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Abstract

Due to its great importance for applications, we generalize and extend the approach of our

previous papers to study aspects of the quantum and classical dynamics of a 4-body system with

equal masses in d-dimensional space with interaction depending only on mutual (relative) distances.

The study is restricted to solutions in the space of relative motion which are functions of mutual

(relative) distances only. The ground state (and some other states) in the quantum case and some

trajectories in the classical case are of this type. We construct the quantum Hamiltonian for which

these states are eigenstates. For d ≥ 3, this describes a 6-dimensional quantum particle moving

in a curved space with special d-independent metric in a certain d-dependent singular potential,

while for d = 1 it corresponds to a 3-dimensional particle and coincides with the A3 (4-body)

rational Calogero model; the case d = 2 is exceptional and is discussed separately. The kinetic

energy of the system has a hidden sl(7,R) Lie (Poisson) algebra structure, but for the special case

d = 1 it becomes degenerate with hidden algebra sl(4, R). We find an exactly-solvable 4-body

S4-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-

exactly-solvable 4-body sextic polynomial type potential with singular terms. The tetrahedron

whose vertices correspond to the positions of the particles provides pure geometrical variables,

volume variables, that lead to exactly solvable models. Their generalization to the n-body system

as well as the case of non equal masses is briefly discussed.
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INTRODUCTION

Consider 4 classical particles in d-dimensional space with potential depending on mutual

relative distances alone. After separation of the center-of-mass motion, and assuming zero

total (relative) angular momentum, the trajectories are defined by evolution of the relative

(mutual) distances. It is an old question to find equations for trajectories which depend on

relative distances only; in the 3-body case this problem can be traced back to J-L Lagrange

(1772). In general, this problem was solved for the 3-body case in [1, 2]. The vector positions

of 4 particles in a 3-dimensional space form a tetrahedron; the corresponding edges are

nothing but the 6 relative distances between the particles. Thus, we can formulate the

problem in terms of the evolution of such a geometrical object. We call it the tetrahedron

of interaction.

The aim of the present paper is to construct the 4-body Hamiltonian which depends

on the 6 relative distances and describes the motion of the tetrahedron of interaction in

d-dimensional space. Our strategy is to study the quantum problem first for d ≥ 3. Then,

using geometrical variables obtained from the tetrahedron, we impose constraints on the

edges (relative distances) and faces to degenerate the Hamiltonian to the planar d = 2 and

1-dimensional d = 1 cases. The corresponding classical Hamiltonian is obtained through the

de-quantization procedure [3], of replacement of the quantum momentum by the classical

one with preservation of positivity of kinetic energy. In [3], we studied the n-body system

for d ≥ n− 1 while in the present paper we will introduce new geometrical variables which

allow to analyze the case d < n− 1.

The quantum Hamiltonian for 4 particles, in a d-dimensional Euclidean space, with a

translation-invariant potential depending on relative (mutual) distances between particles

only, is of the form

H = −
4∑

i=1

1

2mi

∆
(d)
i + V (rij) , (1)

where ∆
(d)
i is the d-dimensional Laplacian,

∆
(d)
i =

∂2

∂ri∂ri
, (2)

associated with the ith body with coordinate vector ri ≡ r
(d)
i = (xi,1 , xi,2 , xi,3 . . . , xi,d) , and

rij = |ri − rj| , i, j = 1, 2, 3, 4 , (3)
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is the (relative) distance between particles i and j, rij = rji . For simplicity, unless otherwise

stated, all masses in (1) are assumed to be equal: mi = m = 1. The eigenvalue problem for

H is defined on the configuration space R4d.

The number of relative distances rij is equal to the number of edges of the tetrahedron

which is formed by taking the particles’ positions as vertices. We call this tetrahedron the

tetrahedron of interaction, see for illustration Fig.1.

FIG. 1. 4-body system: at d = 3, the coordinate vectors ri mark positions of vertices of the

tetrahedron of interaction with sides rij . For illustration one of the faces of this tetrahedron

(shaded triangle) and the center-of-mass (blue large bubble) are marked.

The center-of-mass motion described by vectorial coordinate

RCM =
1√
4

4∑
k=1

r
k
, (4)

can be separated out; this motion is described by a d-dimensional plane wave, ∼ eik·RCM .

The spectral problem is formulated in the space of relative motion ℜrel ≡ R3d; it is of the

form,

Hrel Ψ(x) ≡
(
− 1

2
∆

(3d)
rel + V (rij)

)
Ψ(x) = EΨ(x) , Ψ ∈ L2(ℜrel) , (5)

where ∆
(3d)
rel is the flat-space Laplacian in the space of relative motion.

If the space of relative motion ℜrel is parameterized by 3, d-dimensional vectorial Jacobi
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coordinates, then

qj =
1√

j(j + 1)

j∑
k=1

k (rk+1 − rk) , j = 1, 2, 3 , (6)

and the flat-space 3d-dimensional Laplacian in the space of relative motion becomes diagonal

∆
(3d)
rel =

∑
j=1,2

∂2

∂qj∂qj

. (7)

Thus, qj plays the role of the Cartesian coordinate vector in the space of relative motion.

The cases d = 2 (4 bodies on a plane) and d = 1 (4 bodies on a line) are special. For

d = 2 the tetrahedron of interaction degenerates either into a quadrangle with 4 external

vertices or a triangle with 3 external vertices and 1 internal (in both cases the volume of

the tetrahedron vanishes, it plays the role of a constraint). For d = 1 the tetrahedron

degenerates into an interval: the vertices of the tetrahedron correspond to 2 endpoints and

2 marked points inside the interval,and the volume of tetrahedron as well as the areas of

all faces (triangles) are equal to zero identically. This implies that on the line (d = 1) the

relative variables obey 3 constraints

x12 + x31 + x23 = 0 , x13 + x41 + x34 = 0 , x12 + x24 + x41 = 0 , (8)

where it is assumed that xi denotes the position of the ith body and xij = xi − xj. Hence,

the 6 relative distances are related and only 3 of them are independent. Therefore, see [4]

∆
(3)
rel = 2

(
∂2

∂x212
+

∂2

∂x213
+

∂2

∂x214
+

∂2

∂x12 ∂x13
+

∂2

∂x12 ∂x14
+

∂2

∂x13 ∂x14

)
. (9)

cf. (7). The configuration space ℜrel is 0 < x12 < x13 < x14 < ∞. Now,

Observation [5] :

There exists a family of eigenstates of the Hamiltonian (1), including the ground

state, which depends on 6 relative distances {rij} only . The same is correct

for the n body problem: there exists a family of the eigenstates, including the

ground state, which depends on relative distances only.

This observation is presented for the case of scalar particles, bosons. It can be generalized

to the case of fermions, namely:
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In the case of 4 fermions there exists a family of the eigenstates of the Hamilto-

nian (1), including the ground state, in which the coordinate functions depend

on 6 relative distances {rij} only . The same is correct for the n body problem,

see [3]: there exists a family of the eigenstates, including the ground state, in

which the coordinate functions depend on relative distances only.

Our primary goal is to find the differential operator, in the form of the Hamiltonian with

positive-definite kinetic energy, in the space of relative distances {rij} for which these states

are eigenstates. In other words, to find a differential equation depending only on {rij} for

which these states are solutions. This implies a study of the evolution of the tetrahedron of

interaction with fixed center-of-mass. We consider the case of 4 spinless particles.

I. GENERALITIES

As a first step let us change the variables (6) in the space of relative motion ℜrel :

(qj) ↔ ( {rij}, {Ω} ) . (10)

This is a generalization of the Euler coordinates; where for d > 2 the number of (inde-

pendent) relative distances {rij} is equal to 6 and {Ω} is a collection of (3d − 6) angular

variables. Thus, we split ℜrel into a combination of the space of relative distances ℜradial and

a space parameterized by angular variables, essentially those on the sphere S3(d−2). There

are known several ways to introduce variables in ℜrel, see e.g. [6]. In particular, unlike [6],

for the space of relative distances ℜradial we take the relative (mutual) distances rij.

A key observation is that in new coordinates ({rij}, {Ω}) the flat-space Laplace operator,

the kinetic energy operator in (5), takes the form of the sum of 2 second-order differential

operators

1

2
∆

(3d)
rel = ∆

(6)
radial(rij, ∂ij) + ∆

(3d−6)
Ω (rij,Ω, ∂ij, ∂Ω) , ∂ij ≡

∂

∂rij
, (11)

(d > 2) where the first operator depends on relative distances only. (Hence, it contains

derivatives w.r.t. relative distances while the coefficient functions do not depend on angles.)

The second operator depends on angular derivatives in such a way that it annihilates any

angle-independent function Ψ, namely

∆
(3d−6)
Ω (rij,Ω, ∂ij, ∂Ω)Ψ(rij) = 0 . (12)
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Hereafter, we omit the superscripts in ∆
(6)
radial, ∆

(3d)
rel and ∆

(3d−6)
Ω .

The special cases d = 1 and d = 2 will be considered separately in section IV. In particular,

for d = 1 the operator ∆Ω is absent (no angular variables occur), thus

∆radial(rij, ∂ij) =
1

2
∆rel(rij, ∂ij) , (13)

see (9). For d > 2, the commutator [∆radial , ∆Ω] ̸= 0 .

Now, if we look for angle-independent solutions of (5), due to the decomposition (11) the

general spectral problem (5) is reduced to a particular spectral problem

Hr Ψ(rij) ≡
(
−∆radial(rij, ∂ij)+V (rij)

)
Ψ(rij) = EΨ(rij) , Ψ ∈ L2(ℜradial) , (14)

where ℜradial ⊂ ℜrel is the space of relative distances. Clearly, we can write

∆radial(rij, ∂ij) = gµν(r)∂µ∂ν + bµ(r)∂µ , (µ, ν = 1, 2, 3, 4, 5, 6) , (15)

where gµν(r) is a 6 × 6 matrix whose entries are the coefficients in front of the second

derivatives ∂µ∂ν , and b
µ(r) is a column vector; both are r-dependent. In (15), we made the

identifications 1 → r12, 2 → r13, 3 → r14, 4 → r23, 5 → r24, 6 → r34 for µ and ν.

