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AN INTERIOR PENALTY FINITE ELEMENT METHOD
WITH DISCONTINUOUS ELEMENTS*

DOUGLAS N. ARNOLD¥

Abstract. A new semidiscrete finite element method for the solution of second order nonlinear parabolic
boundary value problems is formulated and analyzed. The test and trial spaces consist of discontinuous
piecewise polynomial functions over quite general meshes with interelement continuity enforced approxi-
mately by means of penalties. Optimal order error estimates in energy and L*-norms are stated in terms
of locally expressed quantities. They are proved first for a model problem and then in general.

1. Introduction. In this paper we define a semidiscrete finite element procedure
for the numerical solution of a second order parabolic initial-boundary value problem.
The piecewise polynomial trial functions employed are, in general, discontinuous.
Approximate continuity is imposed by including penalty terms in the form which
defines the method. These are weighted L” inner products of the jumps in the function
values across element edges. In the case of Dirichlet boundary conditions, the penalty
terms on the boundary of the domain penalize the deviation of the approximate
solution from the specified value of the true solution, exactly as in a well-known
method of Nitsche [9].

The primary motivation for the interior penalty method is the enhanced flexibility
afforded by discontinuous elements. This allows meshes which are more general in
their construction and degree of nonuniformity than is permitted by more conventional
finite element methods. Moreover, the local nature of the trial space and the capability
to regulate the degree of smoothness of the approximate solution by local variation
of the penalty weighting function should enable closer approximation of solutions
which vary in character from one part of the domain to another and should allow the
incorporation of partial knowledge of the solution into the scheme. An important
particular class of difficult equations is that of parabolic equations with dominant
transport terms for which the solution varies rapidly on a small moving part of the
domain.

The inclusion of penalty terms in the variational form defining a finite element
method is not new. The method of Nitsche referred to above and the penalty method
of Babuska [3] both employ this technique in order to impose essential boundary
conditions weakly. Zienkiewicz [13] discussed the use of penalties in the formulation
of nonconforming methods for fourth order problems for which the trial functions,
though continuous, are not contained in H>. Babuska and Zldmal [4] have presented
a scheme implementing this idea using interior penalties analogous to the boundary
penalties of Babuska’s method to solve the biharmonic equation. More recently,
Douglas and Dupont [7] have analyzed a method analogous to ours which uses interior
penalties to enforce behavior between C° and C"' on conforming elements for linear
elliptic and parabolic problems. Numerical experiments with that method have clearly
demonstrated the value of penalties for solving certain problems which have proved
intractable to more conventional methods (see, e.g., [7]). Closest to the present method
are an interior penalty method which Wheeler [12] has presented and analyzed for
second order linear elliptic equations, and a similar procedure due to Baker [5] for
the biharmonic equation.

* Received by the editors July 23, 1979, and in final revised form June 15, 1981.
+ Department of Mathematics and Institute for Physical Science and Technology, University of
Maryland, College Park, Maryland 20742.
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Since we wish to allow meshes which are relatively coarse in some parts of the
domain and fine in others, we do not assume quasi-uniformity, and we have stated
the error estimates in a manner which relates the size of each finite element to the
smoothness of the solution on that element. Thus, if A7 is the diameter of the element
T, we have bounded the discretization error by quantities of the form
) 1/2

(5 A¥Iw i)
T
rather than the more usual
1/2

(max hr)’(Z IIWIlfﬂm)
T

(In fact, we shall even allow j and k to depend on T.) This provides motivation and
some justification for schemes incorporating adaptive mesh refinement, in which a
new mesh is selected from time to time using partial knowledge of the solution to
equalize h'r||w||g+ ). We also feel that finite element methods based on discontinuous
elements will prove more amenable to such adaptive schemes than do conforming
methods.

The problem considered for most of the paper is the initial-boundary value
problem

wi(x, )=V [a(x, t, w(x, ))Vw(x, t) +b(x, t, w(x, t))]
=f(x, t, w(x, 1)), (x, ) e QXI,

1.1
w(x, t)=g(x, 1), (x, ) e dQ X I,

wi(x, 0) = wo(x), x €.

