain unchanged but with respect to
the new Poisson bracket

{F,G} = −∂cF∂βG + ∂βF∂cG.

Relations (1) and this new Poisson bracket lead to
differential equations for A1(c, β), A2(c, β) which are
easy to solve. The solution is

A1 =
1
2
(E − c2) +

1
2
[(c2 − (E + α)2]

× sin(2β) + 2iα cos(2β)],

A2 =
1
2
[(c2 − (E + α)2] cos(2β) − 2i

√
α sin(2β)],

X = c.

Under the normal rules of quantization, viz. c → c,
β → ∂c, we might expect that there would be a cor-
responding one-variable quantum model. However,
this leads naturally to a model in terms of difference
operators as we would then expect that

cos(2β) → cos(2∂c), sin(2β) → sin(2∂c),

both of which are difference operators. (Note that eα∂c

can be interpreted as translation by α in the variable
c, via a Taylor expansion.) However, if we use the
hodograph transformation of classical mechanics, viz.
q → p, p → −q (which preserves the Poisson-bracket
relations), we could elect to quantize according to

c → ∂c, β → −c.
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(At the quantum level this operation is essentially the
Fourier transform.) Now we get a one-variable model
in which A1 and A2 are realized as second-order
differential operators andX is a first-order differential
operator. To within a gauge transformation this is just
the model (4) with t = eic. (Here the classical model
gives us the leading terms in the quantum model
and then we make lower-order adjustments to satisfy
the quantum relations (2), (3).) We can extend this
approach by looking for additional realizations of the
classical Poisson algebra. Indeed, with a new choice
of variables A1 = s a model of the Poisson algebra is

A1 = s, A2 =
√(

s− α

2

) (
E − s− α

2

)

× sin
(

2
√

s +
α

2
β

)
,

X =

√
(s− α

2 )(E − s− α
2 )

s + α
2

cos
(

2
√

s +
α

2
β

)
,

where β is the momentum variable conjugate to s.
By analogy with our previous case it does not appear
to be possible to imply from this representation that
there is a quantum realization which can be expressed
in terms of differential operators. Instead, we have
only a realization in terms of difference operators.
Indeed, we have the model

A1 =
(
t2 − α

2

)
, X = h(t)Ti + m(t)T−i, (7)

A2 = − i

2
(i + 2t)h(t)Ti +

i

2
(−i + 2t)T−i,

where TαF (t) = F (t + α) and h(t), m(t) are con-
strained by

h(t)m(t + i) =
1
4

(α− t2 − it)(t2 + it− E)
t(t + i)

.

A convenient choice is

h(t) = i
(1
2 − a− it)(µ + a− 1

2 − it)
2t

,

m(t) = −i
(1
2 − a + it)(µ + a− 1

2 + it)
2t

,

where α = 1/4 − a2 and E = −(µ− 1 + a)2 + 1/4.
Now for τ = it the spectral decomposition of X is
Xpn(τ) = (µ + 2n)pn(τ), where

pn(τ) = 3F2


 −n 1

2 − a− τ 1
2 − a + τ

µ 1 − a
; 1


 , (8)

a special case of the family of dual Hahn polynomi-
als, [23, p. 332].

We can proceed further with these ideas. Indeed,
if we take S = 2(A1 − iA2) −H + X2 − α and H as

our new classical variables, then a suitable classical
model is

S = r, X = −2i(r + α)β,

A1 + iA2 = 8(r + α)2β4 + 2(r + α)

× (3α + r + 2)β2 − (r + E)(α− E)
2(r + α)

+
α

2
,

where β is the momentum variable conjugate to r.
This suggests that there is a quantum realization
in terms of fourth-order differential operators via the
association r → r, β → ∂r. In fact, we have the real-
ization

S = r, X = −2i(r + α)∂r + 2i, (9)

A1 + iA2 = 8(r + α)3∂4
r + 2(r + α)(3α + r

+ 2E + 9)∂2
r − 2(r + 5α + 4E + 18)∂r

+ 2 +
E

2
+

E2 + 2E(9 − α) + (α + 12)(α + 6)
2(r + α)

.

