This manuscript was accepted by J. Math, Phys. Click here to see the version of record. |

AP

Publishing. Four-body problem in d-dimensional space: ground state,

(quasi)-exact-solvability. IV

M.A. Escobar-Ruiz,

Centre de Recherches Mathématiques, Université d%‘éal,
C.P. 6128, succ. Centre-Ville, Montréal, QC H -337, Canada

escobarr@crm.umontreal.

Willard Miller, Jrm, S
School of Mathematics, Universityeof Minnesota,
Minneapolis, Mi HL@.S.A.
;

millerw du

a
Alexagfder”V Turbiner

;

Instituto de Cien Ees, UNAM, México DF 04510, Mexico

Qurbiner@nucleares.unam.mx
£
/ §/


http://dx.doi.org/10.1063/1.5083129

! I P | This manuscript was accepted by J. Math, Phys. Click here to see the version of record. |

Publishing Abstract
Due to its great importance for applications, we generalize and extend the approach of our
previous papers to study aspects of the quantum and classical dynamics of a 4-body system with
equal masses in d-dimensional space with interaction depending only on mutual (relative) distances.
The study is restricted to solutions in the space of relative motion whi€h are functions of mutual
(relative) distances only. The ground state (and some other states) i ﬂ'ﬁ quangum case and some
trajectories in the classical case are of this type. We construct théguantum Hamiltonian for which

oy

in a curved space with special d-independent metric in arfeertain, d-dependent singular potential,

these states are eigenstates. For d > 3, this describes a 6-di guantum particle moving

while for d = 1 it corresponds to a 3-dimensional partl ¢ ancbcommdes with the A3 (4-body)

rational Calogero model; the case d = 2 is exceptl 1s discussed separately. The kinetic
energy of the system has a hidden sl(7,R) Lie P(%Sd]gebra structure, but for the special case
d = 1 it becomes degenerate with hidden algebrai sl . We find an exactly-solvable 4-body

Si-permutationally invariant, generalized harmemic oscillator-type potential as well as a quasi-

exactly-solvable 4-body sextic polyno 'Ei\slpe otential with singular terms. The tetrahedron
B

whose vertices correspond to the &i:io\riof the particles provides pure geometrical variables,

volume variables, that lead to e lvable models. Their generalization to the n-body system

as well as the case of non ual masses.is brleﬂy discussed.
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PublishingNTRODUCTION

Consider 4 classical particles in d-dimensional space with potential depending on mutual
relative distances alone. After separation of the center-of-mass motion, and assuming zero
total (relative) angular momentum, the trajectories are defined by gvolution of the relative
(mutual) distances. It is an old question to find equations for tr J{;’ ies which depend on
'agd back to J-L Lagrange
(1772). In general, this problem was solved for the 3-body casb\&b The vector positions
of 4 particles in a 3-dimensional space form a tetrahe OD@C rresponding edges are

nothing but the 6 relative distances between the pérticles. “Chus, we can formulate the

relative distances only; in the 3-body case this problem can be

problem in terms of the evolution of such a geometrical object. We call it the tetrahedron
of interaction. ‘)

The aim of the present paper is to congtruc é‘ﬂ—body Hamiltonian which depends
on the 6 relative distances and describes the metion of the tetrahedron of interaction in
d-dimensional space. Our strategy is to \d?'t'he quantum problem first for d > 3. Then,

using geometrical variables obtaine %71 he tetrahedron, we impose constraints on the

\t.
edges (relative distances) and fac \\ enerate the Hamiltonian to the planar d = 2 and
1-dimensional d = 1 cases. Th ;‘E\Qonding classical Hamiltonian is obtained through the
de-quantization procedure 3], of replacement of the quantum momentum by the classical
one with preservationgof\positivity of kinetic energy. In [3], we studied the n-body system
ford>n—1w Q:pr nt paper we will introduce new geometrical variables which
cased'<n — 1.

hil
allow to analyzj
@onian for 4 particles, in a d-dimensional Euclidean space, with a
ioM-1nvart
£

0t potential depending on relative (mutual) distances between particles

H = _ZLA@ + V(ry) , (1)

— 2m,
=1

whege A}i) is the d-dimensional Laplacian,

S\ @ 02

A = )

‘ 8ri8ri ’ ( )
associated with the ith body with coordinate vector r; = rgd) = (i1, %i2,Tig... ,Tiq), and
rij = [ri—ryl, 4,5 =1,2,3,4, (3)
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Publishiisghe (relative) distance between particles ¢ and j, r;; = r;; . For simplicity, unless otherwise
stated, all masses in (1) are assumed to be equal: m; = m = 1. The eigenvalue problem for
H is defined on the configuration space R*¢.
The number of relative distances r;; is equal to the number of edges of the tetrahedron
which is formed by taking the particles’ positions as vertices. We ll\tls tetrahedron the

tetrahedron of interaction, see for illustration Fig.1.

FIG. 1. 4-body system: at dx

e coordinate vectors r; mark positions of vertices of the
tetrahedron of interacti w1th ides 7;;. For illustration one of the faces of this tetrahedron

(shaded triangle) an the of—mass (blue large bubble) are marked.

The cente ofj%qotlon described by vectorial coordinate
y Ly
RCM = —= r ., (4)
~ N/ Vi ,; ‘
cafibe r)ted out; this motion is described by a d-dimensional plane wave, ~ etxRear,

he sbectral problem is formulated in the space of relative motion R, = R3%; it is of the

rel

Hoo U(z) = ( A<3d>+vmj)) U(z) = EV(z), WE LR, (5)

where Afj) is the flat-space Laplacian in the space of relative motion.

If the space of relative motion R,.; is parameterized by 3, d-dimensional vectorial Jacobi

4
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Publishiagrdinates, then

1 J
> k(Tppr — 1) j=1,2,3,

Y Gy &

(6)

and the flat-space 3d-dimensional Laplacian in the space of relative ?ﬁtion becomes diagonal

Al — .

j=1,2 0q;0q; Q@
Thus, q; plays the role of the Cartesian coordinate vectord N& of relative motion.

—-—

(7)

The cases d = 2 (4 bodies on a plane) and d = 1 (4@;@:@ a line) are special. For
t

d = 2 the tetrahedron of interaction degenerates either in S

vertices or a triangle with 3 external vertices an@d*1 interna

_

uadrangle with 4 external

(in both cases the volume of

the tetrahedron vanishes, it plays the role Kfstr int). For d = 1 the tetrahedron
e te

degenerates into an interval: the vertices owx‘w hedron correspond to 2 endpoints and
ol

2 marked points inside the interval,and th

of tetrahedron as well as the areas of

all faces (triangles) are equal to zerg ide my\. This implies that on the line (d = 1) the

relative variables obey 3 constraints ~
Tig + T3 + 223 = 0 &414‘%34 = 0, Tz + Ty + a1 = 0,

Y

where it is assumed tha

the 6 relative distances a
£
3 _
A = 2

rel

i 0? 02 o 02 )

+ + + +
12 61‘%3 613%4 81'12 61‘13 (91‘12 81‘14 61‘13 81‘14

Qiﬁguration space R, 18 0 < 710 < 713 < T4 < o0. Now,

cf. (7).

Obsefvation
4

here €xists a family of eigenstates of the Hamiltonian (1), including the ground

~Usta hich depends on 6 relative distances {r;;} only. The same is correct
forSthe n body problem: there exists a family of the eigenstates, including the
\ «ground state, which depends on relative distances only.

(8)

r;c%otes he position of the ith body and z;; = x; — z;. Hence,

elated and only 3 of them are independent. Therefore, see [4]

(9)

This observation is presented for the case of scalar particles, bosons. It can be generalized

to the case of fermions, namely:
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Publishing 1In the case of 4 fermions there exists a family of the eigenstates of the Hamilto-
nian (1), including the ground state, in which the coordinate functions depend
on 6 relative distances {r;;} only. The same is correct for the n body problem,
see [3]: there exists a family of the eigenstates, including the ground state, in

which the coordinate functions depend on relative distances Aly.

