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A Geometrical Perspective on the Coherent
Multimode Optical Field and

Mode Coupling Equations
William A. Wood, Willard Miller, Jr., and Michal Mlejnek

Abstract— The generalization of the Poincaré sphere to N ≥ 2
modes is the (N − 1)-dimensional complex projective space
CP(N − 1). There is a minimal set of 2N − 2 Stokes vector
components that determine the coherent multimode optical field.
These are obtained from the inverse stereographic projection of
coordinate hyperplanes in CP(N −1) into a 2N −2 sphere, just as
in the N = 2 case. We derive N-mode analogs of Poole’s optical
fiber polarization-mode dispersion (PMD) equations that involve
only 2N − 2 independent variables. This is achieved by means
of an explicit generalized coherent state representation of the
optical field, which enables the components of the PMD vector
to be expressed in terms of the optical state and its frequency
derivatives. Poole’s equations describe mode coupling as a flow
on CP(N −1). We give general constraints on the mode-coupling
matrix and Stokes vector components. The group delay operator
is shown to be a rank-2 perturbation of a diagonal matrix.

Index Terms— Multimode optical fiber, mode coupling,
Poincaré sphere, complex projective space.

I. INTRODUCTION

THE “Poincaré sphere” representation of the
polarization of a plane-wave [1] is well-known

and widely valued because of its direct connection to
measurements. Poole’s polarization mode dispersion (PMD)
equations [2], [3] describe mode coupling in optical fiber
as a flow on the Poincaré sphere. It is natural that with
the heightened interest in few-mode and multimode optical
fiber, researchers would attempt to generalize the Poincaré
sphere description and Poole’s equations to a larger number
of modes. Indeed, several interesting candidate geometries
have already appeared in the literature, including very-large-
dimensional spheres [4], disjoint collections of spheres [5],
and special unitary groups [6]. However, these models can
suffer from unphysical degrees of freedom in the geometry or
insufficiently constrained coupling matrices. In particular, as
acknowledged in [4], models involving “generalized Stokes
parameters” can involve significantly more parameters than
the optical field they are meant to describe.

Most models are based in some way on the symmetries
of the special unitary matrix groups SU(N), but these groups
are too large to provide an efficient description of modal
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dynamics. To see this, choose any unit vector |�>. The action
of SU(N) is transitive: any other unit vector can be obtained
by group action on |�>. However, on any vector |�> there is
a large subgroup of matrices in SU(N) that leaves it invariant.
This subgroup is isomorphic to U(N–1). In the basis where
|�>= [0 0 0 0 . . . 1]T, this becomes obvious. The parameters
of this subgroup are therefore immaterial to a physical descrip-
tion of the fully coherent optical field. (Partial coherence is not
considered in this article.) Hence the most efficient generaliza-
tion of the Poincaré sphere is the coset space SU(N)/U(N−1)
of physically distinguishable group actions on a reference
vector. For N=2 this is the usual Poincaré sphere but in general
it is not a sphere. Instead SU(N)/U(N−1) is isomorphic to the
(N−1)-dimensional complex projective space CP(N−1) [7].
The number of real parameters needed to specify a point
in CP(N−1) is 2N−2, the same as the number of para-
meters needed to specify an N-mode complex optical field,
once the overall phase and amplitude of the field are fixed.
The coset spaces above consist of the “generalized coherent
states” [7], [8] of the group SU(N). That SU(3)/U(2) ≈
CP(2) is the most appropriate generalization of the Poincaré
sphere to three modes was already stated in [9].

In this article we show by explicit construction how the
coset action in SU(N) can be implemented as a unitary
matrix parameterized by coordinates in CP(N−1). General-
ized Stokes parameters are defined, and their relationship to
CP(N−1) coordinates is demonstrated. We explicitly compute
the derivatives of the matrix representing the coset action with
respect to position and frequency. Using the special form of
these derivatives, we are able to present generalized Poole’s
equations with the physical number of degrees of freedom. The
connection to previous work is discussed and an algorithm
for eliminating dependent variables is given. Examples are
provided for N = 2, 3. We show that the mode-coupling
matrix elements cannot all be arbitrarily chosen. Finally the
group delay matrix is considered. It is shown to be a rank-two
perturbation of the diagonal, uncoupled group delay matrix.