As we showed in [13], by a simple canonical trans-
formation of the classical model we can induce a
transformation of this quantum model into a sym-
metrical form such that A1 and A2 are second-order
differential operators. This becomes formally similar
to the model (4), but here only infinite-dimensional
unitary representations of the quadratic algebra can
be constructed.

3. CONNECTION
WITH SEPARATION OF VARIABLES

What is special about the one-parameter models
that we have chosen? In terms of separation of
variables, the classical and quantum versions of
this problem separate in exactly the same coordi-
nate systems [24]. Indeed, the classical Hamilton–
Jacobi equation separates additively and the quantum
Schrödinger eigenvalue equation separates multi-
plicatively. Further, each separable system is char-
acterized by an associated constant of the motion. In
the operator case our models enable us to find the
spectral resolutions for those operators that define the
various possible multiplicative variable separations in
the original quantum mechanical problem. For our
example physical system on the complex two-sphere
the coordinates are given in [24] as:

1. Polar coordinates of type 1. This corresponds to
a choice of coordinates

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ.

The associated model is (4).
2. Polar coordinates of type 2. This corresponds to

a choice of coordinates
x = cos ρ, y = sin ρ cosψ, z = sin ρ sinψ.
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The associated model is (7).
3. Horospherical coordinates.

x =
i

2

(
v +

1
v
(u2 − 1)

)
,

y =
1
2

(
v +

1
v
(u2 + 1)

)
, z = i

u

v
.

The associated model is (7).
4. Degenerate elliptic coordinates

ix− y =
1

cosh a cosh b
,

ix + y = − 1
cosh a

− 1
cosh b

+
1

cosh a cosh b
,

z = tanh a tanh b.

5. Elliptical coordinates.

x2 =
(ρ− e1)(ν − e1)

(e1 − e2)(e1 − e3)
,

y2 =
(ρ− e2)(ν − e2)

(e2 − e1)(e2 − e3)
,

z2 =
(ρ− e3)(ν − e3)

(e3 − e2)(e3 − e1)
.

We will consider this case in the next section.
We have already found models for cases 1–3, In

case 4 the constant of the motion that characterizes
the separation of variables is

L = 2(A1 + iA2) −H = (J1 + iJ2)2 − J2
3

− 1
2
α− αx(x + iy)

z2
.

This constant together with A1 − iA2, H, and X
form a basis for the Poisson algebra. If we now look
for a classical model for which L = -, and β is the
canonical variable conjugate to -, we can proceed in
the usual manner and obtain

L = -, X = i
√
- tanh(2

√
-β), A1 − iA2

= −1
2
(- + E) − α + (- + E + α) cosh2(2

√
-β).

This suggests that if we take - → -′2 and use the
quantization identification 2

√
-β → β′, there is a real-

ization of the corresponding quantum algebra via the
correspondence β′ → t, -′ → ∂t. Indeed, we obtain

L = ∂2
t +

J

sinh t cosh t
∂t +

J2/2 + E + α

sinh2 t
, (10)

X = −i(tanh t)∂t,

A1 − iA2 =
1
2

sinh2 t∂2
t +

1
2
[(1 − J) sinh t cosh t

+ J tanh t]∂t +
1
2
E cosh2 t +

(
α

2
+

J2

4

)
sinh2 t.

To within a gauge transformation, this is just a
reparametrization of model (4) again.

To make the connection with separation of vari-
ables for the corresponding superintegrable system
clearer, observe that the Schrödinger equation on the
two-sphere in degenerate elliptic coordinates is[

∂2
a − ∂2

b + α

(
1

sinh2 a
− 1

sinh2 b

)

− E

(
1

cosh2 a
− 1

cosh2 b

)]
Ψ = 0.

Thus, the separation equations are(
∂2

λ +
α

sinh2 λ
− E

cosh2 λ
− µ

)
Λ(λ) = 0,

λ = a, b.

Note that the eigenvalue equation for L in our one
variable model is(

∂2
t +

J(J + 2)
4 cosh2 t

+
4(E + α) + J(J + 2)

4 sinh2 t
− µ

)
× T (t) = 0.