Here Q is a convex polygon in the plane, I=[0, t*]<R, aecC}OXIXR), be
Cy(AXIXR)XCr(QAXIXR), fe Ch(QxIXR). (C} is the space of functions with
continuous, bounded partial derivatives of order up to n.) It is assumed that g =
a(x,t,p)=a where a and a are positive constants and that w and w, are in
C(I; C'(Q)) and w e L*(I; H*(Q)). (For the definition of this latter space see § 2.) In
fact many of the results proved below are valid so long as () is a bounded domain
with Lipschitz boundary (cf. [2]), but more involved proofs are required.

The paper is divided into six sections. In the following section some notations
are collected and preliminary results relating to the mesh and finite element space
are presented. The procedure is discussed in a simplified context in § 3, and is defined
and analyzed in general in the following section. In § 5 some generalizations and
extensions are considered. Various observations concerning the penalty functions are
collected in the final section.

The work presented here is based on the author’s thesis [2], written under the
guidance of Professor Jim Douglas, Jr., for whose generous help and skillful supervision
the author is most grateful.

2. Preliminaries. We shall use the usual L>-based Sobolev spaces H*(S) with
I Il.s and seminorm |- |s and the L®-based Sobolev spaces with norm |- ||wxs). Ho(S)
denotes the subspace of H'(S) consisting of functions which vanish on S.

If SCR? (-, -)s [respectively (-, -)s]will denote the inner product in L*(S) where
S is measured by the Lebesgue [respectively, the one-dimensional Hausdorff] measure.

BydefaUIt,(’, ')= (" ')Qa(', '>=<" .>605Hk =Hk(Q)9andH.||=”.HO,Q=”'“L2(Q)‘
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If K is an interval, X is one of the function spaces introduced above, and ¢ is
a function on OxK then ||¢|°x.x) denotes the norm in L”(K) of the function
t>|lp(-, Dllx. L?(X) is short for L”(I, X).

By a (triangular) mesh on Q we mean a finite set 7 of closed uniformly nondegen-
erate triangles with disjoint interiors such that UJ = Q. By uniformly nondegenerate
we mean that there is a positive lower bound K, called an angle bound, for all angles
of all triangles of all meshes under consideration. For a given mesh 7 we define

& ={T\NT,|Ty, T, € T are distinct, T; N T, contains at least two points}
&,={TN3Q|T e 7, T N4Q contains at least two points},

&=%,U%,,

Er={ec&lecT} Ted.

For T € 7, we set hy =diam (T). For e € &, I, = diam (e). Let h = max {h7|T € T}.

Next we introduce a property relating adjacent triangles. One of the advantages
of the present method is that it is not necessary to assume that the mesh be edge-to-edge,
i.e., that distinct intersecting triangles meet in either a common vertex or common
edge. Instead we shall assume only that all meshes considered are uniformly graded.
A mesh T is said to be graded with grade constant K, if for all Te 7 and all e € &,
K,l. = hr. Note that for such a mesh the cardinality of the sets & are uniformly
bounded by 3K;. An edge-to-edge mesh is graded with grade constant (sin K;) "
where K is an angle bound.

Since our finite element space will consist of discontinuous elements, it will not
lie in H'(Q) but rather in the piecewise Sobolev space defined by

H'(7)={¢ e L*(Q)|¢|r e H'(T) forall T e 7).

Differential operators will be understood to act on such spaces piecewise and not in
the sense of distributions. Thus, for example, if ¢ € H'(J), we view V¢ as a function
in L*(Q) < L*(Q).

For ¢ € H'(J), we define the jump and average of ¢—denoted [¢] and {¢},
respectively—as functions on U& as follows. For each e € &, [¢], {¢} e L*(e). If e € &,,
then e = T, N T, with n, exterior to T, for some pair of elements (T, T>). Set

[¢] = (¢ ’Tl)le - (¢|T2)|e, {¢} = [(¢|Tl)|e + (¢|T2)|e]/2-

If ec &, then [¢p]={p}=&|..

