Math 2243, Midterm Exam 1

October 4, 2001

INSTRUCTIONS: Books and notes are not allowed. Calculators are allowed. Write complete solutions to all problems for full credit. You have 60 minutes to work on the problems.

Name: TA Section: \qquad

1) (15 pts) Find the equation of the orthogonal trajectories to the family of curves $y^{2}=3 x+c$.
2) (a) (10 pts) Find the general solution to the equation $y^{\prime} \cos x+y \sin x=\sin x$.
(b) (10 pts) Solve the IVP $\quad x y^{\prime}-2 y=2 x^{2} \ln x, \quad y(1)=3$.
3) Find the general solution for each of the equations:
(a) (6 pts$) y^{\prime \prime}-y^{\prime}+6 y=0$
(b) $(13 \mathrm{pts}) y^{\prime \prime}+10 y^{\prime}+25 y=e^{-5 x}$
(c) $(14 \mathrm{pts}) y^{\prime \prime}+2 y=17 e^{-x} \sin 2 x$
4) Consider the equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.
(a) (6 pts) Find a solution of the form $y_{1}(x)=x^{r}$.
(b) (11 pts) Use the method of reduction of order to find another solution $y_{2}(x)$.
(c) (5 pts) Show that y_{1} and y_{2} are linearly independent by calculating their Wronskian, and write the general solution to the equation.
5) (20 pts) Recall that the differential equation governing an $R L$ circuit is $\frac{d i}{d t}+a i=\frac{1}{L} E(t)$, where $i(t)$ is the current in the circuit at time t and $a=\frac{R}{L}$. Consider an $R L$ circuit with zero initial current and electromotive force $E(t)=E_{0} e^{b t}$. Find the current in the circuit for $t>0$. (Caution: At some point you will need to treat the cases $b \neq-a$ and $b=-a$ separately.)