For any d > 2 one can find the d-dependent gauge factor Γ = Γ(rij) such that

∆radial(rij, ∂ij) takes the form of the Schrödinger operator,

Γ−1∆radial (rij, ∂ij) Γ = ∆LB(rij)− Veff (rij) ≡ ∆r,Γ . (16)

Here ∆LB(r) is the six-dimensional Laplace-Beltrami operator with contravariant, d-

independent metric gµν(r), on a non-flat, (non-constant curvature) manifold. This makes

sense of the kinetic energy. The function Veff (r) is the d-dependent effective potential. The

potential Veff (r) becomes singular at the boundary of the configuration space, where the

determinantD(r) = det gµν(r) vanishes. It can be checked that the operator ∆r is Hermitian

with measure D(r)−
1
2 . Thus, we arrive at the spectral problem for the Hamiltonian

HLB(r) = −∆LB(r) + Veff (r) + V (r) , (17)

with d > 2 and with a d-independent Laplace-Beltrami operator ∆LB(r). It is easy to see

that at d = 2, as a consequence of the vanishing volume of the tetrahedron of interaction,

the operator ∆LB(r) becomes degenerate: D(r) = det gµν(r) = 0 . The configuration space
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D ≥ 0 (equivalently, the space of relative coordinates) at d > 2 shrinks to its boundary

D = 0 for d = 2.

The connection between the kinetic energy (∆(4d)) in the original Hamiltonian (1) and

that of the Hamiltonian (17) can be summarized as follows,

∆(4d) −−−−−−−−−−−−→
removal of RCM

∆
(3d)
rel

−−−−−−−−−−−−−−−−−−−−−→
angle-independent solutions

∆radial
−−−−−−−−−−−−−−−−−→
gauge transformation Γ

∆LB .

(18)

Consequently, we reduce the original 4d-dimensional problem to a 6 dimensional one. As

for the potential, we simply add to the original V the effective potential Veff arising from

the d−dependent gauge transformation Γ. Again, the case d = 1 is special, the gauge factor

is trivial, Γ = 1, and

∆LB(r) = ∆radial(r) = ∆rel(r) . (19)

Following the de-quantization procedure [1]-[3] of replacement of the quantum momentum

(derivative) by the classical momentum −i ∂ → P , one can get a classical analogue of

the Hamiltonian (17),

H
(c)
LB(r) = gµν(r)Pµ Pν + V (r) + Veff (r) . (20)

It describes the internal motion of a 6-dimensional body with tensor of inertia (gµν)−1 with

center of mass fixed.

The Hamiltonians (17), (20) are the main objects of study of this paper.

II. CASE d = 1: DETAILED RESULTS

For the 1 dimensional case d = 1, we introduce the S4 invariant symmetric polynomials

σ1(x) = x1 + x2 + x3 + x4

σ2(x) = x1 x2 + x1 x3 + x1 x4 + x2 x3 + x2 x4 + x3 x4

σ3(x) = x1 x2 x3 + x1 x3 x4 + x2 x3 x4 + x1 x2 x4

σ4(x) = x1 x2 x3 x4 .

(21)

where it is assumed that xi denotes the position of the ith body.

In the variables

Y = σ1(x) , τk = σk(y(x)) , (k = 2, 3, 4) , (22)
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where

y(x) = (y1(x), y2(x), y3(x), y4(x)) and yi(x) = xi −
1

4
Y , (i = 1, 2, 3, 4) , (23)

are translational invariant, the original Laplacian (1) takes the algebraic form

−
4∑

i=1

1

2
∆

(d=1)
i = −2 ∂2Y,Y + τ2 ∂

2
2,2 + (2 τ4 −

1

2
τ 22 ) ∂

2
3,3 + (τ2 τ4 −

3

8
τ 23 ) ∂

2
4,4

+ 3 τ3 ∂
2
2,3 + 4 τ4 ∂

2
2,4 − 1

2
τ2 τ3 ∂

2
3,4 +

3

2
∂2 +

1

4
τ2 ∂4 ,

(24)

which, upon the extraction of the center-of-mass motion, can be rewritten in terms of the

generators of the algebra sl(4, R). Moreover, it can be easily seen that this operator de-

scribes the kinetic energy of relative motion of the 4-body (A3) rational Calogero model

with potential

VA3 = g

(
1

x212
+

1

x213
+

1

x214
+

1

x223
+

1

x224
+

1

x234

)
, (25)

in algebraic form, where g is the coupling constant and xij ≡ xi − xj.

Also, for d = 1 there exists another polynomial change of variables. In the space of

relative distances the Laplace-Beltrami operator (19) is given by

∆LB =
∂2

∂x212
+

∂2

∂x213
+

∂2

∂x214
+

∂2

∂x12 ∂x13
+

∂2

∂x12 ∂x14
+

∂2

∂x13 ∂x14
, (26)

see (9). It corresponds to the 3-dimensional flat space Laplacian and is evidently an algebraic

operator. Formally, it is not S4 invariant unlike the original 4d-Laplacian in (1) with d = 1.

However, the kinetic energy remains S3 invariant. As a realization of this S3 invariance in

∆LB (19) let us introduce the natural variables

ξ1 = x12+x13+x14 , ξ2 = x12 x13+x12 x14+x13 x14 , ξ3 = x12 x13 x14 , (27)

which is a polynomial change of variables, so that (19) becomes

∆LB(ξ) = 6 ∂2ξ1 + (3 ξ21 − ξ2) ∂
2
ξ2

+ (ξ22 − ξ1 ξ3) ∂
2
ξ3

+ 8 ξ1 ∂
2
ξ1,ξ2

+ 4 ξ2 ∂
2
ξ1,ξ3

+ 3(ξ1 ξ2 − ξ3) ∂
2
ξ2,ξ3

+ 3 ∂ξ2 + ξ1 ∂ξ3 .
(28)

The operator (28) is algebraic, it can be rewritten in terms of the generators of the maximal
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affine subalgebra b3 of the algebra sl(4,R) in ξ-variables, c.f. below (52), see [4, 7].

J −
i =

∂

∂ξi
, i = 1, 2, 3 ,

Jij
0 = ξi

∂

∂ξj
, i, j = 1, 2, 3,

J 0(N) =
3∑

i=1

ξi
∂

∂ξi
−N ,

J +
i (N) = ξi J 0(N) = ξi

(
3∑

j=1

ξj
∂

∂ξj
−N

)
, i = 1, 2, 3 , (29)

where N is a parameter.

III. CASE d > 2: DETAILED RESULTS

A. r-representation

If we assume d > 2, after straightforward calculations the operator ∆radial(rij, ∂ij) (in

decomposition (11)) can be found to be

2∆radial(rij, ∂ij) =

[
2 (∂2r12 + ∂2r13 + ∂2r14 + ∂2r23 + ∂2r24 + ∂2r34) +

2(d− 1)

r12
∂r12

+
2(d− 1)

r13
∂r13 +

2(d− 1)

r14
∂r14 +

2(d− 1)

r23
∂r23 +

2(d− 1)

r24
∂r24 +

2(d− 1)

r34
∂r34

+
r212 + r213 − r223

r12 r13
∂r12∂r13 +

r212 + r214 − r224
r12 r14

∂r12∂r14 +
r213 + r214 − r234

r13 r14
∂r13∂r14

+
r212 + r223 − r213

r12 r23
∂r12∂r23 +

r212 + r224 − r214
r12 r24

∂r12∂r24 +
r223 + r224 − r234

r23 r24
∂r23∂r24

+
r213 + r223 − r212

r13 r23
∂r13∂r23 +

r213 + r234 − r214
r13 r34

∂r13∂r34 +
r223 + r234 − r224

r23 r34
∂r23∂r34

+
r214 + r224 − r212

r14 r24
∂r14∂r24 +

r214 + r234 − r213
r14 r34

∂r14∂r34 +
r224 + r234 − r223

r24 r34
∂r24∂r34

]
.

(30)

Notice the absence of the cross terms ∂r12∂r34 , ∂r13∂r24 and ∂r14∂r23 ; each of them involves 2

disconnected edges of the tetrahedron of interaction.

In general, the operator (30) does not depend on the choice of the angular variables Ω,

but the operator ∆Ω(rij, ∂ij,Ω, ∂Ω) in (11) does so. The configuration space in the space of

relative distances is

0 < ra < rb + rc < ∞, 0 < rb < ra + rc < ∞, 0 < rc < ra + rb < ∞ , (31)

(a ̸= b ̸= c = 12, 13, 14, 23, 24, 34).
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B. ρ-representation

Formally, the operator (30) is invariant under reflections Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2,

r12 ⇔ −r12 , r13 ⇔ −r13 , r14 ⇔ −r14 , r23 ⇔ −r23 , r24 ⇔ −r24 , r34 ⇔ −r34 .

(32)

If we introduce new reflection invariant variables,

r212 = ρ12 , r213 = ρ13 , r214 = ρ14 , r223 = ρ23 , r224 = ρ24 , r234 = ρ34 , (33)

the operator (30) becomes algebraic,

∆radial(ρij, ∂ij) = 4(ρ12 ∂
2
ρ12

+ ρ13 ∂
2
ρ13

+ ρ14 ∂
2
ρ14

+ ρ23 ∂
2
ρ23

+ ρ24 ∂
2
ρ24

+ ρ34 ∂
2
ρ34

)

+2

(
(ρ12 + ρ13 − ρ23)∂ρ12∂ρ13 + (ρ12 + ρ14 − ρ24)∂ρ12∂ρ14 + (ρ13 + ρ14 − ρ34)∂ρ13∂ρ14

)
+2

(
(ρ12 + ρ23 − ρ13)∂ρ12∂ρ23 + (ρ12 + ρ24 − ρ14)∂ρ12∂ρ24 + (ρ23 + ρ24 − ρ34)∂ρ23∂ρ24

)
+2

(
(ρ13 + ρ23 − ρ12)∂ρ13∂ρ23 + (ρ13 + ρ34 − ρ14)∂ρ13∂ρ34 + (ρ23 + ρ34 − ρ24)∂ρ23∂ρ34

)
+2

(
(ρ14 + ρ24 − ρ12)∂ρ14∂ρ24 + (ρ14 + ρ34 − ρ13)∂ρ14∂ρ34 + (ρ24 + ρ34 − ρ23)∂ρ24∂ρ34

)
+ 2 d (∂ρ12 + ∂ρ13 + ∂ρ14 + ∂ρ23 + ∂ρ24 + ∂ρ34) . (34)

As a function of the ρ-variables, the operator (34) is not S6 permutationally-invariant.

Nevertheless, it remains S4 invariant under the permutations of the particles (vertices of

tetrahedron of interaction). For the 3-body case, where the number of ρ variables (relative

distances) equals the number of particles, the corresponding operator ∆radial is indeed S3

permutationally-invariant.

