Math 2243, Practice Final exam. You will need a photo ID for the final!!! Please let me know if you find any errors in these solutions.

Name: \qquad Instructor:
Remember to show all your work. Without it, a correct answer may be given no credit.

(1) Problem 1.

Find the general solution $y(t)$ to $t y^{\prime}+2 y=6 t$.

Solution:

First we divide by t to put this ODE into the standard form

$$
\begin{gathered}
y^{\prime}+p(t) y=f(t): \\
y^{\prime}+(2 / t) y=6
\end{gathered}
$$

The integrating factor for this equation is $\mu=e^{\int p d t}=e^{\int 2 / t d t}=e^{l n t^{2}+C}=\tilde{C} t^{2}$. The homogeneous solution is $y_{h}=1 / \mu=C_{1} t^{-2}$, and a particular solution is $y_{p}=$ $\frac{1}{\mu} \int \mu f(t) d t=t^{-2} \int t^{2} 6 d t=2 t$. So the general solution is $y_{h}+y_{p}=C_{1} t^{-2}+2 t$.

(2) Problem 2.

Find the solution to the initial value problem $y^{\prime \prime}-4 y^{\prime}+13 y=0, y(0)=0$, $y^{\prime}(0)=1$.

Solution:

First we find the general solution by considering the characteristic equation $r^{2}-4 r+13$. By the quadratic formula, the roots of the characteristic equation are $r_{1,2}=2 \pm 3 i$. This tells us that $e^{2 t} \sin 3 t$ and $e^{2 t} \cos 3 t$ span the solution space, so $y(t)=C_{1} e^{2 t} \cos 3 t+C_{2} e^{2 t} \sin 3 t$.

The initial conditions give us linear equations for the $C_{i}: y(0)=0=C_{1}$ and $y^{\prime}(0)=1=C_{1} 2 e^{0} \cos 0+C_{2} 2 e^{0} \sin 0-C_{1} 3 e^{0} \sin 0+3 C_{2} e^{0} \cos 0=2 C_{1}+3 C_{2}$. So $C_{1}=0$ and $C_{2}=1 / 3$, and the solution is $y(t)=e^{2 t} \sin 3 t / 3$.

(3) Problem 3.

Show that the polynomials $p_{1}=t^{2}+2 t+3, p_{2}=4 t^{2}+5 t+6, p_{3}=7 t^{2}+8 t+9$ are not linearly independent.

Solution:

One way to do this is to show the Wronskian

$$
\operatorname{det}\left[\begin{array}{ccc}
p_{1} & p_{2} & p_{3} \\
p_{1}^{\prime} & p_{2}^{\prime} & p_{3}^{\prime} \\
p_{1}^{\prime \prime} & p_{2}^{\prime \prime} & p_{3}^{\prime \prime}
\end{array}\right]
$$

is zero; usually this is a good idea but here that calculation is somewhat messy.

For quadratic polynomials, we can use the basis $\left\{t^{2}, t, 1\right\}$ to write the polynomials as their coefficient vectors, $(1,2,3),(4,5,6)$, and $(7,8,9)$. Since

$$
\operatorname{det}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=0
$$

the polynomials are not linearly independent.

(4) Problem 4.

Find the kernel and range of the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} given by the matrix $A=\left[\begin{array}{ccc}3 & 9 & 10 \\ 3 & -1 & 0 \\ -3 & -1 & -2\end{array}\right]$.

Solution:

This problem is a little too difficult for a test question.
The characteristic polynomial of A is $\operatorname{det}(A-\lambda I)=-\lambda^{3}+4 \lambda=-\lambda\left(\lambda^{2}-4\right)$ so the eigenvalues are $0,-2$, and 2 . The kernel, or nullspace, will be onedimensional and consists of the span of the 0 -eigenvector. We find that eigenvector by solving $A x=0$, by row-reducing A. One way to do that is:

Start by adding row 1 to row 3 ,

$$
\left[\begin{array}{ccc}
3 & 9 & 10 \\
3 & -1 & 0 \\
0 & 8 & 8
\end{array}\right] \rightarrow
$$

then subtract row 1 from row 2 ,

$$
\left[\begin{array}{ccc}
3 & 9 & 10 \\
0 & -10 & -10 \\
0 & 8 & 8
\end{array}\right] \rightarrow
$$

divide each row by its leftmost nonzero entry,

$$
\left[\begin{array}{ccc}
1 & 3 & 10 / 3 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \rightarrow
$$

subtract row 2 from row 3,

$$
\left[\begin{array}{ccc}
1 & 3 & 10 / 3 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \rightarrow
$$

and finally subtract 3 times row 2 from row 1 ,

$$
\left[\begin{array}{ccc}
1 & 0 & 1 / 3 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

From this we can read off that the span of the 0 -eigenvector will be $(-a / 3,-a, a)$.
The image will be the span of the other two eigenvectors, which can be computed by solving $A x=2 x$ and $A x=-2 x$. The eigenvector for $\lambda=2$ is $(-a,-a, a)$, and the eigenvector for $\lambda=2$ is $(5 a,-15 a, 11 a)$. So the image is $\operatorname{span}(\{(-1,-1,1),(5,-15,11)\})$.

(5) Problem 5.

The matrix $B=\left[\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 0\end{array}\right]$ has eigenvalues 0,1 , and -1 , with respective eigenvectors v_{0}, v_{1} and v_{-1}. What is the effect of multiplying those eigenvectors by the matrix $c=B^{4}+I_{3}$ (where I_{3} is the 3 by 3 identity matrix)?

Solution:

Since $B v_{0}=(0,0,0)$, we find that $c v_{0}=B^{4} v_{0}+v_{0}=v_{0}$ so v_{0} is unchanged by c.

Any even power of B will leave v_{1} and v_{-1} unchanged, so $c v_{ \pm 1}=v_{ \pm 1}+v_{ \pm 1}=$ $2 v_{ \pm 1}$; i.e. c doubles the length of the other two eigenvectors.

(6) Problem 6.

Find the general solution to the linear system $x^{\prime}=\left[\begin{array}{cc}-2 & 2 \\ 0 & 1\end{array}\right] x$.

Solution:

Since the equation for the second component of x is just $x_{2}^{\prime}=x_{2}$, we could solve that seperately $\left(x_{2}=C_{2} e^{t}\right)$ and plug it into the equation for the second component, giving us $x_{1}^{\prime}=-2 x_{1}+2 x_{2}=-2 x_{1}+2 C_{2} e^{t}$, a nonhomogeneous first order equation for x_{1}. This could be solved using variation of parameters or integrating factor approach.

Alternatively we can solve it using the techniques of chapter 6 . We can calculate the characteristic polynomial $\operatorname{det}(A-\lambda I)=(-2-\lambda)(1-\lambda)$ which is already factored since the matrix is upper-triangular. The eigenvalues are 1 and -2 . The eigenvectors are found by row-reducing $A-I$ and $A+2 I$ and we find that they are $v_{1}=(2,3)$ and $v_{-2}=(1,0)$. So the solution is $C_{1} e^{t} v_{1}+c_{2} e^{-2 t} v_{-2}$, or in components $x_{1}=2 C_{1} e^{t}+C_{2} e^{-2 t}$ and $x_{2}=3 C_{1} e^{t}$.

