
Planetary motion, the hydrogen
atom, and superintegrablity

History with hindsight

Willard Miller

miller@ima.umn.edu

University of Minnesota

Nelson lecture 1 – p.1/43



Abstract

Superintegrable systems are classical or quantum systems

that exhibit the maximal symmetry possible. This is a brief,

biased, history of classical and quantum mechanics that

points out the critical role of superintegrable systems in the

development of these subjects.
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The start: Aristotle’s astronomy

Aristotle taught:

1. The universe is spherical and finite, centered on the
center of the earth.

2. Earth is spherical and motionless. The sun, moon,
planets and stars are spheres.

3. The stars are fixed in the celestial sphere that rotates
about the earth. The sun, moon and planets are
attached to a series of interlocking smaller spheres that
are rotating about the earth at various fixed rates.
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Ptolemy’s epicycles

By two millennia ago it had become apparent (to as-

tronomers who actually made observations) that Aristotle’s

theory was untenable. It simply did not fit the observed facts.

For example it couldn’t explain retrograde motion where a

planet is observed to pause and then move backward in

the sky, before resuming forward motion. The attempt to

maintain the concept that uniform circular motion was pri-

mary while getting a better fit to actual observations lead to

Ptolemy’s theory of epicycles, or spheres rolling on spheres.
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Epicycles 0

1. The epicycle procedure was extremely complicated and
had to be revised frequently as new and more accurate
data became available. By the early 1600s the
Copernican notion that the planets orbited in epicycles
about the Sun rather than the Earth had become
popular, and this simplified the computations and
improved accuracy somewhat. However, the much
more accurate observations of Brahe showed that
severe problems remained.

2. The greatest deficiency in the epicycle method was that
it was merely descriptive; it provided no insight into the
underlying natural processes that accounted for the
motion.
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Kepler 1

With the work of Kepler and the publication of his three laws

of planetary motion, roughly 1615-1630, the epicycle edifice

came crashing down. Kepler showed that the assumption

that the planets followed elliptical orbits with the Sun at one

focus gave a much simpler and more accurate means of fit-

ting the observational data. Newton, 50 years later, used

this breakthrough in his formulation of mechanics to deter-

mine the gravitational force, and to derive the planetary or-

bits from physical principles.
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Newton’s Gravitational force 1

Newton used Kepler’s laws to demonstrate that the force
exerted on a planet by the sun is

F = −MmG

r2
r̂

where r is the distance from the center of the sun to the
center of the planet, and r̂ is a unit vector pointing from the
planet to the sun. Here, M is the mass of the sun and m is
the mass of the planet. Newton’s equation for the motion of
the planet is

mr′′ = −mk

r2
r̂,

where k = MG and G is the gravitational constant.
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Newton’s Gravitational force 2

1. We know today that Newton’s equation for planetary
motion, the 2-body problem, can be solved explicitly, not
just numerically, because it is of maximal symmetry. It
admits 3 independent symmetries and this is the
maximum possible in two dimensions. It is a very
important example of a superintegrable system.

2. It also helps explain how Kepler found the trajectories of
the planets without knowing Newton’s equations or
calculus.
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Conservation laws 1

1. A basic principle here is that symmetries of a physical
system lead to conservation laws obeyed by the
system: quantities that do not change as the system
evolves in time.

2. The precise general statement of this relationship is
Noether’s Theorem, named after Emmy Noether, one of
the greatest female mathematicians. It also follows from
Hamiltonian mechanics.
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Conservation laws 2

For the 2-body problem,

1. Symmetry with respect to time translation =⇒
conservation of energy.

2. Symmetry with respect to rotation =⇒ conservation of
angular momentum.

3. A higher-order symmetry =⇒ conservation of the
Laplace vector.
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The orbital plane

A planet orbiting the sun moves in a plane. Choose coordi-

nates (x, y) in this plane such that the center of the sun is at

the origin (0, 0) and at time t the center of the planet is at the

point (x(t), y(t)) and is moving with velocity (x′(t), y′(t)). The

speed of the planet in its orbit is s(t) =
√

(x′(t))2 + (y′(t))2.
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Hamilton’s equations 1

Let q1, q2 be the position coordinates of a Hamiltonian
system and let p1, p2 be the momenta. The Hamiltonian
function H(q1, q2, p1, p2) represents the energy of the
system. Hamilton’s equations give the time evolution of the
system. They are

q′k(t) =
∂H

∂pk

, p′k(t) = −∂H

∂qk

, k = 1, 2.