Our primary goal is to find the differential operator, in the form of the Hamiltonian with

positive-definite kinetic energy, in the space of relative distances{{r;; fsfor which these states

ta'hdgpending only on {r;;} for

which these states are solutions. This implies a stud of the,e

are eigenstates. In other words, to find a differential eq
lution of the tetrahedron of

interaction with fixed center-of-mass. We considef the e
A
I. GENERALITIES ‘\
As a first step let us change the vari%b@.in the space of relative motion ¥, :
]\b
C

(q; Wit {921) (10)

This is a generalization of ghe \E&\ ordinates; where for d > 2 the number of (inde-
Tij 1

equal to 6 and {Q} is a collection of (3d — 6) angular
WO a combination of the space of relative distances R, qqie; and

ar variables, essentially those on the sphere S%@=2) . There

pendent) relative distances {

variables. Thus, we spli

are known sever?/ wa

for the space of xelative distances R, 440 We take the relative (mutual) distances ;.

the kinetig enérgy operator in (5), takes the form of the sum of 2 second-order differential

13 (3d)

o =A

operafors’

_ 0
(n-j,al--) + Ag’d 6)(7’“,9,8“,89) s 8ij = a s (11)

T‘Z]

A(6)

rel radial

> where the first operator depends on relative distances only. (Hence, it contains
fivatives w.r.t. relative distances while the coefficient functions do not depend on angles.)
The second operator depends on angular derivatives in such a way that it annihilates any

angle-independent function ¥, namely
Agd_(j)(rij,ﬁ,ﬁij,ag) \I’(Tij) == 0 . (12)

6
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Publishingereafter, we omit the superscripts in A A l and A (3d=6)

Tadml’

The special cases d = 1 and d = 2 will be considered separately in section IV. In particular,

for d = 1 the operator Ag is absent (no angular variables occur), thus

1
Amdz‘al(rijaaij) = §Arel(7“ij,3ij), / (13)

see (9). For d > 2, the commutator [A,qgia, Aa] # 0 . 3\
Now, if we look for angle-independent solutions of (5), dué4o thedecomposition (11) the

general spectral problem (5) is reduced to a particular s ec‘tyul pr
—~

4
H, U(r;;) = <— Avadial(Tij, 0ij) +V(7‘z’j)) U(rj) E‘I’(SU U e Ly(Rradiar) , (14)

where R,q4ia C R, is the space of relative dista(L Sjearly, we can write

Avadial(Ti; 05) = g"(1)0,0, @ (n, v=1,2,3,4,5,6) , (15)

where ¢"(r) is a 6 x 6 matrix whose rles re the coefficients in front of the second
derivatives 0,0,, and b*(r) is a colu Wci;Qr; both are r-dependent. In (15), we made the
identifications 1 — 719, 2 — 713, rigy 4 — ro3, b — rogq, 6 — 13y for p and v.

For any d > 2 one can fi ¢ d-dependent gauge factor I' = I'(r;;) such that

Aradial(Tij, 055) takes the mm\of the*Schrodinger operator,

F A, adial 5,0i) 1 = App(rij) — Vegp(riy) = Ar,r- (16)
Here Apgp(r six-dimensional Laplace-Beltrami operator with contravariant, d-
mdependent ¢ g"(r), on a non-flat, (non-constant curvature) manifold. This makes

)/becomes singular at the boundary of the configuration space, where the

sense of Q:tl nergy. The function V,s/(r) is the d-dependent effective potential. The
Ve

pote

deter ant)) = det g"”(r) vanishes. It can be checked that the operator A, is Hermitian
th me%sure D(r ) . Thus, we arrive at the spectral problem for the Hamiltonian

< Hiplr) = ~Bun(r) + Vigs(r) + V(r) (1"

with d > 2 and with a d-independent Laplace-Beltrami operator Apg(r). It is easy to see
that at d = 2, as a consequence of the vanishing volume of the tetrahedron of interaction,

the operator Ay p(r) becomes degenerate: D(r) = det g*(r) = 0. The configuration space

7
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PuinshiﬁJg;i 0 (equivalently, the space of relative coordinates) at d > 2 shrinks to its boundary
D =0 for d = 2.
The connection between the kinetic energy (A“4) in the original Hamiltonian (1) and

that of the Hamiltonian (17) can be summarized as follows,

Ad) ABD

% . . A d l ‘/\l . ALB .
removal of Roay rel angle-independent solutions raaia uge twulon r
) (18)
(0)

Consequently, we reduce the original 4d-dimensional proble\ dimensional one. As

for the potential, we simply add to the original V' the @i&? ntial Vs arising from

the d—dependent gauge transformation I'. Again, thefcase 1 is special, the gauge factor
is trivial, I' = 1, and 5

ALB(’F) = Aradia( = %el(r) . (19>

Following the de-quantization procedure R@ eplacement of the quantum momentum
(derivative) by the classical momentum —3% P | one can get a classical analogue of

O

7

the Hamiltonian (17), o~
H{(r) “”\P?PV V) o+ Vi) . (20)

It describes the internal motio‘b,\ -dimensional body with tensor of inertia (¢g"*)~* with

center of mass fixed.

The Hamiltonians (17, (20)}are the main objects of study of this paper.
4
ET

4

II. CASE d *(\\ ED RESULTS

For thefl dimmensional case d = 1, we introduce the Sy invariant symmetric polynomials

Q (x) = o1 + 29 + 23 + a4
UQ(LE) = X1y + T X3 + 114 + Lo X3 + Toxy + T3 T4
)

ﬁ
) (21)
o3(r) = T1X2w3 + T1X3T4 + ToT3Ty + T To Ty
R\ o4(x) = X237, .
here it is assumed that x; denotes the position of the ith body.
In the variables
Y = UI(I) ) T = Uk?(y(x)) ) (k = 27374) ) (22>

8
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Publishingcre

y(x) = (yl(:v),yg(:v),yg(:v),y4(:v)) and y1($) = Ti— EY ) (Z = 172,374) ) (23>

are translational invariant, the original Laplacian (1) takes the al?raic form

_Z—AEdZI) — _2612/7}/ + 7—2822’2 + (27—4 7—2 a§3 67—4 T3 844

i=1 (24)
+ 37'38%’3 —+ 47’4822’4 - 7'27'3

—_

_7-284 )

2

—
which, upon the extraction of the center-of-mass motion, can e rewritten in terms of the
generators of the algebra si(4, R). Moreover, i n beweagily seen that this operator de-

scribes the kinetic energy of relative motion f 4 dy (A3) rational Calogero model

Vi = o5+ - d;; Tt 29

2 2
L33 L34 4

with potential

OJ[O

in algebraic form, where ¢ is the coupli con tant and z;; = v; — ;.

B&K olynomial change of variables. In the space of

1i operator (19) is given by

0? 0? 0? 0?
2
% 8.’1}%4 * 8x128x13 * 81’128%14 * 8x138x14’ (6>
V.

see (9). It corresponds the'3-dimensional flat space Laplacian and is evidently an algebraic

25, 1t4s not Sy invariant unlike the original 4d-Laplacian in (1) with d = 1.
et

Also, for d = 1 there exists
relative distances the Laplace-B¢

a2

4
oz,

ALB =

operator. For

However, the

Arp (19 tAls i duce the natural variables

—
_f 2+)13+$14 ; §2 = T1pT13+T12T14+T13T14 §3 = wowiz3wiy, (27)

Q%hi is‘a polynomial change of variables, so that (19) becomes
~

ic energy remains S3 invariant. As a realization of this S3 invariance in

ALB(&) = 68521 + (3 5% - 52) 8522 + (63 —& 53) 8623 + 8& 8521,52

(28)
+ 46 ¢ + 36— &) i, + 30, + 10, .

The operator (28) is algebraic, it can be rewritten in terms of the generators of the maximal

9
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Publishiaffine subalgebra bs of the algebra si(4, R) in {-variables, c.f. below (52), see [4, 7].

0
= — =1.2
\7z 8617 ? 9 737
gz i7j:172’37
05]

:Zgia_ﬁ_N’ /
i=1 3\
JH(N)=&T(N (ija—gj \1,2,3, (29)

where N is a parameter.

III. CASE d > 2: DETAILED RESULTS k
A. r-representation \\

If we assume d > 2, after stralght alculatlons the operator A,qgiqi(7i,0;5) (in

decomposition (11)) can be found t bs

2(d—1)
2 2
2Aradzal<rz]a 1] - + a + 7"23 + 87"24 + 87«34) 1 81”12
2Ad-1) d \2(d 2(d — 1) 2(d — 1)
+ T13 7'23 + a7"24 + a7"34
13 7’ 724 T34
2 2 2
7"12 + T13 7"2 7”12 + 7"14 7"24 9. 9 Tig + T4 — T3y 9. 9
+ T12 3 r12+~T14 13714
T12 7“13 12 7“14 i3 7”14 (30)
2 2
Ty + 7“23 —A'13 / 7"12 + 7“24 7’14 9. 0 T3 + 7"24 7"34 9.9
+ -I_ T12¥T24 723124
Ti2T 12 7"24 23 7“24
2 2 2 2 2
+ Tig + %‘\Tu 080, + i3 + 7”34 T14 o 0. + T3 + 7"34 7"24 9.
3} T13Y7T23 13 7,34 T13 Y134 o3 T34 723 Y134
2 2 2
r2, +ri —r re, +ri —r2
14 34 13 24 34 23
+ 87"14 8724 + r r a'r14 a7'34 + r r a"'24 87"34
14 T'34 24 734

Notice the aljsence of the cross terms 0,,,0,,,, Or30r,, and 0,,,0,,,; each of them involves 2
disconnected edges of the tetrahedron of interaction.
elberal, the operator (30) does not depend on the choice of the angular variables €,
} the operator Aqg(r;,0;j,2, 0q) in (11) does so. The configuration space in the space of
relative distances is
0< re < ry+r. < 00, 0< ry<ry+r.< 00, 0< re<reg+m< oo, (31)
(a #£b#c=12,13,14,23,24,34).