With the identification E = −J(J + 2)/4 this is ex-
actly a copy of one-separation equation for the su-
perintegrable system. In addition we have seen that
the one-variable model implied by degenerate elliptic
coordinates is essentially the one we already know.

4. THE ELLIPTICAL MODEL

In each of the cases 1–4 the corresponding choice
of classical variable yields a quantum model asso-
ciated with the choice of constant of the motion as
a variable separation constant. This approach works
well except for the case of elliptical coordinates [5].
There the constant of the motion associated with
variable separation can be taken to be

L = (e1 − e2)A1 + e2H + (e3 − e2)X2.

We can then choose a new basis L, X, H, and A2, in
which case the relations of the Poisson algebra take
the form

{L,X} = 2(e1 − e2)A2,

{L,A2} = −2
e1 + e2 − 2e3

e1 − e2
L

− 4
(e1 − e3)(e2 − e3)

e1 − e2
X3

+ 2
(e1 + e2)e3 − 2e1e2

e2 − e1
XH + (e2 − e1)αX,
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{A2,X} =
e1 + e2

e1 − e2
H− 2

e1 − e2
L

− e1 + e2 − 2e3

e1 − e2
X2,

with corresponding constraint equation

− 1
(e1 − e2)2

L2 +
[
2e3 − e1 − e2

(e1 − e2)2
X2L

+
e1 + e2

(e1 − e2)2
H

]
+

[
(e3 − e1)(e2 − e3)

(e1 − e2)2
X4

+
2e1e2 − e1e3 − e2e3

(e1 − e2)2
HX2 − 1

2
αX2

]
−A2

2

+
1

4(e1 − e2)2
(−2e2H + α(e2 − e1))

× (2e1H + α(e2 − e1)) = 0.

Attempting the same procedure as we did with
subgroup type coordinates, we choose a new set of
canonical coordinates L and H together with their
conjugate momenta. If the momentum conjugate to
L is β, then the Poisson bracket relations imply

−∂X

∂β
= 2(e1 − e2)A2.

Substituting this into the constraint equation we ob-
tain (

∂X

∂β

)2

= −4(e2 − e3)(e2 − e3)X4

+ 4
[
(2e3 − e1 − e2)L + (2e1e2 − e1e3

− e2e3)E − 1
2
α

]
X2 + 4[−L2 + (e1 + e2)EL]

+ (2e2E + α(e2 − e1))(−2e2E + α(e2 − e1))

= Λ(X2 − a1)(X2 − a2).

The solution can then be expressed in terms of Jacobi
elliptic functions as

X =
√
a1sn(

√
Λa2β, k),

where k2 = a1/a2 and, correspondingly,

A2 =
−1

e1 − e2

√
a1a2cn(

√
Λa2β, k)

× dn(
√

Λa2β, k).

This does not appear to give any suggestion of a
quantum one-variable model for L diagonal in terms
of differential operators or of difference operators. In-
deed, we have not been able to quantize this classical
model to get directly the spectral resolution of L.
Instead, we adopt a different approach and return to
the original superintegrable system to find the eigen-
value equations for the operator L. Without loss of
generality we can choose e1 = 1, e2 = 0, and e3 =
a = 1/k2. The Schrödinger equation for the superin-
tegrable system in elliptical coordinates ρ, ν has the
form (

− 4
ρ− ν

[
ρ(ρ− 1)(ρ − a)

[
∂2

ρ +
1
2

(
1
ρ

+
1

ρ− 1
+

1
ρ− a

)
∂ρ

]
− ν(ν − 1)(ν − a)

×
[
∂2

ν +
1
2

(
1
ν

+
1

ν − 1
+

1
ν − a

)
∂ν

]]

+
αa(a − 1)

(ρ− a)(ν − a)
− E

)
Ψ = 0.

