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Abstract

2nd order superintegrable systems with a 2-parameter potentials

and 5 symmetry operators that are functionally linearly dependent

have never been classi�ed. The best known such example is the

Calogero system with 3 bodies on a line. In the paper we have worked

out the structure theory for such systems in conformally at spaces

and shown that they always admit a 1st order symmetry. We have

given a complete classi�cation for all such systems in 3-dimensional

at space that are of the class OH0(4) . In this note we prove the

nonexistence of Calogero-like systems in class OH0(4) on the complex

3-sphere.

1 Introduction

In the paper [1] we have derived structure results for all 2nd order superintegrable
FLD systems on conformally at real or complex spaces that have potentials
that depend on 2 functionally independent variables (the maximum possible)
and have determined all such systems on 3-dimensional complex at space
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that are of classOH0(4). In this note we carry out the analogous computations
for the complex 3-sphere and show that no such systems exist in class OH0(4)
. The notation and method of classi�cation are taken from paper [1].

2 The complex 3-sphere

We choose a standardized Cartesian-like coordinate system fx; y; zg on the
3-sphere such that the Hamiltonian is

H = (1 +
r2

4
)2(p2x + p2y + p2z) + V; (1)

where r2 = x2 + y2 + z2. These coordinates can be related to the standard
realization of the sphere using complex coordinates s = (s1; s2; s3; s4) such
that

P4
j=1 s

2
j = 1 and ds2 =

P4
j=1 ds

2
j via

s1 =
4x

4 + r2
; s2 =

4y

4 + r2
; s3 =

4z

4 + r2
; s4 =

4� r2

4 + r2
(2)

with inverse x = 2s1=(1 + s4), y = 2s2=(1 + s4), z = 2s3=(1 + s4). A basis of
Killing vectors for the zero-potential system is Jjh; Kh, j; h = 1; 2; 3, j < h,
where

J23 = ypz � zpy; J31 = zpx � xpz; J12 = xpy � ypx; (3)

K1 = (1+
x2 � y2 � z2

4
)px+

xy

2
py+

xz

2
pz; K2 = (1+

y2 � x2 � z2

4
)py+

xy

2
px+

yz

2
pz;

K3 = (1 +
z2 � x2 � y2

4
)pz +

xz

2
px +

yz

2
py:

The nonzero commutation relations are

fJ23; J31g = J12; fK1; K2g = J12; fK1; J31g = K3 (4)

and their cyclic permutations. The relation between this basis and the
standard basis of rotation generators on the sphere I`m = s`pm�smp` = �Im`

is
J23 = I23; J31 = I31; J12 = I12; K1 = I41; K2 = I42; K3 = I43: (5)

By relabeling, we can express one of the quadratic parts of the constants
of the motion Ŝ(0) for a FLD system as a linear combination of the quadratic

parts of the remaining 4 generators Ŝ(1); : : : ; Ŝ(4):

Ŝ(0) =
4X

`=1

c(`)(x)Ŝ(`): (6)
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Again we limit ourselves to the maximal case where the expansion (6) is
unique. The generators Ŝ(0); Ŝ(1); Ŝ(2); Ŝ(3); Ŝ(4) are polynomial in x; y; z of
order at most 4 and are linearly independent. We can solve for the expansion
coe�cients in the form c(`)(x; y; z) = s(`)(x; y; z)=s(0)(x; y; z), ` = 1; : : : ; 4
where s(0); s(1); : : : ; s(4) are polynomials in x; y; z of order at most 4. It follows
that X

a1;a2;a3

A(a1; a2; a3)x
a1ya2za3 � s(0)Ŝ(0) �

4X
r=1

s(r)Ŝ(r) = 0; (7)

where each coe�cient A(a1; a2; a3) must vanish. In particular, the sum of all
terms homogeneous of degree n must vanish for each n = 0; : : : ; 4:

B(n) �
X

a1+a2+a3=n

A(a1; a2; a3)x
a1ya2za3 = 0:

Each of the generators Ŝ(r) is a linear combination of terms KiKj, (maximal
order 4), JiKj, (maximal order 3) and JiJj, (order 2).

Since the free part of the Hamiltonian H is not homogeneous, it is not
true that the generators must be homogeneous polynomials. However, once
the highest order terms of a generator S(0) are �xed are �xed, the necessary
and su�cient conditions on the lower order terms for S(0) to be a symmetry
are uniquely determined from the relation fH;S(0)g = 0 and the requirement
that the lower order terms cannot by themselves be a �rst order symmetry.

From Corollary 1 of [1] applied to the 3-sphere we see that, up to conjugacy,
there are just 2 cases to consider: J = J12 and J = J12 + iJ23.

