MATH 2243: LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS SAMPLE MIDTERM TEST II

INSTRUCTOR: SASHA VORONOV

You may not use a calculator, notes, books, etc. Only the exam paper and a pencil or pen may be kept on your desk during the test.

Good luck!
Problem 1. An object of mass 2 kg , resting on a table next to a wall, is attached to the wall by a spring. A force of 8 N is applied to the mass, stretching the spring and moving the mass $1 / 2 \mathrm{~m}$ from its equilibrium position. The object is then released. Suppose the resistance to the motion is numerically equal to 8 times the instantaneous velocity.
(1) Set up an IVP governing the motion of the mass.
(2) Determine the position of the mass at any time t.
(3) At what time does the mass first pass through the equilibrium position and heading away from the wall?

Problem 2. For two matrices

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right]
$$

find $A^{T} B$ and $\operatorname{tr}(A+2 B)$.
Problem 3. Find a two by two matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and none of the entries of A are zero.

Problem 4. Use Gauss-Jordan elimination to transform the augmented matrix of the following system into the RREF. Use it to find the solutions, if there exist any.

$$
\begin{array}{r}
x+y-2 z=0 \\
3 x+5 y-2 z=8 .
\end{array}
$$