From (31) and (33) it follows that the corresponding configuration space in ρ variables is

given by the conditions

0 < ρA, ρB, ρC <∞ , ρA < (
√
ρB+

√
ρC)

2, ρB < (
√
ρA+

√
ρC)

2, ρC < (
√
ρA+

√
ρB)

2 ,

(35)

(A ̸= B ̸= C = 12, 13, 14, 23, 24, 34). We remark that

S2
∆ABC ≡ 2 (ρA ρB + ρA ρC + ρB ρC)− (ρ2A + ρ2B + ρ2C)

16
≥ 0 , (36)
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because the left-hand side (l.h.s.) is equal to

1

16
(rA + rB − rC)(rA + rC − rB)(rB + rC − rA)(rA + rB + rC) , (37)

and conditions (31) hold. Therefore, from the Heron formula, S2
∆ABC is the square of the

area of the triangle of interaction with sides rA, rB and rC . The triangles of interaction

are nothing but the faces of the tetrahedron.
The associated contravariant metric for the operator ∆radial(ρ), defined by coefficients in

front of second derivatives, is remarkably simple

gµν(ρ) =



4 ρ12 ρ12 + ρ13 − ρ23 ρ12 + ρ14 − ρ24 ρ12 − ρ13 + ρ23 ρ12 − ρ14 + ρ24 0

ρ12 + ρ13 − ρ23 4 ρ13 ρ13 + ρ14 − ρ34 ρ13 + ρ23 − ρ12 0 ρ13 − ρ14 + ρ34

ρ12 + ρ14 − ρ24 ρ13 + ρ14 − ρ34 4 ρ14 0 ρ14 + ρ24 − ρ12 ρ14 + ρ34 − ρ13

ρ12 − ρ13 + ρ23 ρ13 + ρ23 − ρ12 0 4 ρ23 ρ23 + ρ24 − ρ34 ρ23 − ρ24 + ρ34

ρ12 − ρ14 + ρ24 0 ρ14 + ρ24 − ρ12 ρ23 + ρ24 − ρ34 4 ρ24 ρ24 + ρ34 − ρ23

0 ρ13 − ρ14 + ρ34 ρ14 + ρ34 − ρ13 ρ23 − ρ24 + ρ34 ρ24 + ρ34 − ρ23 4 ρ34


. (38)

It is linear in ρ-coordinates(!) with positive definite factorized determinant

D(ρ) = 36864F1 F2 , (39)

where

F1 = V 2
4 , (40)

F2 = 36 Ṽ 2
1 V

2
4 − Ṽ 2

2 Ṽ
2
3 . (41)

Here

• V 2
4 is the square of the volume of the tetrahedron of interaction.

• Ṽ 2
3 is the sum of the 4 areas (squared) of the faces (triangles) of the tetrahedron.

• Ṽ 2
2 is the sum of the 6 edges (squared) of the tetrahedron.

• By definition Ṽ 2
1 ≡ 1.

see (64)-(66). Hence, F1,2 are of geometrical nature. They define the boundary of configu-

ration space, F1 = 0, F2 = 0, where the determinant (39) degenerates, i.e., vanishes.

Following Conjecture 3 in [3], the operator ∆radial(ρ) is self-adjoint with respect to the

normalized radial measure dvr of the form

dvr = V d−4
4 dρ12 dρ13 dρ14 dρ23 dρ24 dρ34 . (42)
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C. Symmetry operators

The reduced radial Laplacian (34) admits a 3-dimensional symmetry algebra with ele-

ments of the type

L(a, b, c) =

(ρ13 a+ ρ14 b− ρ23 a− ρ24 b) ∂ρ12 +

(
ρ14(

3

2
a+

7

2
b+ 3c)− ρ12(

3

2
a+

3

2
b+ c)+

ρ23(
3

2
a+

3

2
b+ c)− ρ34(

3

2
a+

7

2
b+ 3c)

)
∂ρ13 +

(
ρ12(

1

2
a− 1

2
b− c)

+ρ13(−
1

2
a+

1

2
b+ c) + ρ24(

5

2
b+

3

2
a+ 3c)− ρ34(

5

2
b+

3

2
a+ 3c)

)
∂ρ23

+

(
cρ12 − ρ13(a+ 3b+ 3c)− ρ24 c+ ρ34(a+ 3b+ 3c)

)
∂ρ14 + (ρ12(2b+ c+ a)−

ρ14(2b+ c+ a)− ρ23(2a+ 3b+ 3c) + ρ34(2a+ 3b+ 3c)) ∂ρ24+(
ρ13(

1

2
a+

5

2
b+ 2c)− ρ14(

1

2
a+

5

2
b+ 2c) + ρ23(

3

2
a+

3

2
b+ 2c)

−ρ24(
3

2
a+

3

2
b+ 2c)

)
∂ρ34 , (43)

where a, b, c are parameters. Thus, the operator L(a, b, c) commutes with ∆radial(ρ). Out of

(43) let us form the 3 linearly independent operators {J1, J2, J3},

J1 ≡ L

(
2
√
35

35
, 0,−3

√
35

35

)
, J2 ≡ L

(
−17

√
210

420
,
35
√
210

420
,−27

√
210

420

)
, (44)

J3 ≡ L

(
5
√
6

12
,

√
6

12
,−

√
6

4

)
.

It can be checked that they satisfy the so(3,R) commutation relations

[J1, J2] = J3 , [J2, J3] = J1 , [J3, J1] = J2 . (45)

Thus, the symmetry algebra of ∆radial(ρ) is isomorphic to so(3,R).

As for the original 4-body problem (1) these integrals are particular integrals: they com-

mute with the Hamiltonian (1) over the space of relative distances ℜradial only

[H, L]ℜradial → 0 . (46)

In general, H and L do not commute.

13

http://dx.doi.org/10.1063/1.5083129


The space of 2nd order symmetries of ∆radial(ρ) is much more complicated. Due to space

limitations we merely summarize our results. The space of 2nd order symmetries is the direct

sum of the 6-dimensional space D1 of symmetries whose 2nd order terms are homogeneous of

order 1 in the ρ variables (dimD1 = 6) and the 21-dimensional spaceD2 of symmetries whose

2nd order terms are homogeneous of order 2 in the ρ variables (dimD2 = 21). Under the

adjoint action of the so(3,R) 1st order symmetries, D1 splits into the sum of 2 irreducible

subspaces: one of dimension 1 (with the Hamiltonian as a basis) and one of dimension

5. To give a brief description of these elements it is convenient to use the complex basis

{J0, J+, J−} typical for sl(2, C),

J0 = iJ3 , J+ = −J2 + iJ1 , J− = J2 + iJ1 . (47)

The finite dimensional irreducible representations of so(3,R) are indexed by a non-negative

integer ℓ. The corresponding irreducible subspaces have a basis of (2ℓ + 1) elements {f (ℓ)
m :

m = ℓ, ℓ− 1, · · · ,−ℓ} , such that the action of so(3,R) is given by

J0f (ℓ)
m = mf (ℓ)

m , J±f (ℓ)
m = [(ℓ±m+ 1)(ℓ∓m)]1/2 f

(ℓ)
m±1 . (48)

For D1, the basis can be computed from f
(0)
0 = ∆radial(ρ), thus taking ℓ = 0, and the 5 basis

elements can be computed from

14

http://dx.doi.org/10.1063/1.5083129


f
(2)
2 = −2ρ13∂

2
ρ13,ρ13

+ (ρ13 + ρ34 − ρ14)∂
2
ρ34,ρ13

− 1

33
(63 + 46i

√
6)ρ23∂

2
ρ23,ρ23

− 1

6
(3− 2i

√
6)d ∂ρ12 +

1

11
(5 + 4i

√
6)(ρ13 + ρ12 − ρ23)∂

2
ρ13,ρ12

− 1

11
(13 + 6i

√
6)ρ14∂

2
ρ14,ρ14

+
1

11
(5 + 4i

√
6)(ρ13 − ρ14 − ρ23 + ρ24)∂

2
ρ34,ρ12

+
1

11
(13 + 6i

√
6)(ρ12 − ρ14 − ρ24)∂

2
ρ24,ρ14

+ (ρ12 − ρ13 − ρ24 + ρ34)∂
2
ρ23,ρ14

− (ρ13 + ρ14 − ρ34)∂
2
ρ14,ρ13

− 1

66
(63 + 46i

√
6)d ∂ρ23

+
1

3
(4 + i

√
6)(ρ12 − ρ14 − ρ23 + ρ34)∂

2
ρ24,ρ13

+
1

3
(3− 2i

√
6)ρ12∂

2
ρ12,ρ12

− d ∂ρ13

− 1

11
(3− 2i

√
6)(ρ23 − ρ34 − ρ24)∂

2
ρ34,ρ24

+
1

11
(27 + 4i

√
6)(ρ12 − ρ13 − ρ23)∂

2
ρ23,ρ13

− 1

33
(15 + 34i

√
6)(ρ23 + ρ24 − ρ34)∂

2
ρ24,ρ23

− 1

11
(13 + 6i

√
6)ρ34∂

2
ρ34,ρ34

+
2

11
(1 + 3i

√
6)(ρ13 − ρ14 − ρ34)∂

2
ρ34,ρ14

+
1

3
(3− 2i

√
6)(ρ12 − ρ14 + ρ24)∂

2
ρ24,ρ12

− 1

33
(3 + 20i

√
6) d ∂ρ24 −

4

11
(4 + i

√
6)(ρ23 + ρ34 − ρ24)∂

2
ρ34,ρ23

− 1

22
(13 + 6i

√
6) d ∂ρ34

− 2

33
(3 + 20i

√
6)ρ24∂

2
ρ24,ρ24

+
2

33
(9− 17i

√
6)(ρ12 − ρ13 + ρ23)∂

2
ρ23,ρ12

+
1

22
(13 + 6i

√
6)d ∂ρ14 ,

(49)

for ℓ = 2, by using equations (48).

We can show that these 6 basis elements for D1 are pairwise commutative and alge-

braically independent. Thus the free Hamiltonian system is integrable. However, the 6 basis

symmetries fail to satisfy the algebraic conditions for a separable coordinate system [8].

Briefly, if the coefficients of a 2nd order symmetry operator in the ρ coordinates are given

by Rµν , the eigenforms ω and eigenalues λj are the solutions of the equation

6∑
ν=1

(Rµν − λgµν)ων = 0, µ = 1, · · · , 6 , (50)

where the coefficients of the Hamiltonian are given by (38). For separability the 6 basis

symmetries should pairwise commute, each should admit 6 eigenvalues and the symmetries

should share the same 6 eigenforms. By a long computation one can show that the 6 basis

symmetries do not have a common basis of eigenforms.