2.1 J = J12

Here the centralizer of J is the group generated by rotations about the z-
axis, and transformations exp(�K3). We can use this freedom to simplify
the computation. Since J12 is a symmetry the potential must be of the form
V (x2 + y2; z). Writing a 2nd order symmetry in the form

S = F11(x; y; z) p
2
1 + F22(x; y; z) p

2
2 + F33(x; y; z) p

2
3 + F12(x; y; z) p1p2+

F13(x; y; z) p1p3 + F23(x; y; z) p2p3 + F0(x; y; z)

and requiring that fS;Hg = 0, we can solve for the Fjk to get

F11 =
1

48
(48c20 + 3c14 � c3)y

4 +
1

48
(8c2x+ 24c13 + 4c4)y

3 + (8)

1

48
((6c14 + 96c20 � 2c3)z

2 + (�8c6x� 4c5 + 24c9)z +
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(�6c14 + 96c20 � 6c3)x
2 + (�32c15 � 16c17)x� 24c18 + 384c20

�16c3)y
2 +

1

48
((8c2x+ 24c13 + 4c4)z

2 + (�8 � c1x
2 + 96c10x� 16c1

+48c11)z � (24(
1

3
c2x+ c13 +

1

6
c4))(x

2 + 4))y +
1

48
(48c20 + 3c14 � c3)z

4 +

1

48
(�8c6x� 4c5 + 24c9)z

3 +
1

48
((�6c14 + 96c20 + 2c3)x

2

+(�16c15 + 16c17)x� 24c19 + 384c20)z
2 +

1

12
(x2 + 4)(2c6x+ c5 � 6c9)z

+
1

16
(c14 + 16c20 �

1

3
c3)(x

2 + 4)2;

F12 =
1

12
c2x

4 +
1

12
((c3 + 3c14)y + c1z + 6c13 + c4)x

3 +

1

12
(�6c2y

2 + (6c6z + 12c15 + 6c17)y � 18z(c10 �
1

6
c7))x

2 +

1

12
((�c3 � 3c14)y

3 + (�3c1z � 18c13 � 3c4)y
2 + ((�3c14 + 3c3)z

2 +

(�12c9 + 6c5)z + 12c18)y + c1z
3 + (3c4 � 6c13)z

2 � 12c11z + 24c13 + 4c4)x+
1

12
c2y

4 +
1

12
(�2c6z � 4c15 � 2c17)y

3 + 3z(c10 �
1

6
c7)y

21

2
+

1

12
(�2c6z

3 + 6c17z
2 + 12c8z � 16c15 � 8c17)y �

1

12
c2z

4 +
1

12
(�3c7 � 6c10)z

3

�c12z
2 +

1

12
(12c7 + 24c10)z � 4c2

1

3
;

F13 = �
1

12
c6x

4 +
1

12
((3c14 � c3)z + yc1 + 6c9 � c5)x

3 +

1

12
(6c6z

2 + (�6c2y + 6c15 � 6c17)z � 18y(c10 +
1

6
c7))x

2 +

1

12
((c3 � 3c14)z

3 + (�3c1y + 3c5 � 18c9)z
2 +

((�3c14 � 3c3)y
2 + (�12c13 � 6c4)y + 12c19)z + c1y

3 + (�6c9 � 3c5)y
2

�12yc11 + 24c9 � 4c5)x�
1

12
c6z

4 +
1

12
(2c2y � 2c15 + 2c17)z

3 +

3y(c10 +
1

6
c7)z

21

2
+

1

12
(2y3c2 + (�6c15 � 6c17)y

2 + 12c12y � 8c15 + 8c17)z

+
1

12
c6y

4 +
1

12
(3c7 � 6c10)y

3 � c8y
2 +

1

12
(�12c7 + 24c10)y + 4c6

1

3
;

F22 =
1

24
(24c20 � c3)x

4 +
1

24
(4c2y � 8c15 � 4c17)x

3 +
1

24
((6c14 + 48c20)y

2

+(2c1z + 24c13 + 4c4)y + (48c20 � 2c3)z
2 � 4zc5 + 12c14 � 12c18 + 192c20
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�4c3)x
2 +

1

24
(�4y3c2 + (8c6z + 8c15 + 4c17)y

2 +

(4c2z
2 + (�24c10 + 12c7)z � 16c2)y + (�8c15 � 4c17)z

2 +

(16c6 � 24c8)z + 32c15 + 16c17)x+
1

24
(24c20 � c3)y

4 �
1

12
c1y

3z

+
1

24
((48c20 + 2c3)z

2 + 4zc5 + 192c20 � 8c3)y
2 +

1

12
z(c1z

2 + 4c4z � 4c1)y +
1

24
(24c20 � c3)z

4 �
1

6
z3c5 +

1

24
(�12c16 + 192c20)z

2 + 2zc5
1

3
+ 16c20 � 2c3

1

3
;

