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Abstract 1

A quantum superintegrable system is an integrable n-

dimensional Hamiltonian system with potential that admits

2n − 1 functionally independent constants of the motion, (fi-

nite order differential operators commuting with the Hamilto-

nian), the maximum number possible. If the operators are all

second order, the system is second order superintegrable.

In 2D and for 3D conformally flat spaces with nondegener-

ate potential, the algebra generated by the constants of the

motion and their commutators has been proven to close at

order 3 (the quadratic algebra).
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Abstract 2

The representation theory of this algebra gives important in-

formation about the the energy eigenvalues and the spectra

of the symmetries. In the 2D case we study possible re-

alizations of the possible irreducible representations of the

quadratic algebra by differential or difference operators in a

single complex variable t acting on Hilbert spaces of ana-

lytic functions. Therse models greatly simplify the study of

the representations and are also of considerable interest in

their own right. In particular the Wilson polynomials emerge

naturally in their full generality.

Nelson lecture 3 – p.3/40



Abstract 3

We demonstrate that models of the classical superintegrable

systems lead directly to models of the quantum systems, so

that, for example, Wilson polynomials emerge directly from

classical mechanics. The examples analyzed provide guid-

ance concerning the models for higher dimensional superin-

tegrable systems and may point the way towards a general

structure theory for representations of quadratic algebras.

Nelson lecture 3 – p.4/40



Basic 2D structure results 1

Theorem 1 Let H be the Hamiltonian of a 2D
superintegrable system with nondegenerate (i.e., 3
parameter) potential.

1. The space of second order symmetry operators is
3-dimensional.

2. The space of third order symmetry operators is
1-dimensional.

3. The space of fourth order symmetry operators is
6-dimensional and is spanned by symmetric quadratic
polynomials in the second order symmetries.

4. The space of sixth order symmetry operators is
10-dimensional and is spanned by symmetric cubic
polynomials in the second order symmetries.
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Basic 2D structure results 2

1. Every 2D superintegrable system with 1 or 2-parameter
potential is a restriction of a nondegenerate potential.

2. However, for some 1-parameter potentials the structure
of the quadratic algebra changes if the system admits a
Killing vector, i.e., a first order symmetry operator. We
will call these degenerate 1-parameter potentials.
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Basic 2D structure results 3

1. In the degenerate 1-parameter potential case there is a
1-dimensional space of first order symmetry operators
and a 4-dimensional space of second order symmetry
operators.

2. The commutator of a first order and a second order
symmetry operator is always expressible as a linear
combination of second order symmetry operators.

3. The commutator of two second order symmetry
operators is always expressible in terms of symmetric
products of a first order and a second order symmetry.

4. There is a nontrivial quadratic symmetric polynomial
relating the second order symmetry operators.
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Basic 2D structure results 4

1. Thus the quadratic algebra generated by the symmetry
operators always closes, at order 6 for nondegenerate
potentials and at order 4 for degenerate (1-parameter)
potentials.

2. Every 2D superintegrable system is Stäckel equivalent
to a superintegrable system on a constant curvature
space, either flat space E2 or the complex 2-sphere S2.

3. All superintegrable systems on E2 and S2 have been
classified. There are 19 systems on E2, 8 of them
degenerate, and 9 systems on S2, 3 of them
degenerate.

4. Some of these systems are Stäckel equivalent. The
numeber of distinct equivalence classes for all 2D
superintegrable systems on possible manifolds is 13, 7
nondegenerate and 6 degenerate. Nelson lecture 3 – p.8/40



Basic 2D structure results 5

1. The quadratic algebras of two Stäckel equivalent
systems are related by a simple permutation of the
parameters in the potential and the enrgies. Thus They
have the same abstract representation theory.

2. We conclude that the representation theory of quadratic
algebras for second order superintegrable systems in
2D reduces to 13 distinct cases, 7 nondegenerate and 6
degenerate.
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Degenerate Example: E14

1. The Hamiltonian is

H = ∂2
x + ∂2

y +
a

z2

2. The symmetry operators are

L1 =
1

2
{M,p−} +

α

iz
L2 = M2 +

αz

z

X = p− = ∂x − i∂y M = x∂y − y∂x

3. The algebra is

[L1, L2] = i{X,L2} +
i

2
X, [L1, X] = iX2,

[L2, X] = 2L2, L
2
1 − L2X

2 + αH − 11

12
X2 = 0
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A model for E14

1.