Under the adjoint action of the 1st order symmetries, D2 splits into 5 irreducible sub-

spaces, two of dimension 1 (ℓ = 0), two of dimension 5 (ℓ = 2) and one of dimension 9

(ℓ = 4). The expressions for the basis symmetries are very lengthy and we do not list them
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here. One of the dimension 1 subspaces has basis J1 = {J2
1 + J2

2 + J2
3} and one of the

dimension 5 subspaces has basis

J2 = {J2
1 + J2

2 − 2J2
3 , J

1
1 − 2J2

2 + J2
3 , JkJℓ + JℓJk, 1 ≤ ℓ < k ≤ 3} . (51)

The basis symmetry for the other 1-dimensional irreducible subspace commutes with J1 and

J2. It appears that there are no more commutative sextuplets in this full 27-dimensional

space, though we do not yet have a convincing proof. Thus, it appears that the free system

is integrable, even superintegrable, but not separable.

D. The Representations of sl(7,R)

In the ρ−representation, the operator (34) is sl(7,R)-Lie algebraic - it can be rewritten

in terms of the generators of the maximal affine subalgebra b7 of the algebra sl(7,R), see

e.g. [9, 10],

J −
i =

∂

∂λi
, i = 1, 2, . . . , 6 ,

Jij
0 = λi

∂

∂λj
, i, j = 1, 2, 3 . . . , 6 ,

J 0(N) =
6∑

i=1

λi
∂

∂λi
−N ,

J +
i (N) = λi J 0(N) = λi

(
6∑

j=1

λj
∂

∂λj
−N

)
, i = 1, 2, . . . , 6 , (52)

where N is a parameter and

λ1 ≡ ρ12 , λ2 ≡ ρ13 , λ3 ≡ ρ14 λ4 ≡ ρ23 , λ5 ≡ ρ24 λ6 ≡ ρ34 . (53)

If N is a non-negative integer, a finite-dimensional representation space exists,

PN = ⟨λp11 λp22 λp33 λp44 λp55 λp66 | 0 ≤ p1 + p2 + p3 + p4 + p5 + p6 ≤ N⟩ . (54)

Explicitly, the operator (34) can be expressed as

1

2
∆radial(J ) = 2(J 0

11 J −
1 + J 0

22 J −
2 + J 0

33 J −
3 + J 0

44 J −
4 + J 0

55 J −
5 + J 0

66 J −
6 ) (55)

+ d (J −
1 + J −

2 + J −
3 + J −

4 + J −
5 + J −

6 )

16

http://dx.doi.org/10.1063/1.5083129


+

[
J 0

11 (J −
2 + J −

3 + J −
4 + J −

5 ) + J 0
22 (J −

1 + J −
3 + J −

4 + J −
6 )

+J 0
33 (J −

1 + J −
2 + J −

5 + J −
6 ) + J 0

44 (J −
1 + J −

2 + J −
5 + J −

6 )

+J 0
55 (J −

1 + J −
3 + J −

4 + J −
6 ) + J 0

66 (J −
2 + J −

3 + J −
4 + J −

5 )

]
−2

[
J 0

12 J −
4 + J 0

13 J −
5 + J 0

21 J −
4 + J 0

23 J −
6 + J 0

31 J −
5 + J 0

32 J −
6

+J 0
41 J −

2 + J 0
45 J −

6 + J 0
54 J −

6 + J 0
62 J −

3 + J 0
64 J −

5 + J 0
51 J −

3

]
.

It acts on (54) as a filtration.

E. The Laplace Beltrami operator underlying geometry

The remarkable property of the algebraic operator ∆radial(ρ) (34) is its gauge-equivalence

to the Schrödinger operator: there is a gauge factor Γ such that

Γ−1∆radial(ρ) Γ = ∆LB(ρ)− Veff (ρ) , (56)

where ∆LB is the Laplace-Beltrami operator

∆LB(ρ) =
√
D(ρ) ∂µ

1√
D(ρ)

gµν ∂ν , ∂ν ≡ ∂

∂ρν
, (57)

see (38). It is given by

Γ = (F1 F2)
−1/4(V 2

4 )
1−d/4 = F

3−d
4

1 F
−1/4
2 , (58)

see (39), (40), (41), and the effective potential is

Veff =
3 Ṽ 4

2 + 112 Ṽ 2
3

32F2

+
(d− 5)(d− 3)Ṽ 2

3

72F1

. (59)

Therefore Γ is of geometric nature: it can be rewritten in terms of volumes (equivalently,

volume variables, see below). The effective potential becomes singular at the boundary of

the configuration space.

Thus, taking into account the gauge rotation (56) we can arrive at the 6-dimensional

Hamiltonian

HLB(r) = −∆LB(r) + V (r) + Veff (r) , (60)
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in the space of r-relative distances, or

HLB(ρ) = −∆LB(ρ) + V (ρ) + Veff (ρ) , (61)

in ρ-space. The Hamiltonians (60) and (61) describe the 6-dimensional quantum particle

moving in the curved space with metric gµν and kinetic energy ∆LB, and in particular, in

ρ-space with metric gµν(ρ) (38) and kinetic energy ∆LB(ρ).

Making the de-quantization of (61) we arrive at a 6-dimensional classical system which

is characterized by the Hamiltonian,

H(c)
LB(ρ) = gµν(ρ)Pµ Pν + V (ρ) + Veff (ρ) , (62)

where Pµ , µ = 12, 13, 14, 23, 24, 34 are classical canonical momenta in ρ-space and gµν(ρ) is

given by (38). This operator (62) is suitable for investigating special configurations (trajec-

tories) for the classical 4-body system. It is worth mentioning that even in the planar case,

the dynamics of the classical 4-body problem is very rich [11]-[13].

IV. REDUCTION TO LOWER DIMENSIONS: d = 1, 2

At d = 2 (planar systems) and d = 1 (a system on the line) the number of independent

ρ-variables reduces from 6 to 5 and 3, respectively, and the expression (34) for the operator

∆radial ceases to be valid. In particular, the determinant of the metric defined by the

coefficients of the 2nd order derivatives in (34) vanishes. This makes the cases d = 2 and

d = 1 quite distinct from d ≥ 3.

In particular, one can ask the question: do there exist variables for which ∆radial is an

algebraic operator at d = 2? In this section we provide a partial answer to this question.

To this end, in addition to the ρ-representation we will introduce 2 new representations in

terms of purely geometric variables (see below) obtained from the tetrahedron of interaction.

We call them volume-variables and u-variables, respectively. More importantly, the volume-

representation can be easily extended to the general n-body case.

A. Volume variables representation

Let us consider, assuming d ≥ 3, the following change of variables
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( ρ12, ρ13, ρ14, ρ23, ρ24, ρ34, ) ⇒ ( V , S, P, q1, q2, q3 ) , (63)

where

V ≡ V 2
4 =

1

144

[ [
(ρ13 + ρ14 + ρ23 + ρ24) ρ34 − (ρ13 − ρ14) (ρ23 − ρ24)− ρ234

]
ρ12

− ρ213ρ24 − ρ34ρ
2
12 + ρ23 [(ρ14 − ρ24) ρ34 − ρ14 (ρ14 + ρ23 − ρ24)]

+ ρ13 [ ρ14 (ρ23 + ρ24 − ρ34) + ρ24 (ρ23 − ρ24 + ρ34)]

]
,

(64)

is the square of the volume of the tetrahedron of interaction, the variable

S ≡ Ṽ 2
3 = S1 + S2 + S3 + S4 , (65)

is the sum of the areas squared of its 4 faces (see (36)), and the variable

P ≡ Ṽ 2
2 = ρ12 + ρ13 + ρ14 + ρ23 + ρ24 + ρ34 , (66)

is the sum of all the 6 edges (squared). This variable is nothing but the square of the

hyper-radius in the space of relative motion, or in other words, in the space of relative

distances.

These 3 variables (V , S, P ) are purely geometric; they are homogeneous polynomials in

ρ-variables of dimension 3, 2 and 1, respectively. Notice that these quantities define the

effective potential Veff (59). We call them volume variables. Clearly, V , S and P are

S4-invariant under the permutations of the 4-body positions (vertices of the tetrahedron).

However, only the variable P is S6 invariant under the permutations of the 6 ρ-variables

(edges of the tetrahedron). The remaining 3 variables ( q1, q2, q3 ) can be chosen as

q1 = ρ12, q2 = ρ13 and q3 = ρ14, d > 1. The specific form of the q-variables is irrelevant for

our purposes, see below.

In the above mentioned variables, ∆radial (34) can be further decomposed into the sum

of 2 operators

∆radial = ∆g + ∆q,g , (67)

with the follow ing properties:

• ∆g = ∆g(V , S, P ) is an algebraic operator for any d. It depends only on volume
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variables V , S, and P and their derivatives,

∆g =
2

9
V S ∂2V,V +

(
54V +

1

2
S P

)
∂2S,S + 8P ∂2P,P

+ 32S ∂2S,P + 2V
(
P ∂2V,S + 24 ∂2V,P

)
+

1

9
(d− 2)S ∂V

+
1

2
(d− 1)P ∂S + 12 d ∂P .

(68)

• ∆q,g = ∆q,g(V , S, P, q1, q2, q3), for arbitrary d. This operator annihilates any volume-

variables dependent function, namely ∆q,g f(V , S, P ) = 0 . We do not give its explicit

form.

• [∆g, ∆q,g] ̸= 0 .

The operator (68) is sl(4,R)-Lie-algebraic, see e.g. [10], and it is gauge-equivalent to a

3-dimensional Schrödinger operator in curved space with d-independent metric (see below).

For this operator ∆g, the reduction from d ≥ 3 to d = 2 simply corresponds to imposing

the condition V = 0 together with d = 2. In turn, the reduction to d = 1 occurs when 2

conditions are imposed: V = S = 0 together with d = 1. Both limits to d = 2 and d = 1 are

geometrically transparent and, more importantly, ∆g remains algebraic.

The d-independent metric of ∆g is given by

gµν(V , S, P ) =


2
9
V S V P 24V

V P 54V + 1
2
S P 16S

24V 16S 8P

 , (69)

and its determinant factorizes

Dg(V , S, P ) ≡ Det gµ ν = G1G2 , (70)

where

G1 =
8

9
V , (71)

G2 = S2
(
P 2 − 64S

)
− 9P V

(
P 2 − 72S

)
− 34992V2 .

The boundary of the configuration space is defined by V = 0. Using the gauge factor

Γg = G
3−d
4

1 G
− 1

4
2 , (72)

to make a gauge rotation of the operator ∆g we arrive at the Schrödinger operator

Γ−1
g ∆g Γg = ∆LB(V , S, P ) − Ṽg , (73)
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with effective potential

Ṽg = (d− 5)(d− 3)
S

81G1

+
(P 2 − 48S) (324V − P S)

8G2

, (74)

where the 1st term vanishes at d = 3, 5, and ∆LB is the Laplace-Beltrami operator

∆LB(V , S, P ) =
√
Dg ∂µ

1√
Dg

gµν ∂ν . (75)

Here ν, µ labels the variables V , S, P , and gµν is given by (69).

