Math 2243, Final exam.
Name: \qquad Instructor: \qquad
Remember to show all your work. Without it, a correct answer may be given no credit.
(1) Problem 1.

Find the general solution $y(t)$ to the following ODE: $y^{\prime}+3 t y=t$.

(2) Problem 2.

Show that the functions $\left\{e^{t}, t e^{t}, t^{2} e^{t}\right\}$ are linearly independent by using the Wronskian.
(3) Problem 3.

Find the solution to the initial value problem $y^{\prime \prime}-y=4 e^{t}, y(0)=-1$, $y^{\prime}(0)=1$.
(4) Problem 4.

Find the general form of the solution for the following linear system

$$
x^{\prime}=y ; y^{\prime}=x
$$

(5) Problem 5.

Let $K \subset \mathbb{R}^{3}$ be the subspace $K=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=y\right\}$ and let $I \subset \mathbb{R}^{3}$ be the subspace $I=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=-y\right.$ and $\left.z=0\right\}$. I.e., K consists of vectors of the form (x, x, z) and I consists of vectors of the form $(x,-x, 0)$.

Find a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} which has K as its kernel and L as its range.
(6) Problem 6.

Find a 2 x 2 matrix A with non-zero entries which satisfies the equation

$$
A^{2}+A=0 .
$$