X =
1

t
, L1 = i∂t, L2 = −t2∂2

t − 2t∂t + αh− 1

4
t2

2. L2φν = −ν2φν ,
φν = 1√

t
Jν(

√
−αht), Jν(t) a Bessel function

3. Action on a L2 basis:

L1φν =
i
√
−αh
4ν

((2ν − 1)φν−1 − (1 + 2ν)φν+1)

Xφν =

√
−αh
2ν

(φν−1 + φν+1).

4. X has continuous spectrum. No finite dimensional
irreducible representions. Nelson lecture 3 – p.11/40



The nondegenerate system E1

1. The potential is

V = ω2(x2 + y2) +
1/4 − a2

x2
+

1/4 − b2

y2

2. Symmetries: L1 = (x∂y − y∂x)2 +W1 and L2 = ∂2
x +W2.

3. The structure equations are (R = [L1, L2]):

[L2, R] = −8L2
2 + 8HL2 − 16αL1 + 8α,

[L1, R] = −8HL1+8{L2, L1}−8(1+2β)H+16(1+β+γ)L2,

R2 = −8

3
{L2, L2, L1}+8H{L2, L1}−4(3+4a)H2−16(a+b−11

3
)L

+16(2a+
11

3
)HL2 +

176

3
ωL2 + 16ω(3a+ 3b+ 4ab+

2ω

3
)
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A model for E1

1. Diagonalize L1: L1 = 4iωt∂t + 2iω(1 − 2m− a)

2. Find raising and lowering operators:

A = L2 −
R

4iω
+

L2
1

2ω2
− h

2ω2
L1 −

1

2
= t∂2

t + (1 + b)∂t

A† = L2 +
R

4iω
+

L2
1

2ω2
− h

2ω2
L1 −

1

2
=

64t3∂2
t +(192−64a−128m)t2∂t+(62m2+(64a−128)m+64−64a)t

3. If L1 and L2 are formally self-adjoint, then iω must be
real and A† will be mutually adjoint.
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The quantization condition

1. Assume there is a highest weight vector tm−1 for some
positive integer m. Then A†tm−1 = 0.

2. This implies that the energy eigenvalue is given by
h = −2iω(2m+ a+ b)

3. Imposing a finite dimensional representation we can
require At0 = 0.

4. Then the eigenvalue equation L2ψh = λkψk has
spectrum λk = −3/2− 2b− 2a− 4k− 2ba− 4bk− 4ak− 4k2

and the eigenfunctions are hypergeometric polynomials

ψk(t) = lk(8t+ 1)m−1−k
2F1

(

−k, −a− k

1 + b
| − 8t

)

k = 0, · · · ,m− 1.
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The Hilbert space

1. This gives us the energy eigenvalues and the spectral
decompositions for L1, L2 as well as the expansion of
the L2 eigenbasis in terms of the L1 eigenbasis.

2. Assuming that L1, L2 are self-adjoint we can determine
the orthonormal basis of L1 eigenvectors φn(t) = cnt

n

where cn =
√

(−m)n(−m−a)n

n!(b)n

3. Reproducing kernel

∑

φn(t)φn(s) = 2F1

(

−m, −m− a

b
|ts
)

4. Similarly we can define explicit function space inner
products to realize the various finite and infinite
dimmensional irreducible representations of the
quadratic algebra.
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A degenerate system on the 2-sphere: S3

1.

H = J2
1 +J2

2 +J3
3 +

α

s23
, s21+s

2
2+s

2
3 = 1, J3 = s1∂s2

−s2∂s1

plus cyclic permutations.

2. Symmetries

L1 = J2
1 +

αs22
s23

, L2 =
1

2
(J1J2 + J2J1) −

αs1s2
s23

, X = J3.
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S3 structure equations

1.
[L1, X] = 2L2, [L2, X] = −X2 − 2L1 +H − α,

2.

[L1, L2] = −{L1, X} − (2α− 1

2
)X,

3.