Thus, for the original 4-body problem (14) in the space of relative motion, provided

that the potential depends only on the volume variables, and taking into account the gauge

rotation Γg (72), we arrive at the gauge-equivalent Hamiltonian

HLB(V , S, P ) = −∆LB(V , S, P ) + Ṽg(V, S, P ) + V (V , S, P ) , (76)

in the space of volume variables. The Hamiltonian (76) describes a 3-dimensional quantum

particle moving in the curved space parametrized by V , S, P with metric gµν (69) and kinetic

energy ∆LB. The form of (76) implies the possible existence of a subfamily of eigenfunctions

in the form of a multiplicative factor times an inhomogeneous polynomial in the variables

(V , S, P ). The volume variables can be generalized to the case of non equal masses (see

Appendix B).

1. Towards d = 2

Let us assume that V = V (V , S, P ) in (14). In this case, we can ignore the operator ∆q,g

in (67). Now, for d = 2 the volume of the tetrahedron of interaction vanishes identically:

V = 0. Therefore, the operator ∆g (68) reduces to

∆g|d=2 =
1

2
S P ∂2S,S + 8P ∂2P,P + 32S ∂2S,P +

1

2
P ∂S + 24 ∂P . (77)

Thus, in the limit d→ 2, ∆g remains algebraic (more precisely sl(3,R)-Lie-algebraic). The

corresponding metric of ∆g|d=2 takes the form

gµν(S, P ) =

 1
2
S P 16S

16S 8P

 , (78)
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and its determinant factorizes as

Dk(S, P ) ≡ Det gµ ν = K1K2 , (79)

where

K1 = S , K2 = P 2 − 64S . (80)

The boundary of the configuration space is defined by S = 0. Using the gauge factor

Γgk = (K1K2)
− 1

4 , (81)

to gauge-rotate the restricted operator ∆g|d=2, we obtain

Γ−1
gk ∆g|d=2 Γgk = ∆LB(S, P ) − Ṽgk . (82)

Here the effective potential reads

Ṽgk =
P 3

32S (P 2 − 64S)
. (83)

Thus, for the original 4-body problem (14) in the space of relative motion, provided that

the potential depends only on the 2 volume variables (S, P ), and taking into account the

gauge rotation Γgk (82), we arrive at the gauge-equivalent 2-dimensional Hamiltonian

HLB(S, P ) = −∆LB(S, P ) + Ṽgk(S, P ) + V (S, P ) . (84)

The Hamiltonian (84) describes a 2-dimensional quantum particle moving in the curved

space with metric gµν (78). The form of (84) suggests the possible existence of a subfamily

of eigenfunctions in the form of a multiplicative factor times a polynomial in the variables

(S, P ).

2. Towards d = 1

For d = 1, both the volume variable V and the area variable S vanish identically. In this

case the algebraic operator (68) depends on the variable P alone, it has the form

∆g|d=1 = 8P ∂2P,P + 12 ∂P , (85)

which after a suitable gauge rotation and upon the addition of an harmonic potential ∼ ω2 P

becomes the Laguerre operator. We again point out that the form of the operator ∆g|d=1
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implies the existence of a subfamily of solutions of the original 4-body problem (14) in the

space of relative motion, which depend only on the variable P .

Let us clarify the space ”degeneration” from d = 3 to d = 1 with a concrete example. For

d = 1, the number of functionally independent variables (degrees of freedom) in ∆radial (67)

is 3 and the 1st operator ∆g in (67) solely depends on the variable P , see (59). Therefore,

the operator ∆q,g must involve 2 q-variables only.

Now, without loss of generality, let us choose

q1 = ρ12 , q2 = ρ23 , q3 =
√
ρ12 +

√
ρ23 −

√
ρ13 , (86)

as the q-variables for d > 1. For d = 1, ρij ≡ (xi − xj)
2 and ∞ > x1 > x2 > x3 > x4 > 0,

the variable q3 vanishes identically and

P = 3(ρ12 + ρ34) + 4
√
ρ23 (

√
ρ12 +

√
ρ23 +

√
ρ34) + 2

√
ρ12

√
ρ34 . (87)

For d ≥ 2, the operator ∆q,g (67) reads

∆q,g = 4 q1 ∂
2
q1,q1

+ 4 q2 ∂
2
q2,q2

− 2
(
q23 − 2

√
q1q3 − 2

√
q2q3 + 2

√
q1
√
q2
)
∂2q1,q2

+
q3
(
q23 − 3

√
q1q3 − 4

√
q2q3 + 4

√
q1
√
q2 + 2q1 + 4q2

)
√
q2
(√

q1 +
√
q2 − q3

) ∂2q1,q3 + 2 d (∂q1 + ∂q2)

+
q3
(
q23 − 4

√
q1q3 − 3

√
q2q3 + 4

√
q1
√
q2 + 4q1 + 2q2

)
√
q1
(√

q1 +
√
q2 − q3

) ∂2q2,q3

+
(d− 1)

(√
q1
√
q2 − q3

√
q2 + q1 + q2 −

√
q1q3

)
√
q1
√
q2
(√

q1 +
√
q2 − q3

) ∂q3

+ 8V
[
∂2V,q1 + ∂2V,q2 +

√
q1
√
q2 − q3

√
q2 + q1 + q2 −

√
q1q3

32
√
q1
√
q2
(√

q1 +
√
q2 − q3

) ∂2V,q3

]
+

3∑
i=1

Ai ∂
2
S,qi

+ 8 (2 q1 ∂
2
P,q1

+ 2 q2 ∂
2
P,q2

+ q3 ∂
2
P,q3

) ,

(88)

where the coefficients Ai are functions of (V , S, P, q1, q2, q3). At d = 1 they vanish: Ai = 0.

Also all terms involving derivatives ∂V vanish. Thus, in the limit d→ 1 we end up with

∆q,g |d=1 = 4 q1 ∂
2
q1,q1

+ 4 q2 ∂
2
q2,q2

− 4
√
q1
√
q2 ∂

2
q1,q2

+ 2 (∂q1 + ∂q2)

+ 16 ( q1 ∂
2
P,q1

+ q2 ∂
2
P,q2

) .
(89)

We see that the operator ∆q,g depends on 2 q-variables only. Finally, for ∆radial we arrive
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at the well defined 3-dimensional operator

∆radial |d=1 = ∆g |d=1 + ∆q,g |d=1

= 8P ∂2P,P + 12 ∂P + 4 q1 ∂
2
q1,q1

+ 4 q2 ∂
2
q2,q2

− 4
√
q1
√
q2 ∂

2
q1,q2

+ 2 (∂q1 + ∂q2) + 16 ( q1 ∂
2
P,q1

+ q2 ∂
2
P,q2

) ,

(90)

which, after a suitable change of variables, becomes the algebraic operator (9).

B. u-variables representation

It is worth mentioning another decomposition of the operator ∆radial (34), assuming

d ≥ 3, in the variables

( ρ12, ρ13, ρ14, ρ23, ρ24, ρ34, ) ⇒ ( u1, u2, u3, q1, q2, q3 ) , (91)

where

u1 = ρ12 + ρ34 ; u2 = ρ13 + ρ24 ; u3 = ρ23 + ρ14 , (92)

are nothing but the sum of 2 disconnected edges (squared). Thus, without common vertices,

of the tetrahedron of interaction, they are geometrical-type variables. They also are S4

invariant under the permutations of the 4-body positions.

For simplicity we can choose q1 = ρ12, q2 = ρ13 and q3 = ρ14, (d ≥ 3). In the new

variables (91), the operator ∆radial (34) is decomposed in the sum of two operators

∆radial = ∆u + ∆q,u , (93)

with the following properties:

• ∆u = ∆u(u1, u2, u3) is an algebraic operator for any d and involves the u-variables and

its derivatives only

1

2
∆u = 2u1 ∂

2
u1,u1

+ 2u2 ∂
2
u2,u2

+ 2 u3 ∂
2
u3,u3

+ 2 (u1 + u2 − u3)∂
2
u1,u2

+ 2 (u1 + u3 − u2)∂
2
u1,u3

+ 2 (u2 + u3 − u1)∂
2
u2,u3

+ 2 d (∂u1 + ∂u2 + ∂u3) .

(94)

• ∆q,u = ∆q,u(u1, u2, u3, q1, q2, q3): for any d, it annihilates any u-dependent function,

namely ∆q,u f(u1, u2, u3) = 0 .
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• [∆u, ∆q,u] ̸= 0 .

If the original 4-body potential depends on u-variables only the decomposition (93) im-

plies the further reduction of the already reduced spectral problem (14) to

(−∆u + V (u))Ψ(u) = EΨ(u) . (95)

The operator ∆u (94) is sl(4,R)-Lie-algebraic with a flat d-independent metric

gµν(u) =


4u1 2 (u1 + u2 − u3) 2 (u1 + u3 − u2)

2 (u1 + u2 − u3) 4u2 2 (u2 + u3 − u1)

2 (u1 + u3 − u2) 2 (u2 + u3 − u1) 4u3

 , (96)

and with a rather simple factorizable expression for its determinant

D(u) ≡ Det gµ ν(u) = 32 (u1 + u2 − u3)(u1 + u3 − u2)(u2 + u3 − u1) . (97)

The boundary of the configuration space is defined by D(u) = 0. Moreover, using the gauge

factor

Γu = D(u)
1−d
4 , (98)

for gauge rotation of the operator ∆u we obtain a gauge-equivalent 3-dimensional Schrödinger

operator

Γ−1
u ∆u (u) Γu = ∆LB(u) − Ṽu(u) , (99)

with the effective potential of the form

Ṽu(u) = (d− 1)(d− 3)
(u21 + u22 + u23 − 2 (u1 u2 + u1 u3 + u2 u3))

2 (u1 − u2 − u3) (u1 + u2 − u3) (u1 − u2 + u3)
. (100)

Finally, for the original 4-body problem (14) in the space of relative motion, provided that

the potential only depends on the u-variables, taking into account the gauge rotation Γu (99)

and assuming the u-dependent solutions are studied only, we arrive at the gauge-equivalent

3-dimensional Hamiltonian

HLB(u1, u2, u3) = −∆LB(u1, u2, u3) + Ṽu(u1, u2, u3) + V (u1, u2, u3) , (101)

in the space of u-variables. The Hamiltonian (101) also describes a 3-dimensional quantum

particle moving in the flat space parametrized by u1, u2, u3 with metric gµν (96) and kinetic

energy ∆LB(u). The form of (101) implies the possible existence of a subfamily of eigen-

functions in the form of a multiplicative factor times an inhomogeneous polynomial in the

variables (u1, u2, u3). The u-variables do not admit a generalization to the case of non equal

masses.
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1. Toward d = 2 and d = 1

Unlike the volume variables V and S, the u-variables (91) are not subject to any constraint

at d = 2 (V = 0) and d = 1 (V = S = 0). Moreover, for the operator ∆u (94) the passage to

lower dimensions is non-singular. Upon reduction to d = 1, 2, only the overall multiplicative

factor in front of the first derivative terms in (94) changes.