We note that coset spaces have already been used in atomic
physics to describe the dynamics of higher order Bloch
spheres in N-level atomic systems possessing SU(N)
symmetries, such as nuclear magnetic resonance or
laser-atom interactions [10], [11]. These treatments typically
exploit decompositions of SU(N) that represent general group
elements as products of several simpler elements, such as
rotations about coordinate axes. In our case, this approach
would lead to an expression of the generalized displacement
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matrix described below as a product of simpler matrices.
Instead, we use a result, due to Gilmore, that expresses the
generalized displacement matrix as the exponential of a single
matrix [7]. In this paper, we find an explicit expression (6) for
this matrix exponential. This formula enables the derivation
of mode coupling equations and constraints on the mode
coupling matrix and group delay operator that would not be
immediately obvious using previously published techniques.

II. REPRESENTATION OF THE N-MODE OPTICAL FIELD

Let the N-mode optical field be given by:

E = exp (iθ (ω)) M| s〉, (1)

where θ is an overall frequency-dependent phase,

M = diag
(
exp

[
ik1

(
ω

)
z
]
,

exp
[
ik2

(
ω

)
z
]
, . . . , exp

[
ikN

(
ω

)
z
])

(2)

is a diagonal matrix, and the complex N-vector

|s〉 = [s1, s2, · · · , sN ]T (3)

is slowly varying in position z and frequency ω. We choose
<s|s>= 1, and assume 0 < sN ≤ 1 is real and positive. With
these constraints, the set of complex (N−1)-tuples
{(s1/sN, s2/sN, . . . , sN−1/sN)} comprise a coordinate chart on
CP(N–1). (The sN = 0 case requires the use of a different
coordinate chart.) We can represent a general state |s> as the
coset action on |�> as follows:

|s〉 = Rs |�〉= Rs

⎛

⎜
⎜
⎜
⎝

0
0
...
1

⎞

⎟
⎟
⎟
⎠

where Rs =

⎛

⎜
⎜
⎜
⎝

∗ ∗ s1
∗ ∗ s2
...

...
...

∗ ∗ sN

⎞

⎟
⎟
⎟
⎠

. (4)

Rs is the generalized displacement operator. Following [7],
a unitary representation of Rs in the form

Rs = exp
[
i Ã

]
= exp

[
i

(
0 A
A∗ 0

)]
(5)

may be obtained with a complex (N–1)-vector
A = [a1, a2, . . . , aN−1]T. (The asterisk on A denotes
Hermitian transpose.) The components of A are related to
the vector S = [s1, s2, . . . , sN−1]T in [7]. However, we have
found that the exponential in (5) may be explicitly computed.
One may express Rs directly in terms of S: denoting by IN−1
the (N–1)-dimensional unit matrix, one has

Rs =
(

IN−1 − SS∗
1+sN

S
−S∗ sN

)

, sN = √
1 − S∗S > 0. (6)

Equation (6) makes clear that while Rs is in SU(N), the
parameters in S alone are sufficient to describe the coherent
optical field.

III. THE STOKES VECTOR

We can define N2 − 1 real Stokes vector components by
proceeding as in [3], [12],

ŝq =
√

N

2N −2
〈s| L(q)|s〉=

√
N

2N −2
〈�| R−1

s L(q) Rs |�〉 (7)

where q = 1, 2, . . . , N2 −1 and the L(q) are N×N generators
of the real su(N) Lie algebra. This definition is normalized
such that

N2−1∑

q=1

ŝ2
q = 1 (8)

regardless of N. (Reference [12] discusses the problem of
measuring these parameters for the case N = 4.) Partic-
ular expressions for Stokes vector components depends on
the Lie algebra basis chosen. We choose a specific trace-
orthogonal set of generators L(q) such that the first 2N–2 of
them are:

L(2q−1)
m,n = δm,q δn,N + δm,N δn,q

L(2q)
m,n = −i

(
δm,q δn,N − δm,N δn,q

)

q = 1, 2, . . . , N − 1 (9)

Importantly, none of the other generators have any non-zero
entries in the Nth row or column, except for possibly the
(N, N) element. These first 2N–2 generators implement the
coset action. We will also augment (9) with the choice:

L
(
N2−1

)
=

√
2

N (N − 1)
diag (1, 1, . . . , 1, 1 − N ). (10)

We leave the remaining generators unspecified, as their specific
form is not important for the general analysis. Substituting
(6) and (9) into (7) shows that the first 2N−2 of these
components are proportional to the real and imaginary parts
of the components of S and are thus independent. By virtue
of (10), the last Stokes parameter depends only on sN:

ŝN2−1 = 1

N − 1

(
1 − Ns2

N

)
(11)

In the case N=2, (7) yields:

ŝ1 = 2s2Re s̄1

ŝ2 = 2s2Im s̄1

ŝ3 = |s1|2 − s2
2 . (12)

One readily checks that these are the usual values for the
Stokes parameters. In (12) and below, the overbar denotes
complex conjugation. The Stokes vector components are
the Cartesian coordinates of the Poincaré sphere—they are the
inverse stereographic projection of the point {s̄1/s2} in the
complex plane (a coordinate chart in CP(1)) into the unit
sphere in three real dimensions. The projection axis is in the
direction ŝ3.

For general N ≥ 2, (7) gives, for q = 1, 2, . . . , N − 1:

ŝ2q−1 =
√

2N

N − 1
sN Re sq , ŝ2q = −

√
2N

N − 1
sN Im sq (13)
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Fig. 1. Generalization of the construction of the Poincaré sphere and
Stokes parameters to N>2 modes. The conventional N=2 Poincaré sphere
is the inverse stereographic projection of a complex plane, a coordinate chart
in CP(1). The Stokes parameters are the Cartesian components of this sphere.
In the same way, a (2N–2) sphere may be obtained from a coordinate chart in
CP(N–1). The 2N–1 Cartesian components of this sphere are the generalized
Stokes parameters for an N-mode field.

Equations (11) and (13) imply:

2N−2∑

k=1

ŝ2
k + t̂2 = N

2N − 2
(14)

where

t̂ =
√

2N − 2

N

(
ŝN2−1 + N − 2

2N − 2

)
. (15)

In other words, as depicted in Fig. 1, the first 2N–2 Stokes
parameters lie on a (2N−2)-dimensional sphere. Stereographic
projection along the t̂-axis shows that these Stokes vector
components are exactly the inverse stereographic projection
of the point S in the CP(N−1) coordinate chart:

(
ŝ1, ŝ2, . . . , ŝ2N−2, t̂

) ↔
(

Re

(
s̄1

sN

)
, Im

(
s̄1

sN

)
,

Re

(
s̄2

sN

)
, Im

(
s̄2

sN

)
, . . . ,

Re

(
s̄N−1

sN

)
, Im

(
s̄N−1

sN

))

2N − 2 sphere ↔ 2N–2 dim coord. patch in CP(N–1)

(16)

Combining (8) and (14) shows that the remaining Stokes
components also lie on a sphere with radius depending on t̂ .
However, they are not independent and can all be expressed
entirely in terms of the first 2N−2 independent components,
using (7) and (13). For example, for N = 2, (14) specifies
the value of t̂ = ŝ3 in terms of ŝ1 and ŝ2 up to a sign.