1

6
{L1, X,X}−HL1+L

2
2+L

2
1+(α+

11

12
)+(α−2

3
)L1−

H

6
=

5α

6
,

where {a, b, c} is the 6 term symmetrizer equal to
abc+ acb+ cba+ cab+ bca+ bac.
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A recent appearance 1

1. Variable mass Hamiltonians, used in semiconductor
research , quantum dots, nuclei, and quantum liquids,
“Effective mass”.

2. A general variable mass Hamiltonian in 2D:

H = ∂x
1

M(x, y)
∂x + ∂y

1

M(x, y)
∂y + V (x, y)

3. Potential introduced by Quesne (2007).

M(x, y) = − 1
cosh2 qx

and V (x, y) = −q2 cosh2 qx+ q2k(k−1)

sinh2 qx

4. The metric must be ds2 = q2 dx2+dy2

cosh2 qx
, constant curvature.
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A recent appearance 2

1. If we take the coordinates on the sphere to be

s1 =
sin qy

cosh qx
, s2 =

cos qy

cosh qx
, s3 = tanh qx

and perform a gauge transformation we get exactly S3.
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The model 1

1. Diagonalize X = i(2t d
dt −m)

2. Write h = −(−m+ a− 1)2 + 1
4 . If µ = −m m ∈ N, then

our model is finite dimensional:

L1 =
(

t3 + 2t2 + t
) d2

dt2
+
(

(2 − a−m)t2 + 2(1 −m)t

+a−m)
d

dt
+m(a− 1)t+ a(m+ 1) −m− 1

2
,

L2 = i
(

−t3 + t
) d2

dt2
+i
(

(a+m− 2)t2 + a−m
) d

dt
−im(a−1)t.

3. If m = −µ for arbitrary complex µ then the model is
infinite dimensional bounded below.

4. The finite dimensional representations gives us the
quantization for the energy levels. Nelson lecture 3 – p.20/40



The model 2

1. We have raising and lowering operators

A† = L1+iL2+
1

2
(X2−H+α), A = L1−iL2+

1

2
(X2−H+α)

2. We can use these to find normalization coefficients for
our eigenfunctions, φn = knt

n n = 0, ...,m as well as a
weight function and reproducing kernel.
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The model 3

1. We can also diagonalize L1ψ − λψ = 0 using
hypergeometric functions. If we are in the finite
dimensional model, we have the requirement that our
hypergeometric functions be polynomials of order m;
this gives us a quantization condition
λ = −(n− a+ 1

2)2 + a2 − 1
4 . The eigenfunctions become,

for n = 0, ...,m

ψν(t) = ln(t+ 1)n2F1(

(

−m+ n 1 − a+ n

−m+ a
| − t

)

where ln is a normalization coefficient.
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Classical models 1

1. We can also find models of the classical quadratic
algebras in terms of functions of two canonically
conjugate variables c, β The analog of the one-variable
quantum models.

2. The existence of such models follows easily from
standard Hamilton-Jacobi theory for integrable systems.

3. Why bother? BECAUSE THE CLASSICAL MODELS
TELL US THE FORMS OF THE POSSIBLE QUANTUM
MODELS. Sometimes the possible quantum models will
be in terms of differential operators, sometimes in terms
of difference operators.
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Classical models 2

1. Classical S3 constants of the motion

L1 = J 2
1 + α

s22
s23
, L2 = J1J2 − α

s1s2
s23

, X = J3

2. Structure relations

{X ,L1} = −2L2, {X ,L2} = 2L1 −H + X 2 + α,

{L1,L2} = −2(L1 + α)X
3. Casimir relation

L2
1 + L2

2 −L1H + L1X 2 + αX 2 + αL1 = 0.

Nelson lecture 3 – p.24/40



Classical models 3

1. Require X ≡ Xh = c and H = h in the structure
equations.

2. Result is

I : L1 =
1

2
(E−c2−α)+

1

2

√

c4 − 2c2(E + α) + (E − α)2 sin 2β,

3. Factor the term under the square root and set

φ = arctan

(
√
−4α

c2 − (E + α)2

)

.
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Classical models 4

1. Now we let 2β → 2β + φ to obtain

L1 =
1

2
(E−c2−α)+

1

2

(

(c2 − (E + α)2) sin 2β + 2i
√
α cos 2β

)

,

L2 =
1

2

(

(c2 − (E + α)2) cos 2β − 2i
√
α sin 2β

)

, X = c.
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Classical models 5

1. In this form we can see that the symmetries are
polynomial in c which suggest the substitution
β → t, c → −∂t leading to a quantum realization of L1, L2

by second order differential operators. This leads
directly to the differential operator model of S3 that we
have already exhibited.

