Name:			
Section:			

Math 1571H. Practice Midterm Exam I

There are a total of 100 points on this exam, plus a 5 point extra credit problem that should not attempt unless you have finished the rest of the exam. To get full credit for a problem you must show the details of your work. Answers unsupported by by an argument will get little credit.

Problem 1 (15 points) Given the curve $y = f(x) = -x^2 - 1$, for which values of x does the tangent line to the curve at (x, y) pass through the origin?

Problem 2 (20 points) Find the minimum distance from the origin to the plane x + 2y + 3z = 1.

Problem 3 (20 points) Let y be a function of x such that $x^2y - y^3 = 1$ and the derivatives y', y'' exist at x = 0. If y(0) = -1, compute y'(0) and y''(0).

Problem 4 (10 points) Compute the derivative f'(x) and simplify your answer. It is important that you show your work. The answer alone is not sufficient.

$$f(x) = \left(\frac{x^2 - 1}{x^2 + 1}\right)^2$$

Problem 5 Compute the limits. It is important that you show your work. The answer alone is not sufficient.

a. (10 points)

$$\lim_{x \to 1} \frac{2x^2 - 3x + 1}{x^2 - x}$$

$$\lim_{x \to 0} \frac{1 - \cos x}{\sin x \tan x}$$

Problem 6 Consider a 4-sided pyramid whose rectangular base has vertices

$$P(0,0,0), \quad Q(2,0,0), \quad R(0,4,0), \quad S(2,4,0)$$

and whose top vertex is T(1,2,3).

a. (10 points) Find the cosine of $\angle TPS$.

b. (5 points) Compute the area of $\triangle TPS$.

Problem 7 (5 points extra credit) Starting at time t = 0 (in seconds), a particle moves along the s-axis according to the rule $s(t) = 2t^3 - 15t^2 + 1$ where s is measured in meters. What is the furthest point to the right the particle reaches in the first 6 seconds?

Brief answers:

1.
$$x = \pm 1$$

2.
$$1/\sqrt{14}$$

3.
$$y'(0) = 0$$
, $y''(0) = -2/3$

$$f'(x) = \frac{8x(x^2 - 1)}{(x^2 + 1)^3}$$

6a.
$$12/\sqrt{154}$$

6b.
$$\sqrt{10}$$

7.
$$s = 1$$