10
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Formally, the operator (30) is invariant under reflections Zy @ Zs ® Zy @ Zy & Zy B Zs,

Tieo<= —Ti2, Tiz3<= —T13, Tiu< —Ti4, Toz3<> —T23, Tog —Toq, T34 —T34.

A 3
If we introduce new reflection invariant variables, Q\\
r P, 7’%4 = pau, (33)
—~—

the operator (30) becomes algebraic, A

2 . 2 _ 2 . 2 . 2
Tl = P12, Ti3 = P13, Ty = P14, To3 = /7236

Amdial(pij’ aw) - 4(/)12 8512 + P13 a1313 'Oga%m?pgg 8223 + P24 8524 + P34 8234)
;

(P12 + P13 — p23)0p10p15 + (P12 H‘K 24)Dp1,0ps + (P13 + P14 — 034)0p15 001,
(P12 + p23 = p13)0p1s0pyy + @4)@1@;}% + (p23 + P24 — P34)0pyy Opss
(P13 + p23 — p12)5p138p23 \‘\\%4 - P14)3p138p34 + (23 + P31 — P24)3p23

( \A\@

0p,,0 14+ P34 — p13)apl4ap34 + (p24 + P34 — p23)ap24ap34

+2

)

+2

Q

+2

P34

+2

(
(
(
(

V.
N—— ——— 0 ~—1

P14 + P24 — P12> 14~ P24

%2 + Oy + Oprs + Oy + Dy + Oy - (34)
As a function ?%’Pb es, the operator (34) is not Sg permutationally-invariant.
Nevertheless, it remains

tetrahedron @eraetion). For the 3-body case, where the number of p variables (relative

invariant under the permutations of the particles (vertices of

distance eqyals e number of particles, the corresponding operator A, .4 is indeed S3
permutation Jélvariant.
E (31)5and (33) it follows that the corresponding configuration space in p variables is

Y(K
ﬁ
g@he conditions

N 2P o5, 00 <00, pa < (VIBAVIE  p8 < (VERHVEO e < (VAR
(35)

(A+# B # C =12,13,14,23,24,34). We remark that
2(papp + papc + pspc) — (P4 + % + p#)

52 = > 0 36

11
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16(7“,4 +rg—ro)(ra+re—re)rg+rc —ra)(rat+re+re),

(37)

and conditions (31) hold. Therefore, from the Heron formula, S% 45 is the square of the

area of the triangle of interaction with sides r4, rg and r¢ . The triangles of interaction

are nothing but the faces of the tetrahedron.

The associated contravariant metric for the operator A, qgial }eﬁned by coefficients in

front of second derivatives, is remarkably simple

23% P24 0

4 p12 p12 +p13 — p23 pi12 + P14 — P24 P12 — P13
P12 + p13 — p23 4p13 P13 + p14 — P34 P13 + P, =L12 P13 — P14 + P34
9" (p) = P12 + p1a — p24 P13 + P14 — P34 4p1a S P24 — p12 P14 + P34 — P13
P12 — P13 + p23 P13+ p23 — P12 0 i p2 23 + P24 — P34 P23 — p24 + P34
p12 — p1a + p24 0 p1a + p24 — p12 P23 +p24 — p34 4 p24 P24 + p3a — p23

0 p13 — p14 + p34 P14+ p34 — P18y P23 — 02:)034 P24 + p34 — p23 4 p34
It is linear in p-coordinates(!) with pOSlt@ factorlzed determinant
~g\\ 64 F1 Fy |
~
where \
\v o 2
\\ 1 = V45
F2 / —V

Here

V2 is the sguare Mvolume of the tetrahedron of interaction.

K
V; Qu of the 6 edges (squared) of the tetrahedron.

N deﬁ)ntlon V2=1.

-

(

ion

Me 4 areas (squared) of the faces (triangles) of the tetrahedron.

ace, [} =0, Fy = 0, where the determinant (39) degenerates, i.e., vanishes.

ED)

(39)

(40)

(41)

64)—366). Hence, F}, are of geometrical nature. They define the boundary of configu-

~
Following Conjecture 3 in [3], the operator A,qqa(p) is self-adjoint with respect to the

normalized radial measure dv, of the form

dv, = V" dpis dprs dpia dpas dpss dpsa .

12

(42)


http://dx.doi.org/10.1063/1.5083129

! I P | This manuscript was accepted by J. Math, Phys. Click here to see the version of record. |

PublishingC. Symmetry operators

The reduced radial Laplacian (34) admits a 3-dimensional symmetry algebra with ele-
ments of the type
L(a,b,c) =

3 7
(p13a+p14b—p23a—p24b) 6p12 + (p14(§a+ 56—!—30

3 3 3 7
,023(§a+ §b—|—0) —,034(5@4- §b+3c>> apls

11 5. 3 3
toi(—gat+Sb+c)+ pu(5b+5a+3e —734%5 +oa+t 30)) Dpas
—I—(cp12 — p1s(a+3b+3c) — payc+ p34(a£3'biz3(: Opry + (p12(2b+ ¢+ a)—
p14(2b +c+ (I) — p23(2a + 3% P34 2a + 3b + 30)) 8p24+

1 5! 1 3 3
<p13( a+ = b+20) a - 20)—|—p23(—a+§b—|—20)

2 2

§>\ +20)) 9. (43)
where a, b, ¢ are parameters. hux\ rator L(a,b,c) commutes with A,44iq(p). Out of
(43) let us form the 3 hnearly in ent operators {Jy, Jo, J3},

_ (_17@ 35v/210 27@) )

3

420 420 ' 420
5f V6 V6
12 127 4

It can beghec }( at they satisfy the so(3,R) commutation relations
J17J2] = J3 ) [J27J3] = Jl ) [‘]3)]1] = J2 . (45)

us, ths symmetry algebra of A,4q4q(p) is isomorphic to so(3,R).
As the original 4-body problem (1) these integrals are particular integrals: they com-

~
te with the Hamiltonian (1) over the space of relative distances R,qq4ia only
[H, L] §Rradia.l — 0. (46>

In general, H and L do not commute.

13
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PublishingThe space of 2nd order symmetries of A adiai(p) is much more complicated. Due to space
limitations we merely summarize our results. The space of 2nd order symmetries is the direct
sum of the 6-dimensional space D; of symmetries whose 2nd order terms are homogeneous of
order 1 in the p variables (dim Dy = 6) and the 21-dimensional space Dj of symmetries whose
2nd order terms are homogeneous of order 2 in the p variables (?47 Dy = 21). Under the
adjoint action of the so(3, R) 1st order symmetries, D; splits i the sum of 2 irreducible

se the complex basis

subspaces: one of dimension 1 (with the Hamiltonian as a b and one of dimension
5. To give a brief description of these elements it is co e;)ix\o

{JO, J*, J~} typical for si(2,C),
Q

®.

JOIiJ3, J+\J\kl\1, J—:J2+iJ1. (47)
\ S -

e’aﬁsﬁle representations of so(3, R) are indexed by a non-negative

igfeducible subspaces have a basis of (20 4 1) elements {f{ :

—

The finite dimensional i

m=400—1,-- -/€ {u(:}ythat the action of so(3,R) is given by
£
q /
Qb TR = mfl) T = [(CEm A+ D)(CFm)] (48)
<

For D1, the basis can be computed from féo) = Avagiar(p), thus taking ¢ = 0, and the 5 basis

elements can be computed from

14
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(2) = —ZPlz’ﬁp13 13 + (p13 + p3a — 014)(9,,34 oz 313 (63 + 462\/_)p23 o3.p23
— (3= 20/6)d 0y, + (54 4V6) (pas + prs p%)aplg - 111(13+6M o1
+ 1_11( + 41\/_) 6)(p13 — pra — pa3 + P24)5’p34 o T 13 + 62\/_ — 14— p21)0 p24 p1a
+ (P12 — P13 — paa + p3a) 0y, o1, — (P13 + P14 — p3a)05, 00 — 461/6)d D,
%(4 + @\/_)(,012 — P14 — P23 + P34)(9p24 os T % — 2l\/_ /912 s — A0,
- %(3 — 2iv6)(p2s — 31 — p21)D2, s + % 27 + day/ 12 13— p23)00. 1
313(15 + 34iV/6) (p23 + pa1 — p31)02, s — 1 (1_ 6i \/8)p34 D pas
121( + 3Z\/_) (p13 — p1a — p3a)0 p34 o T % 3 p12 — pua+ P24)3p24 1o
313(3 +20iv/6) dd,,, — A+ @\/6) p34 )R, — 212(13 +6iV6) d,,,
- 5(3 +20iV/6)p240" oapos T 9 \ 12— P13+ p23) 0y o
+ 212(13+62\/_)d8p14 , Q\
(49)

for ¢ = 2, by using equations%
We can show that these 6 basiswelements for D; are pairwise commutative and alge-

braically independent

us the free Hamiltonian system is integrable. However, the 6 basis

symmetries fall to Satisfy thecalgebraic conditions for a separable coordinate system [8].

