Math 2243, Midterm Exam 2

November 8, 2001

INSTRUCTIONS: Books and notes are not allowed. Calculators are NOT allowed. Problems 1-3 are in "multiple choice" format. For these problems circle the answer you believe to be correct. Write complete solutions to problems 4-7 for full credit. You have 60 minutes to work on the problems.

Name: \qquad TA Section: \qquad

1) (10 pts) Which of the following is a subspace of the given vector space
(a) $\left\{\left(x_{1}, x_{2} \ldots x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}+x_{2}+\cdots x_{n}=1\right\}$
(b) The subset of all polynomials of degree exactly 3 in the vector space \mathcal{P}_{4} of all polynomials of degree at most 3 .
(c) The subset of all matrices in $M_{3}(\mathbb{R})$ which have a zero in the upper right corner, that is

$$
\left\{A \in M_{3}(\mathbb{R}) \left\lvert\, A=\left[\begin{array}{lll}
a & b & 0 \\
c & d & e \\
f & g & h
\end{array}\right]\right.\right\}
$$

(d) $\left\{y \in C^{2}((a, b)) \mid y^{\prime \prime}+y^{\prime}+3 y=\cos x\right\}$
2) (10 pts) What is the maximum possible number of vectors in a linearly independent subset of the vector space $M_{3}(\mathbb{R})$ of 3×3 matrices with real entries?
(a) 3
(b) 9
(c) there is no maximum number
(d) 4
3) (10 pts) Let A be an $m \times n$ matrix and let \mathbf{b} be a column n-vector. The linear system $A \mathbf{x}=\mathbf{b}$ (for which $A^{\#}$ denotes the augmented matrix) has a unique solution if
(a) $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\#}\right)$
(b) $\operatorname{rank}(A)<\operatorname{rank}\left(A^{\#}\right)$
(c) $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\#}\right)=n$
(d) $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\#}\right)=m$

End of multiple choice problems

4) (20 points) Consider the matrices

$$
A=\left[\begin{array}{rr}
-2 & 1 \\
1 & -2 \\
0 & -1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right], \quad C=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

Calculate, if possible, $(A-2 B) C,(A B-2 A) C$, and $A^{T} B+A B^{T}$. If one (or more) of these expressions is not defined, state so and give the reason.
5) (a) (20 points) Calculate $\operatorname{det}(A)$ where A is the matrix

$$
A=\left[\begin{array}{lll}
1 & -1 & 2 \\
2 & -3 & 3 \\
1 & -1 & 1
\end{array}\right]
$$

Is the matrix A nonsingular? Why or why not?
(b) The system

$$
A \mathbf{x}=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]
$$

has a unique solution $\left(x_{1}, x_{2}, x_{3}\right)$. Find x_{3} using Cramer's Rule.
6) (25 pts) (a) Use the method of Gaussian elimination to solve the system of equations $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 0 & -1 \\
2 & 1 & 3 & 7 \\
3 & -2 & 1 & 0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right] .
$$

(b) Find a spanning set for the nullspace of A. (Recall that this is the subspace of \mathbb{R}^{4} defined as Nullspace $(A)=\left\{\mathrm{x} \in \mathbb{R}^{4} \mid A \mathrm{x}=\mathbf{0}\right\}$.) Is the spanning set you found a basis for Nullspace (A) ? Justify.
7) (15 pts) Show that the vectors $\mathbf{v}_{1}=(1,1,1,1), \mathbf{v}_{2}=(1,2,3,0), \mathbf{v}_{3}=(3,6,0,0)$ and $\mathbf{v}_{4}=(-1,0,0,0)$ form a basis of \mathbb{R}^{4}. (Hint: the determinant of the matrix $\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mathbf{v}_{4}\right]$ is particularly easy to calculate if you choose a "good" row, or column, along which you exapnd it.)