For e € &,, we select one of the two unit normals to e and denote it n. or simply
n. If e € €,, we choose n, to point exterior to (). In this notation we can state the basic
integration by parts formula

21 V-, ¢)==(6,V)+(d -n )+ L (&} n, [¥De + S n, {Uh),

ecép

valid for ¢ e H'(7)x H'(7) and y e H'(7).
Our first result is an inequality of Poincaré-Friedrichs type valid for ¢ € H'(J).
LEMMA 2.1. Let T be a mesh on Q. There exists a constant C depending only on
Q and an angle bound and grade constant for I such that

22) leP=C(IvelP+ 3 1 I815.), 6 H'@.

Proof. Define ¢ e H*(Q)NH'(Q) by —A¢ = ¢. Then [8] there exists a constant
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C, depending only on  such that ||¢|..o = Ci|¢|. By (2.1),

61F = 6, ~A0) = (7, V)~ £ (6], 52)
. ec€¥ n/ e
oy

on

2 1/2
0,)

Now, as is easily verified by employing an affine transformation onto an isoceles right
triangle (see (2.5) below), for each triangle T there is a constant C, depending only
on an angle bound for T such that

oy

Bno

Hence |[Vy|* + 3.4 Llow/onls..= C|l#| where C has the stated dependence. Then
(2.2) follows. O

For the remainder of the paper we concentrate—for simplicity of notation—on
a fixed mesh I with angle bound K, and grade constant K;. Let r be a positive
integer. For each T € J let ?.(T) be the set of restrictions to T of polynomials of
degree at most r. There exists a constant C depending only on r and K, such that
the local inverse inequalities

lglt.r=Cr’ldlor  lole.r=Chr'llgllo.n

I,
on o,T

are valid for ¢ € ,(T).

If ¢ is continuous on the triangle 7, define $1¢ to be the unique function in
@,(T) interpolating ¢ at the (r+1)(r+2)/2 points of T with barycentric coordinates
in{0,1/r,2/r,- -, 1}. Then

SIVol+ 3 16150 (IVul + X L

ec¥

2

le

= Cz"l‘[l”%,T, e e gT.
,€

=Ch7' Vol  lollwan=Ch7'ldlir

(2.3) ¢ —Frdlir=Ch o, O=isj=r+1, j=z2,

where C depends only on r and K.

The finite element space we shall employ is M =[] .5 P.(T). We shall identify
an element (yrer)s Of this space with the element of L*(Q) defined unambiguously
on Q\U%, by x|r =xr, T € 7. Define $: H*(T) > M by

($0)|r =Ir(d|7), Ted.
Now for e € &7 the trace inequalities

2.4) o= CU Bl r+ b,  SeHNT),

(2.5) "ji,f sC(Mplir+LlolaD,  deHXT),

2
0,e

are valid [1, Thm. 3.10]. Combining with (2.3) we get for all ¢ € H'(T)

2
O,e]

=Ch¥ Plellin 2=j=r+1,

l6-g6lir+ 3 [116 - I6lh+ 16— 58)

eeér

(2.6)

where C depends on r, Ky, and K.
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In order to derive a weak formulation of (1.1) we note that (2.1) implies

~(V-Ta(w)V6], 1) = @w)¥, Vi)~ X (am 2, 11)~(a()22, v)

eco

forp e H*(Q)and y € H YT). It we symmetrize the form appearing on the right hand
side and replace the unknown solution w by a function p, we arrive at the form

Alp: 6 0)= (@@, Y0~ § [(aon{32).10) +(atiodie) {37)) |

ec o
~[{a@22, )+ (ate6,55)]
defined for p, ¢, ¥ € H* (7).