/ a 2nd order symmetry operator in the p coordinates are given

Briefly, if the ¢ fﬁ&n’ﬁ'
by RM, the @50 ms'w and eigenalues \; are the solutions of the equation
/ Z(R“” A" )w, =0, p=1,---,6, (50)

. v=1
wheéke coefficients of the Hamiltonian are given by (38). For separability the 6 basis

S 1metf)es should pairwise commute, each should admit 6 eigenvalues and the symmetries
}hﬁul\ share the same 6 eigenforms. By a long computation one can show that the 6 basis
syinmetries do not have a common basis of eigenforms.

Under the adjoint action of the 1st order symmetries, Dy splits into 5 irreducible sub-
spaces, two of dimension 1 (¢ = 0), two of dimension 5 (¢ = 2) and one of dimension 9

(¢ = 4). The expressions for the basis symmetries are very lengthy and we do not list them

15
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dimension 5 subspaces has basis
Jo={J} +J5—2J5, J =205 +J5, JxJe+ Jody, 1 <l<k<3}. (51)

The basis symmetry for the other 1-dimensional irreducible subspa/ ommutes with J; and
Jo. It appears that there are no more commutative sextuple mjhis 1 27-dimensional
space, though we do not yet have a convincing proof. Thus, %&rs that the free system

is integrable, even superintegrable, but not separable. )
—~—

—_—

D. The Representations of s/(7,R) 5

In the p—representation, the operator (?%l)‘xlp ( K@Lie algebraic - it can be rewritten

in terms of the generators of the maxima@ algebra b7 of the algebra si(7,R), see
e.g. 9, 10],

N,

J; (/
where N is a %m%\and

A1 =% = pi13, A3 = pua Ay = pas A5 = pas Xe =p3s - (B3)
q /

If N r‘snegative integer, a finite-dimensional representation space exists,

i
ﬁ
& Py = (M AZAP NP AP NS 0 < p1+p2+p3+pa+ps+ps < N) . (54)

pli\citly, the operator (34) can be expressed as

1

5 Amdial(j) = 2( «7101 ‘-717 + «7202 jzi + «7303 jsi + «74(11 .747 + «7505 j57 + *7606 jei ) (55>

+d(I+Ty +Ts + T+ T +Ts)

16
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IR T+ T+ T +T5) + TR T+ T5 + T5 + )
T (T + T +Ti + T5) + T (T +T5 +T¢ +J5 >}

—2{u712~74 + T Ty +In Ti + Ty Ts + Ts) st

+InTs + I Ts +InTs +TpJs + 5
It acts on (54) as a filtration.

5

E. The Laplace Beltrami operator under mg ometry

The remarkable property of the algebrai %Kn\a‘ibs radial(p) (34) is its gauge-equivalence

to the Schrodinger operator: there is a Q:c I' such that
! Aradz K ~ eff ) ; (56)
where Ay p is the Laplace-Be ram
0
Arglp g“” oy, 0, = , (57)
5-543 p) Opy
see (38). It is glve
3—d
P - Fl B vt = BT R (58)
see ( 40 and the effective potential is
3V +112V2  (d—5)(d —3)V§
Vipp = . 59
1 2 72 F, (59)

Theréjore [ is of geometric nature: it can be rewritten in terms of volumes (equivalently,
Vbalr{e variables, see below). The effective potential becomes singular at the boundary of
the configuration space.

Thus, taking into account the gauge rotation (56) we can arrive at the 6-dimensional

Hamiltonian

HLB(T) = —ALB('/’> + V(T) + ‘/eff(’f’), (60)

17
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His(p) = —As(p) + V(o) + Vers(p) (61)

in p-space. The Hamiltonians (60) and (61) describe the 6-dimensional quantum particle
moving in the curved space with metric ¢ and kinetic energy Af g, and in particular, in
p-space with metric g"’(p) (38) and kinetic energy Apg(p). \

Making the de-quantization of (61) we arrive at a 6- dlm&x classical system which

<

HOL(p) = ¢ (p) Py Py + VQS () . (62)

where P, , p=12,13,14,23,24, 34 are classical onl momenta in p-space and g"(p) is
given by (38). This operator (62) is suitabl fchssﬁ.gatmg special configurations (trajec-
tories) for the classical 4-body system. It \ entioning that even in the planar case,

the dynamics of the classical 4-body p very rich [11]-[13].

IV. REDUCTION TO LOW X\‘ENSIONS d=1,2

At d = 2 (planar systems) %j\: (a system on the line) the number of independent
p-variables reduces fro 6%)and 3, respectively, and the expression (34) for the operator

is characterized by the Hamiltonian,

A,adial Ceases to befva )d n' particular, the determinant of the metric defined by the
coefficients of tk%Qn derf derivatives in (34) vanishes. This makes the cases d = 2 and
d = 1 quite digti (:t\s{ldzii.

In partiéu One can ask the question: do there exist variables for which A,qqia s an

algebraic “opefator,at d = 27 In this section we provide a partial answer to this question.

To thﬁim ddition to the p-representation we will introduce 2 new representations in

y geometric variables (see below) obtained from the tetrahedron of interaction.

M}lem volume-variables and u-variables, respectively. More importantly, the volume-

e e&entatlon can be easily extended to the general n-body case.

A. Volume variables representation

Let us consider, assuming d > 3, the following change of variables

18
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(P12, P13, P14s P23, Pos, P34, ) = (V, S, P, qu, @2, 43 ) , (63)

where

1
V =VE = T [(pls + p1a + pas + p2a) psa — (P13 — P14) (Pze/— p21) — P:2‘>4] P12
5 3

b* (64)
—

is the square of the volume of the tetrahedron of intefaction,¢he variable
SE‘ZE:Sl—FSGSg S4, (65)

is the sum of the areas squared of its 4 face§ (see 86)), and the variable

P =V = pn +‘&%,\41+,023+P24+,0347 (66)

is the sum of all the 6 edges (KM\ “This variable is nothing but the square of the

hyper-radius in the space of GIQ\GIQO ion, or in other words, in the space of relative

- P%3ﬂ24 — paaply + p23[(pra — paa) p3a — pra (pra

+ p13[p1a (P23 + p2a — psa) + paa (P23 — paa + pag)l |

distances. \

These 3 variables (V. are purely geometric; they are homogeneous polynomials in

p-variables of dimengion d 1, respectively. Notice that these quantities define the

effective potent? oy (59) We call them wolume wvariables. Clearly, V, S and P are
Sy-invariant under permutations of the 4-body positions (vertices of the tetrahedron).

However, o Q variable P is Sg invariant under the permutations of the 6 p-variables

(edges of{thestetrabedron). The remaining 3 variables ( g1, ¢2, g3 ) can be chosen as

q1 = P12, G2 =3 and g3 = p14, d > 1. The specific form of the g-variables is irrelevant for
oy pu oses3 see below.

In th% above mentioned variables, A,qq:0 (34) can be further decomposed into the sum

hgo ators
e
Aradial = Ag + Aq,ga (67>

with the follow ing properties:

o A, = A/(V,S,P) is an algebraic operator for any d. It depends only on wolume

19
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2 1
A, = 5)/563,,), + (54V + 5SP)ag,s + 8P} p
1
+ 3280%p + 2V (POg + 2405, ) + §(d—2)S<9V (68)

1
+ —(d—1)P0s + 12d0p .

2 /\%
o Ay =A,,(V, S, P,q1,q2,q3), for arbitrary d. This oper@;mihl tes any volume-

variables dependent function, namely A, , f(V, S, P) :\\ do not give its explicit

form.

—
—

)

, and it is gauge-equivalent to a

o [Ay,, Ayl #0.

The operator (68) is sl(4, R)-Lie-algebraic, s@g.}bl

3-dimensional Schrodinger operator in curved space with d-independent metric (see below).

For this operator Ay, the reduction fromd\x_t% = 2 simply corresponds to imposing
the condition V = 0 together with d Q,\Mrn, the reduction to d = 1 occurs when 2
conditions are imposed: V =5 = therwyith d = 1. Both limits to d =2 and d = 1 are

geometrically transparent and, niore i orﬁntly, A, remains algebraic.
fA,

The d-independent metric \ en by
\ 28 VP 24V

) = | VP 54V + 1SP 165 | . (69)
24V 16 S 8P

DQ(V,S, P) = Detg’“’ = G1 G2 y (70)
where / /
o 8
3 Gi =5V, (71)

Gy = S*(P*—64S5) — 9PV (P?—7285) — 34992V° .