For N = 3, we have:

ŝ5 = √
3

ŝ1ŝ3 + ŝ2 ŝ4

1 − 2 ŝ8

ŝ6 = √
3

ŝ1ŝ4 − ŝ2 ŝ3

1 − 2 ŝ8

ŝ7 =
√

3

2

ŝ2
1 + ŝ2

2 − ŝ2
3 − ŝ2

4

1 − 2 ŝ8

ŝ8 =
√

3

2
t̂ − 1

4
, t̂ = ±

√√
√√3

4
−

4∑

k=1

ŝ2
k (17)

Of course, the precise form of these equations depends on the
generators chosen as the basis for expansion. Here (9) and (10)
are augmented with the following to obtain (17):

L(5) =
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠,

L(6) =
⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠,

L(7) =
⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ (18)

For N > 3, one readily obtains similar equations for the
dependent parameters. Because the Stokes parameters arise
from an inverse stereographic projection, the sign of t̂ is not
constrained by the first 2N–2 Stokes components; it must be
separately determined. However, it is clearly not necessary to
measure all N2−1 Stokes vector components to completely
determine the optical state.

IV. DYNAMICS

Using (6) we obtain the following new formula for the
derivative matrix Qx (where x = ω frequency or x = z spatial
derivative):

∂x | s〉 = Qx | s〉, where Qx = ∂x Rs R−1
s =

(
Dx Bx

−B∗
x Fx

)
.

(19)

The vector Bx is given by

Bx = ∂x S − S∗∂x S

1 + sN
S + ∂x (S∗S)

2sN
S (20)

and the matrix Dx and scalar Fx are given by:

Dx = Bx S∗ − SB∗
x

1 + sN
+

(
S∗ Bx − B∗

x S
)

SS∗

2sN (1 + sN )2

Fx = B∗
x S − S∗Bx

2sN
(21)

The key new observation here is that (21) gives both Dx and Fx
as linear functions of Bx and B∗

x, with coefficients that depend
only on S and S∗. The local dependence of |s> on the
variables ω and z is entirely determined by the projec-
tion of the Lie algebra on a 2(N−1)-dimensional subspace.
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Equation (20) may be inverted to give the CP(N–1) coordinate
derivatives in terms of Bx as follows:

∂x S = Bx + S∗ Bx − B∗
x S

2sN
S − S∗ Bx

1 + sN
S (22)

We make the following definitions to better distinguish
between ω and z:

α̃1 = α2 + iα1 = Bω,1 β̃1 = β2 + iβ1 = Bz,1

α̃2 = α4 + iα3 = Bω,2 β̃2 = β4 + iβ3 = Bz,2
...

...

α̃N−1 = α2N−2 β̃N−1 = β2N−2
+ iα2N−3 = Bω,N−1 + iβ2N−3 = Bz,N−1.

(23)

The α’s and β’s with tildes are complex, the others real. Then
taking derivatives of (20) and performing some straightforward
algebraic manipulations yields the following:

∂α̃

∂z
− ∂β̃

∂ω
=

(
S∗β̃

)
(α̃∗S) − (S∗α̃)

(
β̃∗S

)

2sN (1 + sN )2 S

+ (sN − 1)

2sN (1 + sN )

((
S∗α̃

)
β̃ −

(
S∗β̃

)
α̃
)

+ 1

2sN

((
α̃∗S

)
β̃ −

(
β̃∗S

)
α̃
)

− β̃∗α̃ − α̃∗β̃
1 + sN

S

(24)

This is our reframing and generalization of
Poole’s equations [3] for all N≥2. It describes the dispersive
evolution of the (N–1)-dimensional complex vector α̃ along
the fiber length in terms of the frequency derivative of the
vector β̃ and a generalized cross product of α̃ and β̃, with
coefficients that depend only on S. As discussed in the next
section, α̃ is related to the “PMD vector,” which derives from
group delay, and β̃ is related to the “birefringence vector” in
the standard terminology [3]. When N=2, α̃ and β̃ are just
complex numbers, i.e., they have only two real components
each.

V. CONNECTION TO PAST WORK

Poole’s equations have been generalized to the N-mode case
previously [4]. This was accomplished by expanding deriva-
tives of the displacement operator Rs in terms of generators
of the Lie algebra su(N). There are N2−1 of these and all
must be included in the expansion. However, we have already
shown that only 2N−2 of the coefficients in the expansions
can be independent. The rest are linearly dependent on the
first 2N−2.