In our case,

q1 = x, q2 = y, p1 = x′, p1 = y′, H =
1

2
(p2

1 + p2
2) −

k

r
,

where r =
√

q2
1

+ q2
2
.
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Hamilton’s equations 2

Hamilton’s equations are q′1 = x′, q′2 = y′, which are
obvious, and

p′1 = x′′ = −kx

r3
, p′2 = y′′ = −ky

r3
,

which are just Newton’s equations for the 2-body problem.
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Hamilton’s equations 3

A function F (q1, q2, p1, p2) is a symmetry or constant of the
motion if F (q1(t), q2(t), p1(t), p2(t)) remains constant as the
system evolves in time. Thus F is a constant of the motion
if and only if

d

dt
F (q1(t), q2(t), p1(t), p2(t)) = 0.

From the chain rule,

d

dt
F (t) =

∂F

∂q1

q′1 +
∂F

∂q2

q′2 +
∂F

∂p1

p′1 +
∂F

∂p2

p′2 =

∂F

∂q1

∂H

∂p1

+
∂F

∂q2

∂H

∂p2

− ∂F

∂p1

∂H

∂q1

− ∂F

∂p2

∂H

∂q2

≡ {H,F},

where {H,F} is the Poisson bracket of F and H.
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Hamilton’s equations 4

Thus F is a constant of the motion provided the Poisson
bracket {H,F} = 0. Note that H itself (the energy) is always
a constant of the motion. In our case, in addition to the
energy, we have the following constants of the motion:

1. Angular momentum L = q1p2 − p1q2.

Proof:

{H,L} = p2p1 − p1p2 −
kq2q1

r3
+

kq2q1

r3
= 0.
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Hamilton’s equations 5

1. The first component of the Laplace vector

e1 = p2(q1p2 − q2p1) −
kq1

r
.

2. The second component of the Laplace vector

e2 = −p1(q1p2 − q2p1) −
kq2

r
.
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Constants of the motion

Energy
1

2

(

(x′)2 + (y′)2
)

− k
√

x2 + y2
= E

Angular momentum
xy′ − yx′ = L

Laplace vector e = (e1, e2) where

y′(xy′−yx′)− kx
√

x2 + y2
= e1, −x′(xy′−yx′)− ky

√

x2 + y2
= e2.

Relation
e2
1 + e2

2 = 2L2E + k2
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The trajectories 1

By lining up the x, y coordinate system so that the x-axis is
in the direction of the Laplace vector, we can assume
e2 = 0. (This means that the x-axis goes through the
perihelion of the planet. It is called the apse axis in
astronomy.) Then

1.

e2 = 0 and L constant −→ x′ = − ky

L
√

x2 + y2

2.

e1 and L constant −→ y′ =
e1

L
+

kx

L
√

x2 + y2
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The trajectories 2

1. Substitute these expressions into the equation for L,
and simplify to get the equation:

k
√

x2 + y2 = L2 − e1x

2. Square and simplify to get the trajectory

(1 − e2
1

k2
)x2 +

2L2e1

k2
x + y2 =

L4

k2
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The paths are conic sections!

Set e1 = ǫk ≥ 0 where ǫ is called the eccentricity.

ǫ = 0, Circle:

x2 + y2 = (
L2

k
)2

0 < ǫ < 1, Ellipse:

(1 − ǫ2)x2 +
2ǫL2

k
x + y2 = (

L2

k
)2

ǫ > 1, Hyperbola:

(1 − ǫ2)x2 +
2ǫL2

k
x + y2 = (

L2

k
)2

ǫ = 1, Parabola: 2ǫL2

k
x + y2 = (L2

k
)2
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The trajectories 3

How could Kepler have found the equations of the trajecto-

ries? The coordinate system in the plane of the planetary

orbit, with the origin at the center of the sun, and with the

x-axis as apse axis is natural for the problem and used by

Kepler. Kepler had lots of data about the positions of the

planets, 1500 years worth. He could compute hundreds of

data points (x, y, x′, y′) on each trajectory for the well known

planets. Mars was his particular focus. Here is how he could

discover the information provided by the constants of the

motion.
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The trajectories 4

1. Plot s2 versus 1/r on a graph. The result is a straight
line through 2E on the vertical axis and with slope 2k.

2. Compute the area of the triangle with vertices (0, 0),
(x, y), (x + x′, y + y′) for each data point on the planetary
orbit. The result is always the same, the constant L.