With the identification a = 1/k2, k′ =
√

1 − k2 the
separation equations are(

4
k2

λ(λ− 1)(k2λ− 1)
[
∂2

λ +
1
2

(
1
λ

+
1

λ− 1
+

k2

k2λ− 1

)
∂λ

]
− α

k′2

k2(1 − λk2)

+ Eλ + µ

)
Λ(λ) = 0,

where λ = ρ, ν and µ is the separation constant. For
convenience we make the transformation λ = (1 −
k′2-)/k2 and write Λ(λ) ≡ L(-). Then this equation
has the form[

-(-− 1)
(
-− 1

k′2

)[
∂2

� +
1
2

(
1
-

+
1

-− 1
+

1
-− 1

k′2

)
∂�

]
+

1
4

(
α

k′2-
+ E-

− 1
k′2

(E + k2µ)
)]

L(-) = 0.

If we now write L(-) = -pL(-), i.e., make a gauge
transformation, then this equation becomes[

-(-− 1)
(
-− 1

k′2
)
[
∂2

� +
1
2

(
4p + 1

-
(11)
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+
1

-− 1
+

1
-− 1

k′2

)
∂�

]
+

[
1
4
(E + 2p(1 + 2p))-

− 1
4k′2

(E + k2µ) −
(

1 +
1
k′2

)]]
L(-) = 0,

a form of Heun’s equation denoted by the Riemann P
symbol [25]

P




0 1 1/k′2 ∞
0 0 0 p + r + 1/4

1/2 − 2p 1/2 1/2 p− r + 1/4

; -


 , (12)

where we have taken α = 2p(1 − 2p) and E = 1/4 −
4r2. The separation constant µ appears only in the ac-
cessory parameter and not explicitly in the P symbol
notation.

Let’s now return to the one-variable model (9)
corresponding to degenerate elliptic coordinates and
diagonalize the elliptical coordinate operator L̃ in that
model, viz., L̃ = A1 + X2/k2. (The eigenvalues of L̃
should just be the values of the separation constant µ
in (11).) If we set y = sinh2 t, then L̃ has the action

L̃Y (y) =
[
y(y − k+)(y − k−)

[
∂2

y +
1
2

(
J + 1
y

+
1 − J

y − k+
+

1 − J

y − k−

)
∂y

]
+

1
8
(α + 2J2 + E)

×
(
y +

1
y

)
+

1
2
E

]
Y (y),

where k+ = (1− k′)/(1 + k′) and k− = (1 + k′)/(1−
k′). With the substitution y = k−z this gives L̃ in the
form

L̃Z(z) = k+

[
z(z − k2

−)(z − 1)
[
∂2

z +
1
2

(
J + 1
z

+
1 − J

z − k2
−

+
1 − J

z − 1

)
∂z

]
+

1
8

(
2(E + α) + J2

)

×
(
z +

1
k2
+z

)
+

E

2k+

]
Z(z).

We look for solutions by writing Z(z) = zqZ(z). Then
for E = −2(p − q)(2(p − q) + 1) the operator L̃ as-
sumes the form

L̃Z(z) = k+

[
z(z − k2

−)(z − 1)

×
[
∂2

z +
1
2

(
J + 1 + 4q

z
+

1 − J

z − k2
−

+
1 − J

z − 1

)
∂z

]

+ q(1 − J)z − q2(1 + k2
−) +

E

2k+
+

1
2
k−E

]
Z(z).

Eigenfunctions of this operator are Riemann P
functions of the form

P




0 1 k2
− ∞

0 0 0 2q

(1 − J − 4q)/2 (J + 1)/2 (J + 1)/2 (1 − J)/2

; z


 .

Again the eigenvalue µ is incorporated linearly in the
accessory parameter, not in the P-function notation.
We have found two different forms of Riemann P
functions, the first by solving the separation equations
for the superintegrable system in elliptical coordi-
nates, where one separation constant corresponds to
L, and the second by solving the eigenvalue equation
for L ≡ L̃ in the one variable model corresponding to
degenerate elliptic coordinates. These two solutions
are closely related. Indeed from the identity exhibited
in [26, p. 59], viz.