The results of [4] can be obtained by expanding the deriv-
ative operators as follows:

Qω = i
∑N2−1

q=1
αq L(q), Qz = i

∑N2−1

q=1
βq L(q) (25)

where the N2 − 1 coefficients αq and βq are real-valued.
They are referred to as components of the “PMD vector”
and “birefringence vector,” respectively. Then by taking

second derivatives and equating mixed partials [4] obtains
a generalization of Poole’s equations:

∂zαq − ∂ωβq =
∑N2−1

a,b=1
αaβbCab

q

q = 1, 2, . . . N2 − 1 (26)

where the Cab
q are the Lie algebra structure constants for the

chosen basis. The conventional Poole’s equations are recov-
ered when N = 2. Unfortunately, this formulation presents
more components than required to describe the evolution of
the optical field.

We will use the basis in (9) to illustrate how to reduce the
system of equations. Starting with

αq = −i

2
tr

(
Qω L(q)

)
, βq = −i

2
tr

(
Qz L(q)

)
(27)

with q = 1, 2, . . . , N2−1, one shows by direct calculation
using (19) that the first (2N–2) αq components are just
the real and imaginary parts of the components of the
Bω vector, exactly as in (23). Likewise for the first (2N−2)
βq components. Thus (19) gives the first (2N−2) α’s and
β’s explicitly in terms of the optical state and its derivatives.
Therefore all elements of the matrices Qω and Qz are linear
functions of the first (2N−2) α’s and β’s, respectively, with
coefficients that depend only on S. Applying (27) then gives
explicit linear relations for each αq (q > 2N−2) in terms of
the first (2N−2) αq’s and likewise for the βq’s. Only the first
(2N−2) α’s and β’s are independent variables, and the rest
are linear functions of these. Thus we have a reduced set of
equations involving independent variables exclusively:

∂zαq − ∂ωβq =
∑2N−2

a,b=1
αaβbCab

q (S)

q = 1, . . . , 2N − 2 (28)

In contrast to (26), the coefficients Cab
q (S) are no longer

constant but depend (exclusively) on S. Equation (28)
describes the evolution of the independent components of the
PMD vector as a flow on CP(N−1). It is equivalent to (24)
but has the disadvantage that it is basis-dependent and the
coefficients Cab

q (S) are difficult to write down succinctly.
Because the components are S dependent, either (24) or (28)
must be integrated together with the propagation
equation (19 or 31 below).

For a fixed N, it is straightforward to calculate expressions
for the dependent coefficients using the above-described pro-
cedure. For example, when N=2, using (27) and (19) and
choosing (s1, s2) = (

e−iφ sin ρ, cos ρ
)

leads to

α3 = −(α2 sin φ + α1 cos φ) tan ρ. (29)

An analogous constraint equation holds for β3. For N=3,
there are four independent variables, α1, . . . , α4, and
four dependent ones, α5, . . . , α8, and likewise for the β’s.
Using (9), (10) and (18), and choosing

(s1, s2, s3) =
(

e−iχ sin ρ sin η, e−iφ sin ρ cos η, cos ρ
)
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we have:

α8 =
√

3

2
α1 sin η cos χ tan ρ +

√
3

2
α2 sin η sin χ tan ρ

+
√

3

2
α3 cos η cos φ tan ρ +

√
3

2
α4 cos η sin φ tan ρ (30)

with three similar equations expressing α5, α6 and α7 in
terms of α1, . . . , α4. For any N, one may apply (27) to
compute linear equations like (29) and (30) for the dependent
components. The advantage of (24) is that, from the outset,
no extraneous components are involved.

VI. THE MODE COUPLING MATRIX

As explained in [3], the connection of Poole’s equation to
the physics of the glass medium is established by relating the
βq components that appear in Poole’s equation to the physical,
symmetric dielectric tensor ε that appears in the multimode
Maxwell equation for the E-field in (1)

d2 E

d z2 + ω2

c2 ε E = 0 (31)

by expanding the dielectric tensor as follows:

ω2

c2 ε = ω2

c2

(
ε(0) + δε

)
≡ K0

(
K0 + 2

∑N2−1

q=1
γq L(q)

)
,

(32)

where the γq’s are the expansion coefficients. Here ε(0) is
the uncoupled, diagonal dielectric tensor, δε is the coupling
matrix, and K0 = K0(ω) = diag(k1, k2, . . . kN) is the diagonal
matrix of uncoupled propagation constants for the N modes.