Penalties will be introduced via the form

J(p, )= zzlz%a[m, Ve G YeH(T),

where o:UZ& X I > [y, )< (0, ) is a measurable function, differentiable in ¢ when
viewed as a function into L*(U®&). J depends on ¢ through o. Note that the definitions
of A and J are independent of the choice of the interior normals n..

We also set

B(p;-,")=Alp;-,-)+J(-,*),  B(:,")=B(w;-,").
It follows from (2.1) that the solution w satisfies

Wy x)+B(w, x)+(b(w),Vx)— ¥ (b(w)-n,[xD.—(b(g) n, x)

ec&p

2.7 s
= (fow), 0~ (a(@)g, 5) + Y 1 og x)

ec¥,

for all y e H*(7). Here and elsewhere we suppress some of the arguments of the
coefficients in the notation.

On the space H'(J) we place the obvious norm:
1/2

Iélhs = X ll¢lis)

The following norm, which incorporates a measure of discontinuity into the H Y9)
norm, is naturally associated with the form A. Define
151
on 0,e ’
for ¢ € H*(7). We have immediately the inequality
|AG; &, w)|=allollllvll, o, &, v e H* ().

The following lemma shows that restricted to ., |- || is equivalent to a simpler norm.
LEMMA 2.2. There exists a constant C depending only on K, such that

I8P =l¢lfio+ X (12" 1663,

lslF=C(iolhot § L I81G).  bet
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The proof follows directly from the inverse inequality
2
=Clglir, e

N

From (2.6) it follows that for integer j(T) with2=j(T)=r+1, Te J,

(2.8) X L

ec¥€

1/2

29) s - sall=c( £ mF Tl 7)

with C depending only on 7, K, and K.

In the course of the analysis we shall impose restrictions on the penalty function
o. These restrictions will refer to various quantities which are collected here for
reference.

vo = a positive lower bound for o,

vi=sup {o(x, t)lx eUg, tel},

v2=sup {|o:(x, t)|x ceUg tel}.
When the statement of a result refers to some ¥, it is tacitly assumed that y; exists
and is finite.

As has already been seen, the letter C will denote a generic constant, changing
from appearance to appearance. Occasionally its dependence will be noted explicitly.
Other times the dependence will be indicated implicitly; e.g., C(r, Ko, K1). However,
dependence on r, KO’ K17 a-’ a, Q’ t*7 Yo, ”a”Wozo! ”bHWc:oXW;o’ "f”wc‘o’ "w”Lw(W;o) and

|well=wz, will not necessarily be noted. Similar remarks apply to &, which will be
used to denote a generic small positive constant.

3. A model problem. In this section we consider an interior penalty method for
the heat equation. The results we obtain here are special cases of sharper ones which
will be proven in the following sections, and a number of dispensable assumptions
are made in the interest of simplicity.

Let w be a smooth function satisfying the heat equation

w,—Aw=0 onQXI
w=0 on Q) X I,
w(:,0)=wo onQ.

We assume that the mesh 7 is edge-to-edge. It need not be quasi-uniform, but the
estimates will not be stated in a manner which reflects the advantage of local refinement.
We consider only a constant penalty function

o(x, t)=vo, xeQ, tel
Thus,

swn-voso-1 [([20) < [2]) ]

and

J@é¥)=7 L 1.1, [4D)
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Clearly,
A, w)l =llsll lwll,

7 (&, )l = ol

for ¢, y € H*(T).
Let C; and C, be the constants appearing in (2.9) and (2.2), respectively. Then

e,

1/2
A0zl -2ZUf{32]] ) @I el

=3[Vl —2C X 115,

{w}

vV

-2C Y15,

12)..
for all ¢ € #(. Now assume that yo=4C;+3. Then

3.1) B(¢, ¢)zelllol* +37 (@, &), e,

where £, =min (1/8,1/4C1, 1/8C,)>0.
Now w satisfies

(3.2) (wo x)+B(w, x)=0,  xeHJ).