ST\ oundary of the configuration space is defined by V = 0. Using the gauge factor
Iy = G%G;i, (72)

to make a gauge rotation of the operator A, we arrive at the Schrodinger operator

ATy = Apg(V,S,P) — V,, (73)

20
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S, (P-485)(34V - P5)

U, = [d=5)d= 357 o ,

(74)

where the 1st term vanishes at d = 3,5, and Ay p is the Laplace-Beltrami operator

AIB V,S,P — \/Dga”_ ,—g Vay . 5

N

Here v, p labels the variables V, S, P, and ¢g"” is given by (6
Thus, for the original 4-body problem (14) in the a‘céo ative motion, provided
that the potential depends only on the volume variablés,.an tzlzfﬁg into account the gauge

rotation I'y (72), we arrive at the gauge-equivalent Hamiltorian

HLB(V,S,P) = —ALB(V,S,P wL(ng(j/:—)S',P) + V(V,S,P), (76)
B@

in the space of volume variables. The Harhilto describes a 3-dimensional quantum
particle moving in the curved space paré\‘ d by V, S, P with metric g"” (69) and kinetic
po

energy Ay p. The form of (76) impli ‘ahe) ible existence of a subfamily of eigenfunctions

~
in the form of a multiplicative f&z tlmes an inhomogeneous polynomial in the variables
ca

(V, S, P). The volume varial‘\o&\x generalized to the case of non equal masses (see

Appendix B).
&S

1.  Towards dz(

Let us agsumefthat V = V(V, S, P) in (14). In this case, we can ignore the operator A,
in (67). Newf for "= 2 the volume of the tetrahedron of interaction vanishes identically:
V=0 ﬂier% , the operator A, (68) reduces to

ﬁ
1 1
S Al = SSPOs + 8Py + 32803, + S POs + 240p . (77)
ES,\in the limit d — 2, A, remains algebraic (more precisely sl(3, R)-Lie-algebraic). The

corvesponding metric of Ay|s—o takes the form

grspy - [ 9T165) (78)
16S 8P
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Dy(S,P) = Detg"” = K, K, , (79)

where

K, =S, Ky, = P2—645 . (80)

The boundary of the configuration space is defined by S = 0. Usin h@uge factor

Ty = (K1 K)73 (81)
to gauge-rotate the restricted operator Ag|—q, we ob &
Lo Agla—aTge = Ay (S,Q}/gk : (82)
Here the effective potential reads \
Vi 83
3 — 645 (83)
Thus, for the original 4-body pr \&kln the space of relative motion, provided that

the potential depends only on x\ m\ variables (S, P), and taking into account the

gauge rotation I'y; (82), we apri auge-equivalent 2-dimensional Hamiltonian

HLB }_X LB S P —+ ng(S P) —+ V(S P) (84)
The Hamiltonian ( desegibes a 2-dimensional quantum particle moving in the curved

space with metri q“ /F he form of (84) suggests the possible existence of a subfamily
of eigenfunci< c form of a multiplicative factor times a polynomial in the variables

(S, P
Towa%

Qii 1, both the volume variable V and the area variable S vanish identically. In this
<%e algebraic operator (68) depends on the variable P alone, it has the form
~

Aglami =8P}, + 120p (85)

which after a suitable gauge rotation and upon the addition of an harmonic potential ~ w? P

becomes the Laguerre operator. We again point out that the form of the operator A,|s—;
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space of relative motion, which depend only on the variable P .

Let us clarify the space ”degeneration” from d = 3 to d = 1 with a concrete example. For

d = 1, the number of functionally independent variables (degrees of freedom) in A,qgi0; (67)

is 3 and the 1st operator A, in (67) solely depends on the Variabk/P, see (59). Therefore,

the operator A, , must involve 2 g-variables only. \
Now, without loss of generality, let us choose \
@ = P12, 42 = P23, 43 = P13 (86)

as the g-variables for d > 1. For d = 1, p;; = (x{-::xj 2 anéoo > T > 29 > a3 > x4 > 0,

o
P=3(p12+p34)+4\/@(v§\ +v/Psa) +2/p12v/psa - (87)

P
\
For d > 2, the operator A, , (67 r<%ds

\

Aq’g = 4q af?l,lh + 4q 832, - 2\/_Q3 - 2\/_(]3 + 2\/_\/(]_2) q1,92
g3 (43 — 3y/qrgs — 4 Tk CI1\/C]_2+ 2q1 + 4¢2)

the variable g3 vanishes identically and

+ Tl NG — ) 92 4 + 2d(0y + Ogy)
q3 (Q§—4\/@<i§§%+4\/a\/q_2+4ql+2612) 52
%M_F\/@_%) 42,93
—11/611 > /@3\/@‘1'(]1'1‘612—\/@613)0 (88)
b@mﬂﬁz—qg) ;
18 2 \/QT\/Q_2—Q3\/Q_2+Q1+Q2—\/EQS82

+
V,qz 32\/q—1\/q—2(\/q—1+\/q—2_q3) V,q3

%S + 8(2q1 a%”ql + 2QQ81%’,q2 + q3al2’,q3> ’

qi

qg |d 1 — 4q18q1q1 + 4(]2 2,92 4\/_ QZ q1q2 2(6111 + 8‘12)

+ 16(q1 ap,ql + q2 8P7q2) .

(89)

We see that the operator A, , depends on 2 g-variables only. Finally, for A, 44, we arrive
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A7"aclial ’d:l = Ag ‘d:l + Aq,g |d:l
= 8POpp + 120p + 410, , + 4420 (90)

q1,91 q2,q92
—4ﬂw@%@+ﬂ%+%g+mm%%+@%mv

which, after a suitable change of variables, becomes the algebr 'c-?éﬁq (9).

B. u-variables representation )\

'M\
—
It is worth mentioning another decomposition 0@§ tor Ayegiar (34), assuming

d > 3, in the variables ( -
(P12, P13, P14s P23, P24, 934,@&#2, u3, qi, G2, 43 ) (91)

where
\
Uy = P12+ P34 ; sz%—i- P24 ; Uz = P23 + P14 , (92)

are nothing but the sum of 2 discér neh eHEes (squared). Thus, without common vertices,
of the tetrahedron of intera 'Dni\\e are geometrical-type variables. They also are S
invariant under the permutai%e 4-body positions.
For simplicity we cafi choege ¢ = p12, g2 = p13 and g3 = p14, (d > 3). In the new
variables (91), the C@dmz (34) is decomposed in the sum of two operators
/\ / Avadial = Ay + Agu, (93)

with the follo ? properties:
£

° = (u/, ug, u3) is an algebraic operator for any d and involves the u-variables and

S derﬁ'atives only

ﬁ
1
&xAu - 2u1 azwm + 21&2 8121&#2 + 2U3 a12‘37“3

S —— + 2 (Ul + U9 — U3>6517u2 + 2 (Ul + ug — m)&ilm + 2 (UQ + ug — ul)aizm (94>
+ 2d (O, + Ouy + D) -

o A,y = Ayu(ur,ug,us, qi,qe,qs): for any d, it annihilates any u-dependent function,

namely A, ., f(u, ug,u3) =0 .
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If the original 4-body potential depends on u-variables only the decomposition (93) im-
plies the further reduction of the already reduced spectral problem (14) to

(A + V(W) T(u) = EU(u) . (95)

The operator A, (94) is sl(4, R)-Lie-algebraic with a flat d-ind nwetric

4u1 2 (u1 + U9 — Ug) 2 U1 %Ug — UQ)
9" (u) = 2 (u1 + ug — ug) duy 3~5U2 U3 — Uy) ) (96)
2(u1—|—u3—u2)2(u2+u3—g& g

and with a rather simple factorizable expression for itg detet)tninant

-

D(u) = Detg"”(u) = 32 (uy +ug — Q(uﬁ ug — ug)(ug + uz — uyq) . (97)

The boundary of the configuration space is M}ﬁ{ yﬁ?(u) = 0. Moreover, using the gauge

factor \

rm (98)

for gauge rotation of the operator A\, we optain a gauge-equivalent 3-dimensional Schrodinger

operator
L, = App(u) — Vu(“) ’ (99)
with the effective potential ofithe form
f/u(u) _ 1/d (u%—ku%—i—u%—2(u1u2+u1u3+u2u3)) . (100)
u1 — Uy — U3) (u1 + Ug — U3) <U1 — Ug + ’ng)

Finally, for t 1g1n 4—body problem (14) in the space of relative motion, provided that
the potential6n epe s on the u-variables, taking into account the gauge rotation I, (99)
and assuming t u-dependent solutions are studied only, we arrive at the gauge-equivalent

3-dim n510 g,{hlltoman
17u27u3 = —Arp(uy,us,u3) + Vu(ulyu%ui’)) + V(ur,ug,u3) , (101)

11&@)&@6 of u-variables. The Hamiltonian (101) also describes a 3-dimensional quantum

ticle moving in the flat space parametrized by uy, us, ug with metric g"” (96) and kinetic
rgy Aprg(u). The form of (101) implies the possible existence of a subfamily of eigen-
functions in the form of a multiplicative factor times an inhomogeneous polynomial in the
variables (uq, ug, u3). The u-variables do not admit a generalization to the case of non equal

masses.
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Unlike the volume variables V and S, the u-variables (91) are not subject to any constraint
atd=2(V=0)andd=1 (V=S5 =0). Moreover, for the operator A, (94) the passage to
lower dimensions is non-singular. Upon reduction to d = 1,2, only ?Xe overall multiplicative
factor in front of the first derivative terms in (94) changes.