However, for d = 2 the number of variables (degrees of freedom) in ∆radial (67) is reduced

to 5. Therefore, in this case the operator ∆q,u in (93) must involve only 2 q-variables:

∆q,u|d=2 =
2∑

i+j=1

Yi,j ∂
i
q1
∂jq2 , (102)

with coefficients Yi,j = Yi,j(u1, u2, u3, q1, q2). In general, ∆q,u|d=2 is not an algebraic operator.

At d = 1 the operator ∆q,u vanishes, ∆q,u = 0, while the algebraic operator ∆u (94), after

a suitable gauge rotation and change of variables, describes the kinetic energy of relative

motion of the 4-body (A3) rational Calogero model with potential (25), see [4].

C. P-variable representation

Note that in (68), the coefficients in front of the 2nd and the 1st derivative in P (66) do

not involve the volume variables V (64) and S (65). Furthermore, the variable

P = u1 + u2 + u3 = ρ12 + ρ13 + ρ14 + ρ23 + ρ24 + ρ34 . (103)

is nothing but the sum of the u-variables (91), which appear in the algebraic operator ∆u

(94) for any d. Based on these 2 facts let us make, assuming d ≥ 3, the change of variables

( ρ12, ρ13, ρ14, ρ23, ρ24, ρ34, ) ⇒ ( P, q1, q2, q3, q4, q5 ) . (104)

We call this the P -representation. It is worth noting that P is, up to an overall constant

factor, the unique linear combination of ρ-variables that is both S4-invariant under the

permutations of the 4-body positions, as well as S6-invariant under the permutations of the

6 ρ’s. At the same time the q-variables form a set of well-defined quantities such that the

Jacobian of the transformation (104) is non-singular.

In the variables (104), the operator ∆radial (34) admits the decomposition

∆radial = ∆P + ∆q,P , (105)
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with the following properties:

• ∆P = ∆P (P ) is an algebraic operator for any d and involves the P -variable and its

derivatives only

∆P = 8P ∂2P,P + 12 d ∂P . (106)

• ∆q,P = ∆q,P (P, q1, q2, q3, q4, q5): For any d, it annihilates any P -dependent function,

namely ∆q,P f(P ) = 0 .

• [∆P , ∆q,P ] ̸= 0 .

Using a gauge factor

ΓP = P
1−3 d

4 , (107)

for gauge rotation of the operator ∆P we obtain the gauge-equivalent, 1-dimensional

Schrödinger operator

Γ−1
P ∆P (P ) ΓP = ∆LB(P ) − ṼP (P ) , (108)

with Laplace-Beltrami operator

∆LB(P ) = 4 ( 2P ∂2P,P + ∂P ) , (109)

and metric

g11 = 8P , (110)

and an effective potential of the form

ṼP (P ) =
3 (d− 1)(3 d− 1)

2P
. (111)

In conclusion, for the original 4-body problem (14) in the space of relative motion, pro-

vided that the potential depends on the P -variable only, and taking into account the gauge

rotation ΓP (108), we obtain the gauge-equivalent 1-dimensional Hamiltonian

HLB(P ) = −∆LB(P ) + ṼP (P ) + V (P ) . (112)

The form of (112) implies the possible existence of a subfamily of eigenfunctions in the form

of a P -dependent multiplicative factor times an inhomogeneous polynomial in P . For d = 1,

this remarkable property was previously pointed out in [17]. It is evident that the P -variable

admits a generalization to the case of non equal masses.

27

http://dx.doi.org/10.1063/1.5083129


1. Towards d = 2 and d = 1

For the operator ∆P (106) the passage to lower dimensions is non-singular. In the limit

d = 1, 2 only the overall multiplicative factor in front of the first derivative term in (106)

changes.

As for the operator ∆q,P in (105), in the case d = 2 it must involve only 4 q-variables:

∆q,P |d=2 =
2∑

i+j+k+ℓ=1

Yi,j,k,ℓ ∂
i
q1
∂jq2∂

k
q3
∂ℓq4 , (113)

with certain coefficients Yi,j,k,ℓ = Yi,j,k,ℓ(P, q1, q2, q3, q4). In general, ∆q,P |d=2 is not an alge-

braic operator.

For d = 1, the operator ∆q,P depends on 2 q-variables alone:

∆q,P |d=1 =
2∑

i+j=1

Zi,j ∂
i
q1
∂jq2 , (114)

Here Zi,j = Zi,j(P, q1, q2). Again, in general ∆q,P |d=1 is not algebraic.

V. (QUASI)-EXACT-SOLVABILITY

In this section, for d ≥ 3 we describe in more detail the exact and quasi-exactly solvable

(QES) models for the 4-body problem in the ρ-representation (space of relative distances).

A. QES in ρ-variables, d ≥ 3

(I). Quasi-Exactly-Solvable problem in ρ-variables.

Let us take the d-independent function

Ψ0(ρ) ≡ F
1
4
2 F

γ
2
1 e−ω P−A

2
P 2

, (115)

where γ, ω > 0 and A ≥ 0 and for ω = 0, A > 0 are constants. Here P is given by (66) and

F1 = V , (116)

F2 = 36V − P S , (117)
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are written in terms of the volume variables (64)-(66). We look for the potential for which

the function (115) is the ground state function for the Hamiltonian HLB(ρ) (61) of the 6-

dimensional quantum particle. This potential can be found immediately by calculating the

ratio
∆LB(ρ)Ψ0

Ψ0

= V0 − E0 , (118)

where ∆LB(ρ) is given by (57) with metric (38). The result is

V0(ρ) =
3P 2 + 112S

32F2

+ γ(γ−1)
S

18F1

+ 8ω2 P + 4AP (4ω P− 6 γ−11) + 8A2 P 3 , (119)

which is d-independent. This includes both the effective potential Veff and many-body

potential V with the energy of the ground state

E0 = 12ω (3 + 2 γ) . (120)

Now, we take the Hamiltonian HLB,0 ≡ −∆LB(ρ) + V0 with potential (119), subtract E0

(120) and make the gauge rotation with Ψ0 (115). As a result we obtain the sl(7,R)-Lie-

algebraic operator with additional potential ∆VN

Ψ−1
0 (−∆LB(ρ) + V0 − E0)Ψ0 ≡ h(qes)(J) + ∆VN = −∆R(J )

+ 2 (d− 3− 2 γ) (J −
1 + J −

2 + J −
3 + J −

4 + J −
5 + J −

6 )

+ 16A
(
J +

1 (N) + J +
2 (N) + J +

3 (N) + J +
4 (N) + J +

5 (N) + J +
6 (N)

)
+ 16ω (J 0

11 + J 0
22 + J 0

33 + J 0
44 + J 0

55 + J 0
66) + ∆VN ,

(121)

see (55), where

∆VN = 16AN P = 16AN (ρ12 + ρ13 + ρ14 + ρ23 + ρ24 + ρ34 ) . (122)

It is evident that if the parameter N takes integer values, the d-independent operator

h(qes)(J) has a finite-dimensional invariant subspace PN , (54) with dimPN ∼ N3 at large N .

Finally, we arrive at the quasi-exactly-solvable, d-independent, single particle Hamiltonian

in the space of relative distances ρ,

H
(qes)
LB (ρ) = −∆LB(ρ) + V

(qes)
N (ρ) , (123)

cf.(17), where

V
(qes)
N =

3P 2 + 112S

32F2

+
γ(γ − 1)S

18F1

+ 8ω2 P + 4AP (4ω P − 6 γ − 11− 4N) + 8A2 P 3 ,

(124)
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is a QES potential. Its configuration space is defined by F1 ≥ 0, while if it is fulfilled then

F2 ≥ 0.

For this potential ∼ N3 eigenstates can be found by algebraic means. They have the

factorized form of the polynomial in ρ multiplied by Ψ0 (115),

PolN(ρ12, ρ13, ρ14, ρ23, ρ24, ρ34) Ψ0(F1, F2, P ) . (125)

These polynomials are the eigenpolynomials of the quasi-exactly-solvable, d-independent,

algebraic operator

1

2
h(qes)(ρ) = −2 (ρ12 ∂

2
ρ12

+ ρ13 ∂
2
ρ13

+ ρ14 ∂
2
ρ14

+ ρ23 ∂
2
ρ23

+ ρ24 ∂
2
ρ24

+ ρ34 ∂
2
ρ34

)

−
(
(ρ12 + ρ13 − ρ23)∂ρ12∂ρ13 + (ρ12 + ρ14 − ρ24)∂ρ12∂ρ14 + (ρ13 + ρ14 − ρ34)∂ρ13∂ρ14

)
−
(
(ρ12 + ρ23 − ρ13)∂ρ12∂ρ23 + (ρ12 + ρ24 − ρ14)∂ρ12∂ρ24 + (ρ23 + ρ24 − ρ34)∂ρ23∂ρ24

)
−
(
(ρ13 + ρ23 − ρ12)∂ρ13∂ρ23 + (ρ13 + ρ34 − ρ14)∂ρ13∂ρ34 + (ρ23 + ρ34 − ρ24)∂ρ23∂ρ34

)
−
(
(ρ14 + ρ24 − ρ12)∂ρ14∂ρ24 + (ρ14 + ρ34 − ρ13)∂ρ14∂ρ34 + (ρ24 + ρ34 − ρ23)∂ρ24∂ρ34

)
− (2 γ + 3) (∂ρ12 + ∂ρ13 + ∂ρ14 + ∂ρ23 + ∂ρ24 + ∂ρ34)

+ 8ω (ρ12 ∂ρ12 + ρ13 ∂ρ13 + ρ14 ∂ρ14 + ρ23 ∂ρ23 + ρ24 ∂ρ24 + ρ34 ∂ρ34)

+ 8AP (ρ12 ∂ρ12 + ρ13 ∂ρ13 + ρ14 ∂ρ14 + ρ23 ∂ρ23 + ρ24 ∂ρ24 + ρ34 ∂ρ34 − N) ,

(126)

or, equivalently, of the quasi-exactly-solvable sl(7, R)-Lie-algebraic operator

1

2
h(qes)(J) = −2 (J 0

11 J −
1 + J 0

22 J −
2 + J 0

33 J −
3 + J 0

44 J −
4 + J 0

55 J −
5 + J 0

66 J −
6 )

−
[
J 0

11 (J −
2 + J −

3 + J −
4 + J −

5 ) + J 0
22 (J −

1 + J −
3 + J −

4 + J −
6 )

+ J 0
33 (J −

1 + J −
2 + J −

5 + J −
6 ) + J 0

44 (J −
1 + J −

2 + J −
5 + J −

6 )

+ J 0
55 (J −

1 + J −
3 + J −

4 + J −
6 ) + J 0

66 (J −
2 + J −

3 + J −
4 + J −

5 )

]
+ 2

[
J 0

12 J −
4 + J 0

13 J −
5 + J 0

21 J −
4 + J 0

23 J −
6 + J 0

31 J −
5 + J 0

32 J −
6

+ J 0
41 J −

2 + J 0
45 J −

6 + J 0
54 J −

6 + J 0
62 J −

3 + J 0
64 J −

5 + J 0
51 J −

3

]
− (3 + 2 γ) (J −

1 + J −
2 + J −

3 + J −
4 + J −

5 + J −
6 )

+ 8A
(
J +

1 (N) + J +
2 (N) + J +

3 (N) + J +
4 (N) + J +

5 (N) + J +
6 (N)

)
+ 8ω (J 0

11 + J 0
22 + J 0

33 + J 0
44 + J 0

55 + J 0
66) ,

(127)
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cf. (121).