F23 = �
1

24
c1x

4 +
1

24
(4c2z � 4c6y + 24c10)x

3 +
1

24
((12c14z + 24c9)y + 24c13z

+24c11)x
2 +

1

24
(�4c6y

3 + (�12c2z � 12c7)y
2 + (12c6z

2 + 24c15z

+24c8)y + 4c2z
3 + 12c7z

2 + 24c12z � 96c10)x+
1

24
c1y

4 +

1

24
(�4c3z � 4c5)y

3 �
1

4
z(c1z + 2c4)y

2 +
1

24
(4c3z

3 + 12c5z
2 +

24c16z � 16c5)y +
1

24
(z2 + 4)(c1z

2 + 4c4z � 4c1);

F33 = x4c20 +
1

12
(�2c6z � 2c15 + 2c17)x

3 +
1

12
(24c20y

2 + (c1z + 2c4)y +

(3c14 + 24c20 � c3)z
2 + (�2c5 + 12c9)z + 6c14 � 6c19 + 96c20 � 2c3)x

2

+
1

12
((�2c6z � 2c15 + 2c17)y

2 + (�4c2z
2 + (�12c10 � 6c7)z

�12c12 � 8c2)y + (2(z2 + 4))(c6z + c15 � c17))x+ y4c20 +
1

12
(c1z + 2c4)y

3 +
1

12
((24c20 � 2c3)z

2 � 4zc5 � 6c16 + 96c20 � 4c3)y
2

�
1

12
(z2 + 4)(c1z + 2c4)y + c20(z

2 + 4)2;

where the cj are constants to be determined. In addition we obtain a series of
equations for the �rst derivatives @xF0; @yF0; @zF0, which lead to Bertrand-
Darboux equations for V (x2 + y2; z). At the end we have to �nd 5 linearly
independent solutions for S and verify that they are functionally linearly
dependent.

We can get a basis fLj; j = 1; : : : ; 20g for the 20-dimensional space of
symmetries of the zero-potential system by de�ning the symmetry Lj as that
for which cj = 1 and ck = 0 for all k 6= j. However a more convenient basis
is that of eigenvectors of AdJ . The result is:
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Order 2 basis:

1.

S22+ =
i

2
L19 �

i

2
L16 + L12; e:v: = 2i;

2.

S22� = �
i

2
L19 +

i

2
L16 + L12; e:v: = �2i;

3.
S20 = L18; e:v: = 0;

4.
S200 = L19; e:v: = 0;

5.
S21+ = �iL8 + L11; e:v: = i;

6.
S21� = iL8 + L11; e:v: = �i;

Order 3 basis:

1.

S32+ = iL9 � 4iL5 +
2

3
L10 + L7; e:v: = 2i;

2.

S32� = �iL9 + 4iL5 +
2

3
L10 + L7; e:v: = �2i;

3.

S31+a = �
i

2
L13 � iL4 + L17; e:v: = i;

4.

S31�a =
i

2
L13 + iL4 + L17; e:v: = �i;

5.

S31+b = �
i

2
L13 + iL4 + L15; e:v: = i;

6.

S31�b =
i

2
L13 � iL4 + L15; e:v: = �i;
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7.
S30 = �2L10 + L7; e:v: = 0;

8.

S300 =
1

12
L9 + L5; e:v: = 0;

Order 4 basis:

1.
S42+ = L14 + iL2 + L3; e:v: = 2i;

2.
S42� = L14 � iL2 + L3; e:v: = �2i;

3.
S41+ = 2iL1 + L6; e:v: = i;

4.
S41� = �2iL1 + L6; e:v: = �i;

5.
S40 = L20; e:v: = 0;

6.

S400 =
1

3
L14 + L3; e:v: = 0;

Thus the possible actions of AdJ on an eigenbasis are described by the
canonical forms 0

BBBB@

�1 0 0 0 0
0 �2 0 0 0
0 0 �3 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA (9)

0
BBBB@

�1 0 0 0 0
0 �2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA (10)
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0
BBBB@

�1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA (11)

0
BBBB@

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA ; (12)

where �j = �i; �2i.

2.1.1 Form 9

Since the eigenvalues for the real 3-sphere must occur in complex-conjugate
pairs, a system of this form is only possible for the hyperboloid. There
are numerous FLD systems with this form, but none admit a 2-parameter
potential.

2.1.2 Form 10

There are several FLD systems with this form, but none admit a 2-parameter
potential.

2.1.3 Form 11

Since the eigenvalues for the real 3-sphere must occur in complex-conjugate
pairs, a system of this form is only possible for the hyperboloid. Checking
over all possibilities for systems with this eigenvalue form we �nd only one
system that is FLD and, for it, V depends on only a single function.