However, for d = 2 the number of variables (degrees of freeddm) it A, 4450 (67) is reduced

to 5. Therefore, in this case the operator A, , in (93) must invelye ouly 2 g-variables:

Agula=2 = Z Yi; 9565, (102)

i+j=1 3

with coefficients Y; ; =Y, j(uy, u2, us, q1,¢2). Ing eral Aguld=2 1s not an algebraic operator.
At d = 1 the operator A, vanishes, A, \ Dle algebraic operator A, (94), after
les

a suitable gauge rotation and change of \m escribes the kinetic energy of relative

motion of the 4-body (As) rational Ca%
C. P-variable representatl\\ ~

Note that in (68), the coe N front of the 2nd and the 1st derivative in P (66) do

el with potential (25), see [4].

not involve the volume les ) and S (65). Furthermore, the variable
Uiy + uz = P12+ P13+ pra + P2z + paa + paa - (103)
is nothing but o he u-variables (91), which appear in the algebraic operator A,
(94) for any 4. ed ol these 2 facts let us make, assuming d > 3, the change of variables
2, P13, P14s P35 P215 P34, ) = (P, qu, a2, G35 G4, 45 ) - (104)
-

this she P-representation. It is worth noting that P is, up to an overall constant

f Ctor t, nique linear combination of p-variables that is both Sj-invariant under the

SIOHS of the 4-body positions, as well as Sg-invariant under the permutations of the

5. “At the same time the g-variables form a set of well-defined quantities such that the
Jacobian of the transformation (104) is non-singular.

In the variables (104), the operator A, .4ia (34) admits the decomposition
Amzdial = AP + Aq,P ) (105>
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o Ap = Ap(P) is an algebraic operator for any d and involves the P-variable and its

derivatives only

Ap =8P0}p + 12d0p . (106)

o Ayp =Aup(P q1,62,43,91,¢5): For any d, it annihilates }G@enden’c function,

—

)

Tp = Pt ol (107)

for gauge rotation of the operator Ap we alnL;l)te gauge-equivalent, 1-dimensional

Schrodinger operator X.\

IpHAp (P)P‘Q‘LE(P) — Vp(P), (108)
with Laplace-Beltrami operator S

~

@\ 2Py + 0r), (109)
and metric
‘\ g'' = 8P, (110)
and an effective ?te<§<lof he form

)\ Vp(P) =

namely A, p f(P) =0 .
o [Ap, Ayp] £0. Q\

Using a gauge factor

3(d—1)(3d—1)
5 . (111)

In corfClusion, the original 4-body problem (14) in the space of relative motion, pro-
videdfthat th 4ential depends on the P-variable only, and taking into account the gauge

rofationd p hOS), we obtain the gauge-equivalent 1-dimensional Hamiltonian

5 Hrs(P) = —Arg(P) + Vp(P) + V(P). (112)

I

e form of (112) implies the possible existence of a subfamily of eigenfunctions in the form
of a P-dependent multiplicative factor times an inhomogeneous polynomial in P. For d = 1,
this remarkable property was previously pointed out in [17]. It is evident that the P-variable

admits a generalization to the case of non equal masses.
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Publishing!. Towards d=2 andd=1

For the operator Ap (106) the passage to lower dimensions is non-singular. In the limit
d = 1,2 only the overall multiplicative factor in front of the first derivative term in (106)
changes.

As for the operator A, p in (105), in the case d = 2 it must i VOW 4 g-variables:

Agpli=e = Vi ke 0h, 0 (113)

H—J-I-k-l—Z 1

with certain coefficients Y; ;s = Yi k(P ¢1, ¢2, 43, ¢ ral A, pla=2 is not an alge-

braic operator
For d = 1, the operator A, p depends on 2 Qx&b‘l‘% alone:

2
Ay pla=1 %J 03,05, (114)
1+ 11

\

Here Z; ; = Z; j(P, q1,¢2). Again, in ene5a1 pla=1 is not algebraic.
N

V. (QUASI)-EXACT-SOL x

In this section, for dé= 3 wéidescribe in more detail the exact and quasi-exactly solvable

(QES) models for tlie 4—)90 roblem in the p-representation (space of relative distances).

4

A. QE 1n®$les, d>3

I. @ KExﬂct y-Solvable problem in p-variables.
_ﬁ
Let us ta%z e d-independent function

,ﬁ
1 x
b Uolp) = Fy Ff e 30" (115)

}3@7, w>0and A >0 and for w =0, A > 0 are constants. Here P is given by (66) and

=

F1 — V, (116)

F, = 36V — PS, (117)
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Publishimg written in terms of the volume variables (64)-(66). We look for the potential for which
the function (115) is the ground state function for the Hamiltonian Hyg(p) (61) of the 6-
dimensional quantum particle. This potential can be found immediately by calculating the
ratio

Arp(p)¥y

= Vo—Ey , (118)

W A
where App(p) is given by (57) with metric (38). The result is \
3P?+1128 S
Vo(p) = +—+7(7—1) +8w?P+4AP u\ 1)+8A%P3, (119)

32 Fy 18 F}
which is d-independent. This includes both the effi ctiv N?n:lal Vers and many-body
potential V' with the energy of the ground state

—u

(120)

Ey, = 277)

Now, we take the Hamiltonian Hyp g X—i— Vo with potential (119), subtract FEj
(120) and make the gauge rotation wi %\L . As a result we obtain the s{(7, R)-Lie-
algebraic operator with additional tentl

o (=Ars(p) + Vo &E,j\F () + AVy = —Ag(J)
+ 2(d—3-24 Is +Ti +J5 +J5)
+ 16 A (7 (N + JQ )+ T3 (N) + T (N) + T (N) + T ()
+ 16w (Fh RwTn i+ Ty + T + Tgs + Tes) + AV,

see (55 Where

(121)

h(aes) fufte-dimensional invariant subspace Py, (54) with dim Py ~ N3 at large N.

= 16 AN (p12 + p13 + p1a + p2s + paa + p3a) - (122)

It is evidént }h if the parameter N takes integer values, the d-independent operator
Jhas

Fmall we a)nve at the quasi-exactly-solvable, d-independent, single particle Hamiltonian

the sps”uce of relative distances p,

\ HE) () = —Agglp) + VI (p) (123)
cf.(17), where
3P24 1128 ~(y—1)S
ylaes) — 8W!P + 4AP(AwP —6~—11—4N) + 8 A2 P3
N T (4w P -6y ) + ,

(124)
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Publishiisgh QES potential. Its configuration space is defined by Fy > 0, while if it is fulfilled then
F, > 0.

For this potential ~ N? eigenstates can be found by algebraic means. They have the

factorized form of the polynomial in p multiplied by ¥, (115),

Poly (p12, p13: P14, P23, P24, p3a) Vo(F1, F, \ (125)

\}

These polynomials are the eigenpolynomials of the quasi- e olvable, d-independent,
algebraic operator )

1 I

5 h(qm)(p) = ( 28/)12 + P13 apls + pu 8p14 + 02 p24 + P34 6/)34)

P12+ P13 = 023)0p1,0p5 + (P12 + p1a — 7'8p12 o

( )0 + (P13 + p1a — 034)3p133p14)

(P12 + P23 — £13)0p1,0py; + (P12 + P24 \% p12p2 (P23 + pas — p34>ap238p24)
(P13 + P23 — £12)0p130p,; + (P13 K £14)0p150ps.4 (P23 + p3a — p24>8p238p34)
(p1a + pas — p12)0, + (1 M13)8p148p34 (p2s + p3a — st)apz43p34)

P14 p24

(
(
- (
(
(

+ 8AP (1012 aﬂn + pi3 ap + 1023 P23 + P24 a024 + P34 8934 - N) )

2,7 + 3) (a/)l? + aP13 + a/)14 _I— p + ap34
+ 8w (1012 8/)12 + P13 aplS % 30 oz T P24 p2a T P34 8,034)

126
or, equivalently, of th ;shjctly solvable sI(7, R)-Lie-algebraic operator o
h(qes) - 11 I Ty + T Ty +TnTi + T Ty + T Ts )
JH S+ Ty T AT )+ In (T + T + T +T)
/+ o (T + T +T5 +Tg )+ Tu (T +T5 +T5 +J5)
J55 (T +T5 +T7 +Tg)+ T (Ts +T5 +Ti + 35‘)}
(127)

5 + 2 x712~74 + I Ty +InTi + T Tg +InTs + T Tg
\ TN Ty A TR Ts + TNTs + TS T5 + T& T + T J]

— (3 + 2'7) (\71_ + jg_ + jg_ + j4_ + \75_ + jﬁ_)
+ 8A (I (N) + T (N) + T3 (N) + T (N) + T5F(N) + T5H (V)
+ 8w(TY + Tgp + Tas + Tiy + Tss + Tg)
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Publishiefg (121).