2. For a second model we require L1 ≡ (L1)h = c and
proceed in a similar fashion. The result is

II : L1 = c, L2 =
√

c(E − c− α) sin(2
√
c+ αβ),

X =

√

c(E − c− α)

c+ α
cos(2

√
c+ αβ).
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Classical models 6

1. This model cannot produce finite order differential
operator realizations of the quantum quadratic algebra,
due to the intertwining of square root dependence for c
and exponential dependence for β. However, it will
produce a difference operator realization via Taylor’s
theorem: ea∂tf(t) = f(t+ a).
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Classical models 7

1. To show this explicitly we make a coordinate change
such that 2

√
c+ α∂c = ∂C which suggests realizations of

the quantum operators in the form

L1f(t) = (t2−α)f(t), Xf(t) = h(t)f(t+ i)+m(t)f(t− i),

L2f(t) = − i

2
(i+ 2t)h(t)f(t+ i) +

i

2
(−i+ 2t)m(t)f(t− i).

2. A straightforward computation shows that the quantum
algebra structure equations are satisfied if and only if

h(t)m(t+ i) =
1

4

(α− t2 − it)(t2 + it− E)

t(t+ i)
.
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S3 difference model 1

1. Some manipulation yields the difference operator model

−iX =
(1/2 − a− it)(µ+ a− 1/2 − it)

2t
T i

−(1/2 − a+ it)(µ+ a− 1/2 + it))

2t
T−i,

L2 = −i(1 − 2it)(1/2 − a− it)(µ+ a− 1/2 − it)

4t
T i

−i(1 + 2it)(1/2 − a+ it)(µ+ a− 1/2 + it))

4t
T−i,

2. The basis functions are dual Hahn polynomials

fn(t) = 3F2

(

−n 1
2 − a+ it 1

2 − a− it

µ 1 − a
; 1

)

.
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S3 difference model 2

1. The orthogonality and normalization are given by

1

2π

∫ ∞

0

∣

∣

∣

∣

Γ(1/2 − a+ it)Γ(µ+ a− 1/2 + it)Γ(1/2 + it)

Γ(2it)

∣

∣

∣

∣

2

×

sn(t2)sn′(t2) dt =
Γ(n+ µ)Γ(n+ 1 − a)Γ(n+ µ+ a)n!

(µ)2n|(1 − a)n|2
δnn′,

where either 1) µ > 1/2 − a > 0 or 2) µ > 0 and
a = ((1 − µ)/2 + iγ is complex.

2. We can also use µ a negative integer to find finite
dimensional difference operators representations with
basis vectors of (not continuous) dual Hahn polynomials
with a discrete measure.

Nelson lecture 3 – p.31/40



The generic system S9 1

1. Potential

V =
1
4 − a2

s21
+

1
4 − b2

s22
+

1
4 − c2

s23

where s21 + s22 + s23 = 1.

2. Hamiltonian

H = J2
1 + J2

2 + J2
3 + V (x, y) = H0 + V

where J3 = s1∂s2
− s2∂s1

and J2, J3 are obtained by
cyclic permutation.

3. Symmetries (symmetric form) L1, L2, L3 where

L1 = J2
3 +W1, L2 = J2

1 +W2, L3 = J2
2 +W3,

H = L1 + L2 + L3 + a1 + a2 + a3.
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The generic system S9 2

1. Structure equations

[Li, R] = 4{Li, Lk}−4{Li, Lj}−(8+16aj)Lj+(8+16ak)Lk+8(aj

R2 =
8

3
{L1, L2, L3}−(16a1+12)L2

1−(16a2+12)L2
2−(16a3+12)L2

3

+
52

3
({L1, L2} + {L2, L3} + {L3, L1}) +

1

3
(16 + 176a1)L1

+
1

3
(16 + 176a2)L2 +

1

3
(16 + 176a3)L3 +

32

3
(a1 + a2 + a3)

+48(a1a2 + a2a3 + a3a1) + 64a1a2a3.