P




0 1 a ∞

0 0 0 α̂

1 − γ̂ 1/2 1/2 β̂

;x




= Xα̂P




0 1 A2 ∞
0 0 0 2α̂

β̂ − α̂ 1 − γ̂ 1 − γ̂ α̂ + β̂

;X


 ,

where A = (1 +
√
a)/(1 −

√
a) and X =

= A(
√

(x− 1 +
√
x− a)/(

√
x− 1 −

√
x− a). We

can now identify the two versions of eigenfunctions
of L that we have calculated. By taking a = 1/k′2

then A = (k′ + 1)/(k′ − 1) and we obtain an identity
between the two P-function expressions that we
have derived, up to a gauge equivalence, by further
taking J = −4p, p = q + r+ 1/4. In this way we have
identified the two derived realizations ofL. Indeed, the
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direct relationship between variables t and λ is

sinh2 t = y =
(k′ + 1)
(k′ − 1)

(
√

1 − λ− i
√
λ)

(
√

1 − λ + i
√
λ)

. (13)

This example has illustrated the relationship between
the two different ways of realizing the operator L.
It also appears that the classical model in elliptical
coordinates does not suggest a suitable quantum-
mechanical model, but this may just be due to our
lack of insight thus far.

5. DISCUSSION AND OUTLOOK

As shown in [11], up to equivalence under the
Stäckel transform between manifolds, there are ex-
actly 13 second-order 2D superintegrable systems,
6 corresponding to degenerate (1-parameter) poten-
tials and 7 to nondegenerate (3-parameter) poten-
tials. In each case the second-order symmetries gen-
erate a finite-dimensional algebra polynomially closed
under commutation, the quadratic algebra. These al-
gebras and their representation theory are reminis-
cent of semi-simple Lie algebras, but definitely dis-
tinct. Realizations of the representations in terms of
differential and difference operator models have in-
dependent interest, partly due to deep connections
with the theory of orthogonal polynomials. For de-
generate potentials the algebra of first- and second-
order symmetries closes at order 4 and the structure
is especially simple. In this paper we have chosen one
such case and described how models of the classi-
cal superintegrable system can be determined in a
straightforward manner, associated one-to-one with
the possible orthogonal coordinates in which the as-
sociated Hamilton–Jacobi equation permits additive
separation. Each model essentially gives the spectral
resolution of the constant of the motion associated
with the variable separation. To get one variable mod-
els of the quantum quadratic algebra from the classi-
cal models we have to solve the quantization problem.
In our example we showed that this is easy to do,
except in the case of generic ellipsoidal coordinates
where no differential or difference operator model ex-
ists. However, one can still determine the spectral
resolution of the operator corresponding to elliptical
coordinates by computing in one of the other models.
In this case we show that the eigenvalue equation in
a certain one-variable model corresponds exactly to
one of the separation equations for solving the original
Schrödinger equation in elliptical coordinates.

For 2D systems with nondegenerate potential the
quadratic algebra closes at level 6 and the represen-
tation theory is more complicated. However, the same
basic features demonstrated in our example still hold.
Indeed, this example is typical of 2D superintegrable
systems in general, as will be shown in the thesis [27]

of Post. The connection with orthogonal polynomials
is striking for nondegenerate potentials. For example,
the quadratic algebra of the generic superintegrable
system on the two-sphere is exactly the one that
describes the Wilson and Racah polynomials in their
full generality! Thus Wilson and Racah polynomials
are deducible directly from classical mechanics.

For 3D superintegrable systems the structure
is much more complicated. For nondegenerate (4-
parameter potentials), where 2n − 1 = 5, there are 5
functionally independent second-order symmetries,
but always 6 linearly independent symmetries. The 6
symmetries generate a quadratic algebra that always
closes at order 6. Further the functional dependence
of the 6 linearly independent symmetries is given by
an identity of order 8 in the momentum variables. We
have begun the study of the representation theory
and two-variable models for representations of the
quantum quadratic algebras of these systems, initially
focusing on the 3D singular isotropic oscillator. We
have already shown that models for this system cor-
respond to differential recurrence relations for Jacobi
polynomials in one case, to differential–difference
equations for families of dual Hahn polynomials in
another and to difference–difference operator equa-
tions relating distinct families of Wilson polynomials
in a third. The generic superintegrable system on
the three-sphere will correspond to two-variable
extensions of Wilson polynomials. This work is in
progress.
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