3. Plot x′/y versus 1/r on a graph. The result is a straight
line through the origin and with slope −k/L.

4. Plot y′ versus x/r on a graph. The result is a straight
line through e1/L on the vertical axis and with slope
k/L.
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Impulse maneuvers

1. Position and velocity (x0, y0, x
′
0, y

′
0) at a single instant

determines the trajectory: Just compute the constants
of the motion E,L, e1, e2 at the instant and they in term
uniquely define the trajectory.

2. This is the basis for impulse maneuvers in rocket
science. The Hohmann transfer.
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The Hohmann transfer

1. Space ship (with engines turned off) on trajectory with
constants of the motion E,L, e1, e2.

2. At time t0 ship has position and velocity (x0, y0, x
′
0, y

′
0).

3. Turn on the engine, for an instant, at time t0: impulse
propulsion. This pulse changes the velocity of the ship
instantaneously, but not the position.

4. Immediately after the impulse the ship has position and
velocity (x0, y0, x̃

′
0, ỹ

′
0).

5. This gives us the new trajectory with constants of the
motion Ẽ, L̃, ẽ1, ẽ2.

6. The change of trajectories is determined by simple
algebra.
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Properties of the Poisson bracket

1. {F,G} =
∑2

i=1
(∂F
∂pi

∂G
∂qi

− ∂F
∂qi

∂G
∂pi

) = −{G,F}

2. {F,G1G2} = G1{F,G2} + {F,G1}G2

3. Jacobi identity:
{F, {G1, G2}} = {{F,G1}, G2} + {G1, {F,G2}}
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The algebra of symmetries

1. The symmetries H,L, e1, e2 of the Kepler systems
generate an algebra of symmetries closed under the
Poisson bracket:

2. The product and the Poisson bracket of two symmetries
F,G are symmetries, i.e., {H,FG} = 0 and
{H, {F,G}} = 0.

3. Structure equations for symmetries:
{L, e1} = e2, {L, e2} = −e1, {e1, e2} = −2LH

4. Casimir: e2
1 + e2

2 − 2L2H = k2
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The quantum Coulomb problem 1

The Hamiltonian and the the constants of the motion are
replaced by differential operators: We make the formal
replacement p1 → ∂q1

and handle the ambiguity of
replacements qipi → qi∂qi

, ∂qi
qi by symmetrizing:

qipi → 1

2
(qi∂qi

+ ∂qi
qi).

H =
1

2
(∂2

q1
+ ∂2

q2
) − k

√

x2 + y2

L = q1∂q2
− q2∂q1

, e1 =
1

2
(L∂q2

+ ∂q2
L) − kx

√

x2 + y2

e2 = −1

2
(L∂q1

+ ∂q1
L) − ky

√

x2 + y2
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The quantum Coulomb problem 2

The Poisson bracket {F,G} is replaced by the operator
commutator [F,G] = FG − GF and the constants of the
motion are differential operators that commute with H.

[H,L] = [H, e1] = [H, e2] = [H,H] = 0

.
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Important properties of the Commutator

1. [F,G] = −[G,F ], linear in both arguments

2. [F,G1G2] = G1[F,G2] + [F,G1]G2

3. Jacobi identity: [F, [G1, G2]] = [[F,G1], G2] + [G1, [F,G2]]
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The quantum Coulomb problem 3

1. Structure equations for symmetries:
[L, e1] = e2, [L, e2] = −e1, [e1, e2] = −2LH

2. Casimir: e2
1 + e2

2 − 2L2H + 1

2
H = k2

3. Structure equations slightly different in quantum case.
Note that this is NOT a Lie algebra.
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Transition to Quantum Mechanics 0

The second order symmetry operators, H, e1, e2 are formally
self adjoint and the first order symmetry L is skew adjoint
with respect to the inner product

< f, g >=

∫

∞

−∞

∫

∞

−∞

f(q)g(q) dq1 dq2.

< Sf, g >=< f, S, g >, S = H, e1, e2, < Lf, g >= − < f,Lg > .
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Transition to Quantum Mechanics 1

Bound states are eigenfunctions of H that are square
integrable:

HΨ = EΨ, < Ψ,Ψ >= 1.