As for the original many-body problem (14) in the space of relative distances
H0)= (= Basalr) + V) W6) = BUC), WE LRoa) . (125)
the potential for which quasi-exactly-solvable, polynomial solutior?/ occur in the form
Poln (p12; p13, pra, pas, pa4, p3a) T(F1, Fa) o ;?) P), (129)
where ' ~ D1/ Fl%d, see (58), is given by

v v = Ve - (130)

relative, N

47(7—1>—7(;l—5)(d—3>F§ 18w 2P+4A@4w 67—11—4N ) + 8 AP
1

c.f. (124). It does not depend on F» and does t co t n a singular term ~ 1/F;.

(IT). Ezactly-Solvable problem in p-var Z
If the parameter A vanishes in (115), (121), (127) we have the exactly-solvable
problem where ¥, (115) at A =0 pl 640 e of the ground state function,

ol
2

Q\ et (131)
The sl(7, R)-Lie-algebrai 0 eratory(127) contains no raising generators {J*(NN)} and be-

co1mes

»M»—t

plezach) — VI + T + T + I+ T +J5)
+ Ty + Ty + «74(11 + T3 + Teb)

(132)

see (55), a
(54) at

&
3 3P2+1125 S
(es) _ 2. rarev -1 2p 1

T Wé arrive at the exactly-solvable single particle Hamiltonian in the space of relative

ce, preserves the infinite flag of finite-dimensional invariant subspaces Py

S Q’, 1,}. v.. The single particle potential (124) becomes

HS)(p) = —Arplp) + VE(p), (134)

where the spectrum of energies
Ey = 12w (N +3+4+27), N=0,1,2,... , (135)
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AlP
Publishi:’mgs juidistant. Its degeneracy is equal to the number of partitions of
N =ny+ny+n3g+ng+ns+ng . (136)
All eigenfunctions have the factorized form of a polynomial in p m tlphed by ¥, (131),
POlN(Pm,Pm,/)147023,,024,P34) \IIO(Fly Fy, P), (137)

Note that these polynomials are eigenpolynomials of th e% vable, d-independent,
algebraic operator (127) with A =0, -.._\

h(ezact (p) o hqes . 5 (138)

The polynomials Poly are orthogonal w.r.t. @&\@ the domain given by (36). To the
i

best of our knowledge these orthogonal p alsthave not been studied in the literature.
The Hamiltonian with potential (1 3 be considered as a type of a d-dimensional
generalization of the 4-body Calog m 14 with loss of the property of pairwise in-

teraction only. Now the potenti 0 htlon contains 2-; 3- and 4-body interactions.
If v =0,1in (133) we obtai e e rated harmonic oscillator potential in the space of
relative distances, see e.g. the 3-body case. In turn, in the space of relative

motion this potential c 51?(310 singular terms at all and becomes,

Vhar 0 £ P12 + p13 + P14+ pas + p2a + P3a) - (139)

Thus, we arri the 10n—smgu1ar ) harmonic oscillator potential Viarmonie- The potential
(133) is a d1 nsional generalization of the harmonic oscillator in the space of relative

motion ra (th?n a potential of a generalized 4-body (rational) Calogero model.

-

w LUSIONS

IN,,hls paper we studied the quantum 4 body problem in a d-dimensional space. Based on
thé,change of variables from individual Cartesian coordinates {r;} to center-of-mass vector

coordinate R¢j, mutual relative distances between bodies {r;;} and angles {Q},

(I'l, e, I's, I'4) = (RC’M; {T‘ij}, {Q}) s (140)

32


http://dx.doi.org/10.1063/1.5083129

! I P | This manuscript was accepted by J. Math. Phys. Click here to see the version of record. |

Publishitig kinetic energy given by the original flat diagonal Laplace operator decomposes naturally

into the sum of 3 operators

4
1
Zé E - Alch + A7‘adial + AQ; (141)

where Ag,,, is the center of mass Laplacian, the operator A, .4 d@ga:is on the mutual

distances (equivalently, the radial variables) only, p;; = U, an A@nm tes any function

of the radial variables alone. The operator A,,g4iq(p) is self—ﬁd'{Jé it does not depend on
e

how angular variables € are introduced. It is positive- eﬁry . Also it is an sl(7, R)-Lie-

algebraic operator, see (34) and (55). _ e
On the subspace of the Hilbert space of angle-in penaynt eigenfunctions, the above-

mentioned change of variables implies that the o@al;ilu ti-dimensional spectral problem,

qu N ~ (142)

is reduced to a much simpler, restricte 0

m@\ JORT (143)
This restricted spectral prob \}Iﬁb on 6 variables solely. Moreover, the ground state

function, if it exists, should be amveigenfunction of such restricted spectral problem as was
predicted by Ter-Marti ml

It was shown th ther ts a gauge factor I' such that the Lh.s. in (143) is gauge-
equivalent to the on;én of a 6-dimensional quantum particle in a curved space with

external pote ' ,

7 Avasiat(p) + v<p>)r — A 4 V() + V(). (144)

Here ALp 1s t aplace Beltrami operator with contravariant metric g (38), and V.ss(p)
ectlve potential which emerged as a result of the I'-gauge rotation . The
b ndar§ of the configuration space for Hp is defined by the condition det g = 0.
Y‘% e case (34) and d > 3 we determined the 1st and 2nd order symmetry operators for
the free Hamiltonian and showed that the system was integrable and superintegrable but,
apparently, nonseparable.
The (Lie)-algebraic form of the operator A,.qa(p) suggests a way to find the exact

solutions of both the restricted and the original spectral problems. In particular, adding
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Publishing: \,qdiat(p) the terms linear in derivatives, A;; p;; 0;;, and then gauging them away with
factor ~ exp(—flz»j pi;) leads to the anisotropic harmonic oscillator potential in the space of
relative distances, )

VED = 3w i (145)
i<j
which is an exactly-solvable potential for the restricted problem ndhw\aps, quasi-exactly-
solvable for the original problem.

A novel result was the introduction of 2 different representations the operator A, qgia
in (143). They involve pure geometrical variables define etrahedron of interaction.
In particular, the volume-variables representation al ows us avbetter understanding of the
degeneration from d > 3 to lower dimensions dg=-2 and _d‘= 1. In this limiting process,

gﬁ‘oahe restricted problem (143) in the

volume-variables representation we obtain, Q%i;that the original potential only depends

a Lie-algebraic sector of the problem is presemyed:

on the volume variables, the gauge—equivah& Itonian
\
Hio(V,5,P) = ~ARME P + V,(V,S.P) + V(V,5,P), (146)
N

which describes a 3-dimensional M particle moving in a curved space.

Interestingly, in the u—varia%epresentation there exists another gauge-equivalent

Hamiltonian \

Hrp(ug, us, Z= —Aypp(ur,ug,uz) + Vi(ur,us,uz) + V(ug,us,us) , (147)

SMS which describes a 3-dimensional quantum particle moving not in
flat space. For d = 1 the operator (147), after a suitable gauge rotation

les, reduces to the 4-body (As) rational Calogero-Sutherland model.