2.1.4 Form 12

Checking over all possibilities for systems with this eigenvalue form, we �nd
that none are FLD.

2.2 J = J12 + iJ23

In this case the potential must be of the form, V = V (z+ix; y2�2ix(z+ix)).
This suggests the change of variables

x =� �
�
e�� + e�

�
1=4� r2

��
; y = ��re�; (13)
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z =i�
�
e�� � e�

�
1=4 + r2

��
;

so that in the new coordinates we can write J = 1
2
pr and the Hamiltonian is

H = (�2 + 4)2
�
e�2�p2r
�2

+ p2� �
p2�
�2

�
+ V (�; e�): (14)

As in section (2.1) we can get a basis fLj; j = 1; : : : ; 20g for the 20-
dimensional space of symmetries of the zero-potential system by de�ning the
symmetry Lj as that for which cj = 1 and ck = 0 for all k 6= j. However
a more convenient basis is in terms of generalized eigenvectors of AdJ . The
result is:

Order 2 basis:

1.

J4 = �
1

3
L16 �

1

6
L19;

2.

J3 =
i

3
L11 +

1

3
L12;

3.

J2 =
1

3
L18 �

2

3
L19 +

1

3
L16;

4.
J1 = 2iL11 � 2L12;

5.
J0 = 2L18 + 4iL8 � 2L16 = 2J 2;

6.
J00 = L16 + L18 + L19:

The elements of the order 2 basis satisfy

AdJ (Jj) = Jj�1; j = 1; : : : ; 4;

and
AdJ (J0) = AdJ (J00) = 0:

The subscript j on the operator Jj indicates that this basis function is a
polynomial of order j in the variable r.

Order 3 basis:
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1.

M2 = �
i

8
L9 � L15 +

1

2
L17 �

3i

2
L5;

2.

M1 = �
1

2
L13 + 3L4;

3.

M0 = �
i

4
L9 + 2L15 � L17 � 3iL5;

The subscript j on the operator Mj indicates that this basis function
is a polynomial of order j in the variable r.

4.

N4 =
1

16
L13 +

i

48
L10 +

1

8
L4 �

i

32
L7;

5.

N3 =
i

16
L9 �

1

4
L17 �

i

4
L5;

6.

N2 =
i

4
L10 +

i

8
L7;

7.

N1 = �
3i

8
L9 �

3

2
L17 +

3i

2
L5;

8.

N0 = �
3

2
L13 +

i

2
L10 � 3L4 �

3i

4
L7:

The subscript j on the operator Nj indicates that this basis function is a
polynomial of order j in the variable r. The elements of the order 3 basis
satisfy

AdJ (Mj) = Mj�1; j = 1; 2; AdJ (M0) = 0:

and
AdJ (Nj) = Nj�1; j = 1; : : : ; 4; AdJ (N0) = 0:

.

Order 4 basis:

1.
K4 = L3;
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2.

K3 = 2iL1 �
1

2
L2;

3.

K2 = �L14 + 3L3 +
3i

2
L6 +

1

12
L20;

4.

K1 = 3iL1 �
3

2
L2;

5.

K0 = �3L14 + 3L3 + 3iL6 +
1

8
L20;

6.
K00 = L20 = H0:

The subscript j on the operator Kj indicates that this basis function is a
polynomial of order j in the variable r. The elements of the order 4 basis
satisfy

AdJ (Kj) = Kj�1; j = 1; : : : ; 4;

and
AdJ (K0) = AdJ (K00) = 0:

Each canonical form must correspond to bases that are invariant under
the action of AdJ and contain both the symmetries J0 and K00. There are
5 canonical forms to consider:

0
BBBB@

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA (15)

0
BBBB@

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA (16)

0
BBBB@

0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA (17)
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0
BBBB@

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA (18)

0
BBBB@

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA : (19)

2.3 Form (15)

There is only one case corresponding to this form, and it is FLD. However,
it does not admit a 2-parameter potential depending on 2 variables.

2.4 Form (16)

There are no 2-parameter FLD systems for this form.

2.5 Form (17)

There are no FLD systems for this form.

2.6 Form (18)

There is only 1 FLD system for this form and it admits only a 1-parameter
solution.

2.7 Form (19)

There is only 1 FLD system for this form and it admits only a 1-parameter
solution.

3 Conclusions

This note is part of a program to classify all 2nd order superintegrable
classical and quantum systems on 3-dimensional conformally at complex
manifolds. In the paper [1] we have worked out the basic structure theory
for Calogero-like superintegrable systems on these manifolds and classi�ed
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all such systems in class OH0(4) on at spaces. Here we have shown that
there are no such systems in class OH0(4) on the complex 3-sphere.
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