As for the original many-body problem (14) in the space of relative distances

Hr Ψ(r) ≡
(
−∆radial(r) + V (r)

)
Ψ(r) = EΨ(r) , Ψ ∈ L2(ℜradial) , (128)

the potential for which quasi-exactly-solvable, polynomial solutions occur in the form

PolN(ρ12, ρ13, ρ14, ρ23, ρ24, ρ34) Γ(F1, F2) Ψ0(F1, F2, P ) , (129)

where Γ ∼ D−1/4 F
4−d
4

1 , see (58), is given by

V
(qes)
relative,N = V

(qes)
N − Veff = (130)

4 γ(γ − 1)− (d− 5)(d− 3)

72

S

F1

+ 8ω2 P + 4AP (4ω P − 6 γ − 11 − 4N) + 8A2 P 3 ,

c.f. (124). It does not depend on F2 and does not contain a singular term ∼ 1/F2.

(II). Exactly-Solvable problem in ρ-variables.

If the parameter A vanishes in (115), (124) and (121), (127) we have the exactly-solvable

problem where Ψ0 (115) at A = 0 plays the role of the ground state function,

Ψ0(ρ12, ρ13, ρ23) = F
1
4
2 F

γ
2
1 e−ω P . (131)

The sl(7,R)-Lie-algebraic operator (127) contains no raising generators {J +(N)} and be-

comes

h(exact) =−∆R(J ) + 2 (d− 3− 2 γ) (J −
1 + J −

2 + J −
3 + J −

4 + J −
5 + J −

6 )

+ 16ω (J 0
11 + J 0

22 + J 0
33 + J 0

44 + J 0
55 + J 0

66) ,
(132)

see (55), and, hence, preserves the infinite flag of finite-dimensional invariant subspaces PN

(54) at N = 0, 1, 2 . . . . The single particle potential (124) becomes

V (es)(ρ) =
3P 2 + 112S

32F2

+ γ(γ − 1)
S

18F1

+ 8ω2 P . (133)

Thus, we arrive at the exactly-solvable single particle Hamiltonian in the space of relative

distances

H
(es)
LB (ρ) = −∆LB(ρ) + V (es)(ρ) , (134)

where the spectrum of energies

EN = 12ω (N + 3 + 2 γ) , N = 0, 1, 2, . . . , (135)
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is equidistant. Its degeneracy is equal to the number of partitions of

N = n1 + n2 + n3 + n4 + n5 + n6 . (136)

All eigenfunctions have the factorized form of a polynomial in ρ multiplied by Ψ0 (131),

PolN(ρ12, ρ13, ρ14, ρ23, ρ24, ρ34) Ψ0(F1, F2, P ) , N = 0, 1, 2, . . . . (137)

Note that these polynomials are eigenpolynomials of the exactly-solvable, d-independent,

algebraic operator (127) with A = 0,

h(exact)(ρ) = h(qes)(ρ) |A=0 . (138)

The polynomials PolN are orthogonal w.r.t. Ψ2
0 (131) in the domain given by (36). To the

best of our knowledge these orthogonal polynomials have not been studied in the literature.

The Hamiltonian with potential (133) can be considered as a type of a d-dimensional

generalization of the 4-body Calogero model [14] with loss of the property of pairwise in-

teraction only. Now the potential of interaction contains 2-, 3- and 4-body interactions.

If γ = 0, 1 in (133) we obtain the celebrated harmonic oscillator potential in the space of

relative distances, see e.g. [15]-[16] for the 3-body case. In turn, in the space of relative

motion this potential contains no singular terms at all and becomes,

Vharmonic = 8ω2 P = 8ω2 (ρ12 + ρ13 + ρ14 + ρ23 + ρ24 + ρ34) . (139)

Thus, we arrive at the (non-singular) harmonic oscillator potential Vharmonic. The potential

(133) is a d-dimensional generalization of the harmonic oscillator in the space of relative

motion rather than a potential of a generalized 4-body (rational) Calogero model.

VI. CONCLUSIONS

In this paper we studied the quantum 4 body problem in a d-dimensional space. Based on

the change of variables from individual Cartesian coordinates {ri} to center-of-mass vector

coordinate RCM , mutual relative distances between bodies {rij} and angles {Ω},

( r1, r2, r3, r4 ) ⇔
(
RCM , {rij}, {Ω}

)
, (140)
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the kinetic energy given by the original flat diagonal Laplace operator decomposes naturally

into the sum of 3 operators

4∑
i=1

1

2
∆

(d)
i = ∆RCM

+ ∆radial + ∆Ω , (141)

where ∆RCM
is the center of mass Laplacian, the operator ∆radial depends on the mutual

distances (equivalently, the radial variables) only, ρij = r2ij, and ∆Ω annihilates any function

of the radial variables alone. The operator ∆radial(ρ) is self-adjoint, it does not depend on

how angular variables Ω are introduced. It is positive-definite. Also it is an sl(7, R)-Lie-

algebraic operator, see (34) and (55).

On the subspace of the Hilbert space of angle-independent eigenfunctions, the above-

mentioned change of variables implies that the original multi-dimensional spectral problem,

HΨ = EΨ , (142)

is reduced to a much simpler, restricted one,(
−∆radial(ρ) + V (ρ)

)
ψ = E ψ . (143)

This restricted spectral problem depends on 6 variables solely. Moreover, the ground state

function, if it exists, should be an eigenfunction of such restricted spectral problem as was

predicted by Ter-Martirosyan [5].

It was shown that there exists a gauge factor Γ such that the l.h.s. in (143) is gauge-

equivalent to the Hamiltonian of a 6-dimensional quantum particle in a curved space with

external potential,

HLB ≡ Γ−1

(
−∆radial(ρ) + V (ρ)

)
Γ = −∆LB + Veff (ρ) + V (ρ) . (144)

Here ∆LB is the Laplace-Beltrami operator with contravariant metric gµν (38), and Veff (ρ)

(59) is the effective potential which emerged as a result of the Γ-gauge rotation . The

boundary of the configuration space for HLB is defined by the condition det gµν = 0.

For the case (34) and d ≥ 3 we determined the 1st and 2nd order symmetry operators for

the free Hamiltonian and showed that the system was integrable and superintegrable but,

apparently, nonseparable.

The (Lie)-algebraic form of the operator ∆radial(ρ) suggests a way to find the exact

solutions of both the restricted and the original spectral problems. In particular, adding
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to ∆radial(ρ) the terms linear in derivatives, Aij ρij ∂ij, and then gauging them away with

factor ∼ exp(−Ãij ρij) leads to the anisotropic harmonic oscillator potential in the space of

relative distances,

V (ex) =
6∑

i<j

ω2
ij ρij , (145)

which is an exactly-solvable potential for the restricted problem and perhaps, quasi-exactly-

solvable for the original problem.

A novel result was the introduction of 2 different representations for the operator ∆radial

in (143). They involve pure geometrical variables defined by the tetrahedron of interaction.

In particular, the volume-variables representation allows us a better understanding of the

degeneration from d ≥ 3 to lower dimensions d = 2 and d = 1. In this limiting process,

a Lie-algebraic sector of the problem is preserved. For the restricted problem (143) in the

volume-variables representation we obtain, provided that the original potential only depends

on the volume variables, the gauge-equivalent Hamiltonian

HLB(V , S, P ) = −∆LB(V , S, P ) + Ṽg(V, S, P ) + V (V , S, P ) , (146)

which describes a 3-dimensional quantum particle moving in a curved space.

Interestingly, in the u-variables representation there exists another gauge-equivalent

Hamiltonian

HLB(u1, u2, u3) = −∆LB(u1, u2, u3) + Ṽu(u1, u2, u3) + V (u1, u2, u3) , (147)

in the space of u-variables which describes a 3-dimensional quantum particle moving not in

a curved but in a flat space. For d = 1 the operator (147), after a suitable gauge rotation

and change of variables, reduces to the 4-body (A3) rational Calogero-Sutherland model.

For any d, in the P -variable representation we have the remarkable property of the

existence of a family of eigenfunctions of the 4-body problem that only depend on the P -

variable.

Consequently, exactly- and quasi-exactly-solvable models can be constructed for any d.

This reveals interesting links between exact solvability and polyhedra which, more impor-

tantly, set up the basis towards the geometrization of the n-body problem. The question

about the existence of a representation in which the whole operator ∆radial in (143) remains

algebraic at d = 2 is still open.
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Also, the case of non-equal masses is presented in the Appendix A. The operator ∆radial →

∆′
radial (A2) admits a simple limit to the atomic (say,m1 → ∞) and molecular (say,m1,...,p →

∞) situations. In the atomic case, for the operator ∆′
radial(ρ) (A2) all 2nd order cross

derivatives ∂ρ1j∂ρ1k disappear, while other terms remain. The number of variables in this case

remains unchanged. In the molecular case, not only cross derivatives ∂ρqj∂ρqk , q = 1, . . . , p

but also the derivatives w.r.t. ρij, 1 ≤ i < j ≤ p vanish. Thus, in general the operator ∆′
radial

depends on 6− p(p−1)
2

variables. Other variables which may appear in the potential V (ρ) are

external parameters. This corresponds to the so-called Bohr-Oppenheimer approximation

(of zero order) in molecular physics.