%9 jav)
o A~ 2
O e =
5 <
) D
= =
< on
(@) {on nd
- ]
s
NE.

il the P-variable representation we have the remarkable property of the

existence of ) family of eigenfunctions of the 4-body problem that only depend on the P-
¢ iable.s

glsequently, exactly- and quasi-exactly-solvable models can be constructed for any d.

is reveals interesting links between exact solvability and polyhedra which, more impor-

tantly, set up the basis towards the geometrization of the n-body problem. The question

about the existence of a representation in which the whole operator A,qg;o; in (143) remains

algebraic at d = 2 is still open.
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PublishingAlso, the case of non-equal masses is presented in the Appendix A. The operator Aqgia —
A/

! wdiar (A2) admits a simple limit to the atomic (say, m; — oo) and molecular (say, my,_, —

00) situations. In the atomic case, for the operator A/ .. (p) (A2) all 2nd order cross

derivatives d,,,0,,, disappear, while other terms remain. The number of variables in this case

Plk

remains unchanged. In the molecular case, not only cross deriva‘?'(es Opyi @ =1,...,p

/
radial

but also the derivatives w.r.t. p;;, 1 <7 < j < pvanish. Thus, i g@>era 1e operator A

depends on 6 — @

variables. Other variables which may QKI the potential V'(p) are

external parameters. This corresponds to the so-called enhieimer approximation
(of zero order) in molecular physics. T
-
In Appendix B, we introduce the volume variableg for t]se case of arbitrary masses. In

the Appendix C, the generalization of the Volun@riab o the n-body case is presented

\ )
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App di)) A: p-representation for non equal masses

)

S ider the general case of 4 particles located at points ry, ro, r3, r4 of masses mq, ms, ms, my,
P (3)
D se

ectively. The analogue of decomposition of kinetic energy of relative motion A", see

(1),(5), in variables (r;;, ) exists,

1 _ 0
§Av(ni}i’m) = A (r,0,) + AZTO (r;,0,05,00) , 9y = g (A1)
Tij
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Publishiagd 11). Explicitly, the operator A®™ (r;.. ;) becomes (in terms of the relative coordinates
o =3, see [3],

1, 1 1 1 1
Al gagiar(pij; 0ij) = 2 (MPU 05, + s —p13 3,)13 + i —p14 3p14 + . —p23 3p23 + o —p24 3p24

1 1 1 1 1 1 1
+ @/)34 ap34> (maplz + Eapls + mapm + 7(‘%23 + %4 + 348;)34>

I
2
+ — <(p12 + P13 = 23)0p120p1; + (P12 + P14 — 024)0p150p14 1%/)X,034 ap138p14>
2
+— - ((Pu + p23 — p13)0p120py; + (P12 + P24 — p14)0,,,0 & 24 — P34 ap236p24>
) O
+ — ms (013 + p23 — :012)89138,023 + (013 + P34 — p14 8 13_Qp34 +m + P34 — P24 8,0238#34
: )
+— ma (P14 + p2a — p12)8/)14a,024 + (P14 + p3a — Pl C{)/31 34 (P24 + p3a — 923)ap24ap34 )
(A2)
where
(A3)
is the reduced mass for particles @ '. ompare this with (34) for the case of equal
masses m; = Mg = M3 = My ns operator has the same algebraic structure as
Aradial(pij) but lives on a d1 ani old in general. It can be rewritten in terms of the

generators of the maxim afﬁne subalgebra b7 of the algebra sl(7,R), see (52), c.f. (55). The
contravariant metric I, ob ined from the coefficients in front of the second derivatives
in (A2), does notj nds on

= derfr ¥ 921 cn V., szm (D Vam) = 9(ma+ma+ms+ma) Vi|, (Ad)

— m1+m2+m3+m4
and is p(}& ite, where ¢, = e , V2 given by (64),

and its determinant is

Vom T MMy + M1Maris + mymyri, + mamsras + momyry, +msmyrs, ,  (A5)
ﬁ
is\the WQ}ghted sum of square of sides and diagonals of the tetrahedron of interaction,
1 1 1
Vam = —S%(rog, To4, r34) + —S2(r13, 714, 734) + —S%(r12, 714, T24) + —S%(r12, 113, T23)
N mi mo m3 my

(AG)
is the weighted sum of squares of areas, and S?(a, b, c) is the square of the area of the
triangle of interaction with sizes a, b, c. Hence, D,, is still proportional to the square of the

volume of tetrahedron V2 being of pure geometrical nature!
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PublishingMaking the gauge transformation of (A2) with determinant (A4) as the factor,

d

P — DpfvT (A7)

we find that
r- A;adial(pij) I' = Alglp) — Vers »/\ (A8)
is the Laplace-Beltrami operator plus the effective potential 3

Vo 3(2v2%m)2+28(m1+m2+m3+m,)_@\m\m3 1 2V
eff — 32'my mg mgmy ((Z V22m) Z ‘/E’)Qm - 9%‘}7”3 + my) V42)

L =9-95,

). (A9)

72 Vfg - Rt
where its 2nd term is absent for d = 3,5. Thed.a e%ltrami operator plays a role of the
kinetic energy of a 6-dimensional quantum Qﬂtl\c hoving in curved space. While V¢, can

be considered as the centrifugal potential.
i\

Appendix B: volume-variables r hséntation for non-equal masses

For arbitrary masses (m; ,%@) , the analogue of decomposition (67) for modified
by arbitrary masses A} rcan be written and the analogue of the operator A, (68) can be
a:%ables,

derived in modified vol

27 M R N
v A (—2m v+ ﬁsp)ag,g + 2M PO} ;

% 2
~ 1 -~ 1 5
ﬂ;bw\sag,f, + 2V ( Pa;i’g + 6M a@ﬁp) + —(d—2)Sdy (B1)

m

1 ~

ms + ms + my, m = my; mgmsgmy , and

). y = V2,

S 2 2 2 2 2 2
i E ng = M1MaTiy + M1M3T3 + MIMYT Ty + M2M3To3 + MMy Ty + M3Marsy

- 1 1
S = Z‘@.m = 552(7‘23, Toa, T34) + 552(7’13, T14, T'34)
1 2

1 1

+ —52(7’12, T4, To4) + —52(7”127 13, T23) - (B2)
ms my
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Publishin g'The contravariant metric tensor obtained from (B1) does not depend on d. Its determi-

nant is

m(162M15SV—2187M2v2+152§2) 16 m? yS?’ 9P3Y

Dgm = 2MV ] . (B3)

" \O
Making the gauge transformation of (B1) with determlnant B3)land volume of tetrahe-

dron as the factor:

_ _d
I' = D, /*yii (B4)
_-—
we find that
FA’(PS’VF:A’ (P , — Viss (B5)
is the Laplace-Beltrami operator with the effect p(#.entlal
81 MY —P S)
Verr = e .
8(2187mM2v2+ 52 o MS— P2)+9PV (P~ 18mM5))
B6
72V (B6)
where the 2nd term is absent for ,5. The Laplace-Beltrami operator plays the role of

the kinetic energy of a 8- Tlhjlonal quantum particle moving in curved space.

Appendix C eo al variables for the n-body system

Based rete results for n = 2,3,4,5 we introduce geometrical variables for the
n-body s el in d*dimensional space d > n — 1. They allow us to study the degeneration

of th S;f;tens m d >n — 1 to lower dimensions.

ﬁ
volume-variables representation for the n-body system

N\~

For equal masses m; = 1 (i = 1,2,...,n), we introduce the set of (n — 1) volume
variables {Vi}, k = 2,3,...,n, where V, is the volume (squared) of the n-vertex polytope
of interaction (whose vertices correspond to the positions of the particles) and Vy is the

sum over the squares of the contents (volumes of faces) of fixed dimension k. In these
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relative distances

Publishigiables, the operator A, ,agia [3] which depends solely on the "("271)

between particles can decomposed as the sum of 2 operators
An,ra.dial - An,g + An,q ; (C]'>
([An g, Angl # 0) with the following properties /

o A, = A, ,({Vk}) is an algebraic operator for any d. Qfolves volume variables
{Vi}, k=2,3,...,n, alone. Explicitly,

n—1 n ‘)\
2 2 T
=Va ) aiVidi, + Zb-va i (d—
=2
n—3
<Cz] n+1— 1Vn ]L

J
+ > > f,.)vmvn“)agmj.

7j=1 =1

(n > 2) where \\
V \E 8Vi ) 8227] = 8V18Vj

and a;, b;, ¢; j, fij, €; are consta }%a‘c n depend on n. In particular,

2 n—j+1
Up_1 = ———= bg\z\\ eo=nn—1) , e_9=—"—p. (C3)
(n—1)* ’ (j-1)°

® Ang = Bng({Vi

annihilates any/volume-like function, namely, A, , f({Vi}) = 0 . We were unable to

) i+1 az—|—2

o qw), w = (n—1)(n —2)/2 for arbitrary d. This operator

find explic?'y é‘r c9nstants for arbitrary n .

The operator 6‘95 is sl{w, R)-Lie-algebraic and is gauge-equivalent to a (n — 1)-dimensional

Schrodinget opérator in a curved space. For this operator A,, 4, the reduction from d =n—1

tod=n— Sim}rly corresponds to the condition V,, = 0 while the reduction to d = n — 3

ﬂ ~
occur@)&b = V,—1 = 0 and so on. All the limits fromd >n—-1tod=d <n—1
afe geomnl ally transparent and, more importantly, A, ; remains algebraic. The form of
( 1mlhles the existence of a subset of eigenfunctions in the form of a global factor times

}@ynomial solution in the variables {V}}. These geometrical variables can be generalized

to the case of non equal masses.
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