The adiabatic approximation [3] then leads to

∂z |s〉 = iω

2nc
M∗δε M|s〉 = i

N2−1∑

q=1

γq M∗L(q)M|s〉 (33)

Equation (33) is consistent with (19) and (25) only if the
following linear relationship holds:

γk =
N2−1∑

q=1

βqσk,q , k = 1, . . . , N2 − 1 (34)

where the coefficients

σk,q = 1

2
tr

{
L(k) M L(q)M∗} (35)

describe the elements of a Hermitian, unitary matrix. The
phase factors that arise in (35) account for the fact that the
vector |s> is defined to be independent of rapidly varying
propagation phases. Because, for a given optical state S,
the matrix Qz depends on only 2N−2 real parameters (the
components of the vector Bz), the same is true for δε.

If the uncoupled propagation constants are the same for
all modes, M is proportional to the identity matrix, δε is
proportional to Qz, and the γ-coefficients for the dielectric
tensor expansion describing mode-coupling are the same as
the β-coefficients for the Qz expansion. This means that only
the last column of the coupling matrix, proportional to the
Bz vector, can be independently varied. All other matrix
elements are determined by this choice and the optical state S.
Specifying the coupling of all modes to the Nth mode is a full

specification of the entire matrix, to this order in the adiabatic
approximation.

Otherwise, if M is not a multiple of the identity, the γ’s are
linear combinations of the β’s, but the situation is otherwise
unchanged. Because we have already shown that only 2N−2
of the βq components are independent, it follows that only
2N−2 of the γq components may be chosen independently.
For the optical state to remain on CP(N−1), the additional
γq components are constrained by (34). These constraints can
be expressed in terms of γ by observing that the
(N2−1)-vector β satisfies an equation β = G β, with
G = G(S) a matrix having nonzero elements only in the first
2N−2 columns. Thus γ = σ G σ γ.

VII. THE GROUP DELAY MATRIX

Finally, we note that (19) constrains frequency derivatives
as well: when evaluated at |s> = |�>, the matrix Qω takes
the form:

Qω|�〉 = i Ã| �〉, (36)

where Ã is given in (5). Clearly the maximum rank of Ã is
two. The tangent space to Qω at a general |s> consists of the
matrices iRsÃR∗

s . Because Rs is invertible, the rank of iRsÃR∗
s

and hence Qω is the rank of Ã. The group delay operator is:

G D = −i∂ω (M Rs) (M Rs)
−1

= −i
(
∂ω M M∗ + M∂ω Rs R∗

s M∗)

= −i M
(
M∗∂ω M + ∂ω Rs R∗

s

)
M∗.

= −i∂ωM M∗ − i M Qω M∗. (37)

Hence the group delay operator is a rank-2 perturbation of the
diagonal operator −i∂ωM M∗ regardless of N.

VIII. CONCLUSION

We have shown that the appropriate generalization of the
Poincaré sphere to N ≥ 2 modes is the (N–1)-dimensional
complex projective space CP(N–1). The generalized Stokes
vector components are the Cartesian coordinates of the inverse
stereographic projection of a CP(N–1) coordinate patch into a
real 2N–2 sphere in 2N–1 dimensions. We derived N-mode
analogs of Poole’s PMD equations that involve only the
physical number (2N–2) of independent variables, defining a
flow on CP(N–1). It may be used to model mode coupling in
multimode fiber. The PMD vector components are explicitly
related to the optical field and its frequency derivatives.
Corresponding general constraints on the mode-coupling
matrix are found. The group delay operator was shown to
be unitarily equivalent to a rank-2 perturbation of a diagonal
matrix.
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