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Math 1571H. Final Exam December 14, 2006

There are a total of 235 points on this exam. It is a 3 hour exam with
caculators encouraged, but no notes or text. No other electronic devices
such as cell phones, headphones, etc. are permitted. To get full credit for a
problem you must show the details of your work. Answers unsupported by
an argument will get little credit.
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Problem 1 (20 points) Find the length of the curve y = ln(cos x) between
x = 0 and x = π

4
.

Problem 2 (20 points) A cylindrical tank of diameter 4 feet is lying on
its side. If the tank is half full of rum having a density of 60 lbs./ft3, what
is the force on one vertical end of the tank?
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Problem 3 Identify the graphs of the given curves expressed in polar co-
ordinates. Be as specific as you can.

1. (5 points)
r = 5/ sin θ

2. (5 points)

r = 2/(1 −
1

2
cos θ)
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Problem 4 (20 points) Find the arc length of the curve r(t) = t3 i + t2 j

between t = 1 and t = 2.
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Problem 5 (15 points) Make the substitution sin θ = 3x to evaluate the
indefinite integral ∫ √

1 − 9x2 dx.

Show the details of your work.

Problem 6 (20 points) Find the local maxima, the local minima, and the
inflection points of the function f(x) = ex − 3e−x − 4x.
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Problem 7 (20 points) Solve the differential equation with initial condition

dy

dx
=

2y + 3

x + 5
, y(0) = 1.

Problem 8 (20 points) Suppose the region under the graph of the curve

y =
1

3
(x2 + 2)

3

2 , 1 ≤ x ≤ 3

is rotated about the y-axis. Find the volume of the solid generated.

6



Problem 9 (20 points) Find the equation of the plane containing the point
P (0, 1,−1) and the line with vector equation

R(t) = (3 + t) i + (1 + t) j + (2 − t) k.

Problem 10 (10 points)

F (x) =
∫ 1

5x2
−1

sin(t3) dt.

Compute F ′(x).
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Problem 11 (20 points) Given that
∑n

j=1 j3 = n2(n+1)2

4
, use Riemann sums

to compute the area of the region bounded by the curve y = x3, the x axis
and the line x = 1.

Problem 12 (20 points) In a laboratory there are 10 grams of a radioactive
substance with a half-life of 20 years. How many grams of the substance will
remain after 25 years?
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Problem 13 (20 points) The front of a tank which is full of water has the
shape of a regular trapezoid. In a suitable Cartesian coordinate system (x, y)
the coordinates of the vertices of the top of the trapezoid are (−4, 10) and
(4, 10), and the vertices of the bottom are (−12, 0) and (12, 0). Find the
hydrostatic force exerted by the water on this tank front. The lengths are in
feet and the water density is 62.5 lb/ft3.
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Brief solutions:

1. ln(1 +
√

2)

2. 320 lbs.

3. 1) vertical line y = 5, 2) ellipse in standard position e = 1
2
, p = 4.

4.
1

27
(40

√
40 − 13

√
13)

5.
1

6
arcsin(3x) +

x

2

√
1 − 9x2 + c

6. local max. at x = 0, local min. at x = ln 3, inflection pt. at x = 1
2
ln 3

7.

y =
1

10
(x + 5)2 −

3

2

8.
2π

15
(11

5

2 − 3
5

2 )

9.
x − 2y − z = −1

10.
−10x sin[(5x2 − 1)3]

11. 1/4

12. 5 × 2−1/4 ≈ 4.204 grams

13.
35

6
104 lbs.
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