Here i, j, k are chosen such that ǫijk = 1 where ǫ is the
pure skew-symmetric tensor, and R = [L1, L2].

2. In practice we substitute L3 = H −L1 −L2 − a1 − a2 − a3

into these equations.
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Abstract representation theory for S9 1

1. Assume the existence of a discrete set of eigenvectors
fn for the symmetry operator L1

2. Only possibility is L1fn = λnfn where

λn = −[2n+ B]2 + K, n = 0, 1, · · · ,m.

L1fn = (K − [2n+ B]2)fn, L2fn =
∑

ℓ

C(ℓ, n)fℓ.

3. Structure equations give

H = −1

4
(−4µ+ 2a+ 2b+ 2c+ 5)(−4µ+ 2a+ 2b+ 2c+ 3).
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Abstract representation theory for S9 2

1. and

C(n, n) =
1

2
(2n+ a+ b+ 2)(2n+ a+ b)

−1

2

[

(−2µ+ a+ b+ c+ 2)2 + a2 − b2 − c2 − 1
]

+
1

2

(a2 − b2)(a+ b− 2µ+ 2)(a+ b+ 2c− 2µ+ 2)

(2n+ a+ b+ 2)(2n+ a+ b)
,

C(n, n+ 1)C(n+ 1, n) =

16(n+1)(n+µ)(n−c+µ)(n+b+1)(n+a+1)(n+a+b+1)×
(n− µ+ a+ b+ 2)(n− µ+ a+ b+ c+ 2)

(2n+ a+ b+ 3)(2n+ a+ b+ 2)2(2n+ a+ b+ 1)
.
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Abstract representation theory for S9 3

1. Here µ is an arbitrary complex parameter but if
µ = −m, m ∈ N the representation becomes finite
dimensional.

2. Only the coefficients C(n,N) where N = n, n± 1 are
nonzero.

3. Only the product C(n, n+ 1)C(n+ 1, n) is determined,
the individual factors can be modified via gauge
transformation.
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A model for for S9 4

1. The action of L2 on the L1 basis yields the general
three-term recurrence relation for the Wilson
polynomials pn:

pn(t2) ≡ pn(t2, α, β, γ, δ) = (α + β)n(α + γ)n(α + δ)n×

4F3

(

−n, α + β + γ + δ − n− 1, α− t, α+ t

α + β, α+ γ, α + δ
; 1

)

with the identification

α = −a+ c+ 1

2
+µ, β =

a+ c+ 1

2
, γ =

a− c+ 1

2
, δ =

a+ c−
2

2. In the particular case that the representation is finite
dimensional, we obtain instead the Racah polynomials.
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Classical S9

1. The classical model with H = h and c, β conjugate
variables, gives L1 = c and

L2 =
1

2
(a1 +2a2 +E− c)− (a2 − a3)(a1 + 2a2 + 2a3 + E)

2(c+ a2 + a3)
+

√

(4a1a2 + 4a1a3 + 2c(E + a1 + a2 + a3) + 4ca1 − (E + a1 + a

2(a2 + a3 + c)

× cos(4β
√
a2 + a3 + c).

which suggests a difference operator model.

2. We quantize so that β = ∂c and then take a change of
coordinates so that 4

√
a2 + a3 + c∂c = ∂t and obtain an

ansatz difference model. Plugging this into the quantum
algebra relations we recover exactly the recursion
relations for the Wilson and Racah polynomials. Nelson lecture 3 – p.38/40



3D nondegenerate systems

1. 2n− 1 = 5 but there are 6 linearly independent second
order symmetries.

2. The quadratic algebra generated by the second order
symmetries closes at order 6 again, but there are 4
independent commutators R1, · · · , R4 and 10 relations
expressing RiRj as symmetric cubic polynomials in the
6 second order symmetries.

3. The 6 second order symmetries obey a quartic
polynomial relation.

4. The quantum models will be in terms of 2 complex
variables t1, t2.
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Outlook

1. It appears that the 3D nondegenerate case will lead to
2-variable Wilson polynomials and their special cases.
The theory is much more complicated but the quadratic
algebra structure is very restricted.

2. Since Wilson polynomials extend naturally to
Askey-Wilson polynomials, this suggests the possibility
of a q-theory of superintegrability.

3. The general definition and representation theory for
quadratic algebras of all orders is an important future
project.
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