In Appendix B, we introduce the volume variables for the case of arbitrary masses. In

the Appendix C, the generalization of the volume-variables to the n-body case is presented

as well.
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Appendix A: ρ-representation for non equal masses

Consider the general case of 4 particles located at points r1, r2, r3, r4 of massesm1,m2,m3,m4,

respectively. The analogue of decomposition of kinetic energy of relative motion ∆
(3d)
rel , see

(1),(5), in variables (rij,Ω) exists,

1

2
∆

(3d,m)
rel = ∆

(6,m)
radial(rij, ∂ij) + ∆

(3d−6,m)
Ω (rij,Ω, ∂ij, ∂Ω) , ∂ij ≡

∂

∂rij
, (A1)
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cf.(11). Explicitly, the operator ∆
(6,m)
radial(rij, ∂ij) becomes (in terms of the relative coordinates

ρij = r2ij), see [3],

∆′
radial(ρij , ∂ij) = 2

(
1

µ12
ρ12 ∂

2
ρ12 +

1

µ13
ρ13 ∂

2
ρ13 +

1

µ14
ρ14 ∂

2
ρ14 +

1

µ23
ρ23 ∂

2
ρ23 +

1

µ24
ρ24 ∂

2
ρ24

+
1

µ34
ρ34 ∂

2
ρ34

)
+ d

(
1

µ12
∂ρ12 +

1

µ13
∂ρ13 +

1

µ14
∂ρ14 +

1

µ23
∂ρ23 +

1

µ24
∂ρ24 +

1

µ34
∂ρ34

)
+

2

m1

(
(ρ12 + ρ13 − ρ23)∂ρ12∂ρ13 + (ρ12 + ρ14 − ρ24)∂ρ12∂ρ14 + (ρ13 + ρ14 − ρ34)∂ρ13∂ρ14

)
+

2

m2

(
(ρ12 + ρ23 − ρ13)∂ρ12∂ρ23 + (ρ12 + ρ24 − ρ14)∂ρ12∂ρ24 + (ρ23 + ρ24 − ρ34)∂ρ23∂ρ24

)
+

2

m3

(
(ρ13 + ρ23 − ρ12)∂ρ13∂ρ23 + (ρ13 + ρ34 − ρ14)∂ρ13∂ρ34 + (ρ23 + ρ34 − ρ24)∂ρ23∂ρ34

)
+

2

m4

(
(ρ14 + ρ24 − ρ12)∂ρ14∂ρ24 + (ρ14 + ρ34 − ρ13)∂ρ14∂ρ34 + (ρ24 + ρ34 − ρ23)∂ρ24∂ρ34

)
,

(A2)

where

1

µij

=
mi +mj

mimj

, (A3)

is the reduced mass for particles i and j. (Compare this with (34) for the case of equal

masses m1 = m2 = m3 = m4 = 1.) This operator has the same algebraic structure as

∆radial(ρij) but lives on a different manifold in general. It can be rewritten in terms of the

generators of the maximal affine subalgebra b7 of the algebra sl(7,R), see (52), c.f. (55). The

contravariant metric tensor, obtained from the coefficients in front of the second derivatives

in (A2), does not depends on d and its determinant is

Dm = det gµν = 9216 cm V
2
4

[(∑
V2,m

)(∑
V3,m

)
− 9 (m1+m2+m3+m4)V

2
4

]
, (A4)

and is positive definite, where cm = m1+m2+m3+m4

m2
1 m

2
2 m

2
3 m

2
4

, V 2
4 given by (64),∑

V2,m = m1m2r
2
12 +m1m3r

2
13 +m1m4r

2
14 +m2m3r

2
23 +m2m4r

2
24 +m3m4r

2
34 , (A5)

is the weighted sum of square of sides and diagonals of the tetrahedron of interaction,∑
V3,m =

1

m1
S2(r23, r24, r34) +

1

m2
S2(r13, r14, r34) +

1

m3
S2(r12, r14, r24) +

1

m4
S2(r12, r13, r23) ,

(A6)

is the weighted sum of squares of areas, and S2(a, b, c) is the square of the area of the

triangle of interaction with sizes a, b, c. Hence, Dm is still proportional to the square of the

volume of tetrahedron V 2
4 being of pure geometrical nature!
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Making the gauge transformation of (A2) with determinant (A4) as the factor,

Γ = D
− 1

4
m V

1− d
4

4 , (A7)

we find that

Γ−1 ∆′
radial(ρij) Γ = ∆′

LB(ρ) − Veff , (A8)

is the Laplace-Beltrami operator plus the effective potential

Veff =
3 (
∑
V 2
2,m)

2 + 28 (m1 +m2 +m3 +m4)m1m2m3m4

∑
V 2
3,m

32m1m2m3m4 ((
∑
V 2
2,m)

∑
V 2
3,m − 9 (m1 +m2 +m3 +m4)V 2

4 )

+
(d− 5)(d− 3)

∑
V 2
3,m

72V 2
4

, (A9)

where its 2nd term is absent for d = 3, 5. The Laplace-Beltrami operator plays a role of the

kinetic energy of a 6-dimensional quantum particle moving in curved space. While Veff can

be considered as the centrifugal potential.

Appendix B: volume-variables representation for non-equal masses

For arbitrary masses (m1 ,m2 ,m3 ,m4) , the analogue of decomposition (67) for modified

by arbitrary masses ∆′
radial can be written and the analogue of the operator ∆g (68) can be

derived in modified volume variables,

∆′
g =

2

9
V S̃ ∂2V,V +

(27M
2m

V +
1

2m
S̃ P̃

)
∂2
S̃,S̃

+ 2M P̃ ∂2
P̃ ,P̃

+ 8M S̃ ∂2
S̃,P̃

+ 2V
( 1
m
P̃ ∂2V,S̃ + 6M ∂2V,P̃

)
+

1

9
(d− 2) S̃ ∂V

+
1

2m
(d− 1) P̃ ∂S̃ + 3M d∂P̃ ,

(B1)

where M = m1 +m2 +m3 +m4, m = m1m2m3m4 , and

V ≡ V 2
4 ,

P̃ ≡
∑

V2,m = m1m2r
2
12 +m1m3r

2
13 +m1m4r

2
14 +m2m3r

2
23 +m2m4r

2
24 +m3m4r

2
34 ,

S̃ ≡
∑

V3,m =
1

m1

S2(r23, r24, r34) +
1

m2

S2(r13, r14, r34)

+
1

m3

S2(r12, r14, r24) +
1

m4

S2(r12, r13, r23) . (B2)
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The contravariant metric tensor obtained from (B1) does not depend on d. Its determi-

nant is

Dgm = 2M V
m
(
162M P̃ S̃ V − 2187M2 V2 + P̃ 2 S̃2

)
− 16m2M S̃3 − 9 P̃ 3 V

9m2

]
. (B3)

Making the gauge transformation of (B1) with determinant (B3) and volume of tetrahe-

dron as the factor:

Γ = D−1/4
gm V1− d

4 , (B4)

we find that

Γ−1 ∆′
g(P̃ , S̃, V) Γ = ∆′

g,LB(P̃ , S̃, V) − Veff , (B5)

is the Laplace-Beltrami operator with the effective potential

Veff =

(
P̃ 2 − 12mM S̃

)
(81M V − P̃ S̃)

8
(
2187mM2V2 +mS̃2

(
16mM S̃ − P̃ 2

)
+ 9 P̃ V

(
P̃ 2 − 18mM S̃

))
+ (d− 5)(d− 3)

S̃

72V
, (B6)

where the 2nd term is absent for d = 3, 5. The Laplace-Beltrami operator plays the role of

the kinetic energy of a 3-dimensional quantum particle moving in curved space.

Appendix C: Geometrical variables for the n-body system

Based on concrete results for n = 2, 3, 4, 5 we introduce geometrical variables for the

n-body system in d-dimensional space d ≥ n− 1. They allow us to study the degeneration

of the system from d ≥ n− 1 to lower dimensions.

1. volume-variables representation for the n-body system

For equal masses mi = 1 (i = 1, 2, . . . , n), we introduce the set of (n − 1) volume

variables {Vk}, k = 2, 3, . . . , n, where Vn is the volume (squared) of the n-vertex polytope

of interaction (whose vertices correspond to the positions of the particles) and Vk is the

sum over the squares of the contents (volumes of faces) of fixed dimension k. In these
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variables, the operator ∆n,radial [3] which depends solely on the n(n−1)
2

relative distances

between particles can decomposed as the sum of 2 operators

∆n,radial = ∆n,g + ∆n,q , (C1)

([∆n,g, ∆n,q] ̸= 0) with the following properties

• ∆n,g = ∆n,g({Vk}) is an algebraic operator for any d. It involves volume variables

{Vk}, k = 2, 3, . . . , n, alone. Explicitly,

∆n,g = Vn

n−1∑
i=2

ai Vi ∂
2
i+1,n +

n∑
i=2

bi Vi ∂
2
i,2 +

n−2∑
i=0

ei (d− i)Vi+1 ∂i+2

+
n−3∑
j=1

j∑
i=1

(
ci,j Vn+1−i Vn−j−2 + fi,j Vn−i Vn−j−1

)
∂2n−i,n−j .

(C2)

(n > 2) where

V0 ≡ 0 , V1 ≡ 1 , ∂i ≡ ∂Vi
, ∂2i,j ≡ ∂Vi

∂Vj

and ai, bi, ci,j, fi,j, ei are constants that can depend on n. In particular,

an−1 =
2

(n− 1)2
, b2 = 2 n , e0 = n(n− 1) , ej−2 =

n− j + 1

(j − 1)2
. (C3)

• ∆n,q = ∆n,q({Vk}, q1, q2, . . . , qw), w = (n− 1)(n− 2)/2 for arbitrary d. This operator

annihilates any volume-like function, namely, ∆n,q f({Vk}) = 0 . We were unable to

find explicitly other constants for arbitrary n .

The operator (C2) is sl(n,R)-Lie-algebraic and is gauge-equivalent to a (n− 1)-dimensional

Schrödinger operator in a curved space. For this operator ∆n,g, the reduction from d = n−1

to d = n − 2 simply corresponds to the condition Vn = 0 while the reduction to d = n − 3

occurs when Vn = Vn−1 = 0 and so on. All the limits from d ≥ n − 1 to d = d̃ < n − 1

are geometrically transparent and, more importantly, ∆n,g remains algebraic. The form of

(C2) implies the existence of a subset of eigenfunctions in the form of a global factor times

a polynomial solution in the variables {Vk}. These geometrical variables can be generalized

to the case of non equal masses.
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