We look for irreducible representations of the structure equa-

tions. Necessarily, the Hamiltonian is constant in these

cases, i.e., we are restricted to an eigenspace of H: HΨ =

EΨ.
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Transition to Quantum Mechanics 2

1. The classical energy, angular momentum and Laplace
vector become operators and the eigenvalues of the
operators are the quantized values of the constants of
the motion. In appropriate units the possible states of
energy E and angular momentum L have values

En =
4k2

(n + 1)2
, Lm = im/2,

m = n, n − 1, n − 2, · · · , 1 − n,−n

where n is an integer. These values can be derived
through symmetry considerations alone.
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Importance of models 1

Consider the 1-variable model for irreducible
representations:

L = it
d

dt
+ iD, e1 = − i

2
(E + t2)

d

dt
− iDt,

e2 =
1

2
(E − t2)

d

dt
− Dt, where D =

1

2
− k/

√
E.

This model satisfies the structure equations identically. It is

designed to give a simple spectral resolution for L.
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Importance of models 2

Set fλ(t) = tλ. Then

Lfλ = i(λ + D)fλ

Note that a± = −e2 ± ie1 act like raising and lowering
operators for the fλ:

a+fλ = (λ + 2D)fλ+1, a−fλ = (−Eλ)fλ−1

The lowest weight vector f0 is annihilated by a−. Suppose
we have a finite dimensional representation. Then it will
contain a highest weight vector fn annihilated by a+. This
means that n = −2D for integer n so n + 1 = 2k/

√
E or

En =
4k2

(n + 1)2
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Importance of models 3

The requirement that iL, e1, e2 be self-adjoint with respect to
an inner product < u, v > leads to the recurrence relation for
the norms

(λ − n)||fλ+1||2 = −(λ + 1)En||fλ||2

Normalizing ||f0|| = 1 we get the ON basis

gλ =
√

n!(
n + 1

2k
)λ

tλ
√

(λ)!(n − λ)!

We can find an explicit function space inner product.
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Importance of models 4

We can also compute the ON basis of eigenfunctions of e2

in the model. They are

Gk(t) = K(t −
√

En)k(t +
√

En)n−k

with corresponding eigenvalues ξ = (k − n/2)
√

En for k =

0, 1, · · · ,m, and computable normalization constant K. The

expansion of Gk in powers of t gives the expansion of the e2

basis in terms of the L basis.
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Importance of models 5

In the original quantum mechanical problem the L ba-

sis eigenfunctions are just the separable eigenfunctions in

spherical (or polar coordinates), the Spherical harmonics,

whie the e2 basis functions are those that separate in para-

blic coordinates, products of Laguerre polynomials. Thus the

result is an interbasis expansion yielding a special function

identity.
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Transition to Quantum Mechanics 3

1. The attractive Coulomb force between a positively
charged particle and a negatively charged particle is
proportional to the gravitational force between these
particles so the same analysis can be applied to the
hydrogen atom with one proton (sun) orbited by one
electron (planet). The energy levels are given by −En.

2. If a hydrogen atom with energy −En jumps to a state
with lower energy −En′ it emits a photon with energy

−En + En′ = −4k2(
1

(n + 1)2
− 1

(n′ + 1)2
).
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Transition to Quantum Mechanics 4

1. Similarly, a hydrogen atom with energy ′En′ can absorb
a photon of energy −En + En′ and jump to a state with
higher energy −En. These energy differences can be
detected and measured though spectroscopy. This is a
“quantum Hohmann transfer”.
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Balmer series 1

Balmer (about 1885 A.D.) knew from experimental evidence
that the lowest wavelengths in the visible spectrum of light
from hydrogen occur at 410 nm, 434 nm, 486 nm, 656 nm,
· · ·. He observed that the inverses of these wavelengths
were proportional to

1

(n + 1)2
− 1

(m + 1)2

for m = 1 and n = 2, 3, 4, 5, · · ·. This is called the Balmer

series. Just as with Kepler, the consequences of the super-

integrability of the Kepler-Coulomb problem were observed

and utilized before they were derived from theory.
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Balmer series 2

Balmer’s astonishingly simple observation demonstrated
that the classical planetary model of the atom had to be
abandoned and a new structure discovered to explain this
regularity.

Balmer was a Ph. D. in mathematics and a math teacher in

a secondary school for girls. He published the Balmer series

at the age of 60.
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Prelude

This is the tip of the iceberg! Superintegrable systems occur

in all dimensions n ≥ 2 and for a great variety of conformally

flat spaces and potentials on these spaces. They are always

associated with noncommuting (non-Lie) algebras of higher

order symmetries and the representation theory of the alge-

bras yields crucial information about the spectral theory of

the symmetry operators. In the following lectures we dis-

cuss the structure and classification of these systems and

the representation theory of their symmetry algebras.
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