The interior penalty finite element approximation to w is defined analogously as the
unique function W: I » # such that
(3.3) (W, x)+B(W,x)=0, xedM, W(0) = $wo.

Upon choice of a basis for #, (3.3) determines W as the solution to an initial
value problem for a linear system of ordinary differential equations. If the basis is
chosen in the obvious way as the union of bases for each %,(T) (with all functions
extended to ) by zero), the linear system is sparse. The primary disadvantage of the
interior penalty method compared to a standard finite element method with continuous
piecewise polynomial elements of the same degree is that the linear system is larger.
In fact the dimension of # is (r+1)(r+2)card (9)/2, while the dimension of the
continuous subspace of ./ is only slightly greater than r” card (7)/2.

We now analyze the proposed procedure by the method of energy estimates. Let
{ =W —w. Then from (3.2) and (3.3)

s x)+B( x)=0, xed

Decompose ¢ as u — v where u = $w —w, v = $w — W. Note that [u]=0 on UE XI;
thus,

(34) (Vt9X)+B(VﬁX):(“t7X)+A(I-LaX)’ Xe‘/ﬂ

Since v(t) e # we can set x = v(t), obtaining

VP +—— I,
Vel 4CIZ

v

-2C:1+3) XI5,

sVl +2 ||¢>H2

d
5 P+ B, x) = (e v)+ A, ) = P+l + 5 Il
Therefore, we can apply the coercivity result (3.1) to get

d
EIIV|12+61IIIV|||2+J(V, v)= C (el +lell).
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Since »(0) =0, integration in time yields
35 Il [ WP de+ | 50,0 drs C(ludias + [ llullar),
Since { =up —v and [u]=0,
et | GNP de+ [ 7660 dr= O(alios + [ Nl do+ i)

Thus error bounds for the finite element approximation to the true solution reduce
to error bounds for the piecewise polynomial interpolant. These latter bounds have
already been noted in (2.3) and (2.9) and hence we have obtained the following
theorem.
THEOREM 3.1. The error { in the interior penalty finite element method for the heat
equation satisfies the inequality
1/2

leteman+( [ el ar) - +(] 7000 ar)

= Ch'(Iwlleown + Wiz +lIwdl L2@n).-

1/2

The constant C depends only on r, Ko, and Q).

Remark 3.2. Thistheorem does not supply an optimal order estimate on ||£]| .= z2).
In § 4 we use the technique of comparing W to an interior penalty elliptic projection
to derive an O(h"*") bound on ¢ in L¥(L?).

The choice y = v, in (3.4) leads to the second energy estimate. Then,

, 1d TR B
t P ) =7 t A NVe + ) )
Il +5 dtB(V v) 2”# | +2||V|| Ay, v
SO
t t
(3.6) [ P de+ Bw o), () §||u,1|iz<Lz)+2U0 Alg, 1) dr).
0

The final term may be integrated by parts in time. Hence,

2 J'OYA(;L, ve) dt) =2|Au(1), v(1))| +2UO'A(,L,, v) dt,

€
=Sl IF + [ AP dr-+ C(sup Il + [ Nl ).
I r-

Moreover, by (3.5), [||7|I* df can be absorbed into the last term. If (3.1) is applied to
(3.6), it follows that

[ kP at-+ 1 N+ 0, w60 = C( sy all+ [ Ml ).
0 I

Since this result obviously remains true if we replace » by u, it holds also for ¢, giving
the following theorem.
THEOREM 3.3. There exists a constant C depending only on r, Ko, and ) such that

el 2z + Sup [rqll +sup (& OV = Ch (Wl +lIwdlL2r).
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4. Definition and analysis of the interior penalty method. In light of (2.7) we
define the approximate solution W: I - ./ by the equations

(W, x)+B(W; W, x)+(b(W), Vx)— Zg bAWYD - n, [xD.

(4.1) °

) _

=W, 0~(a@)g K+ £ 1Mogx0e+bl) mxh  xedl, el

Once an initial condition is imposed, it follows that, for small 7, W is determined
uniquely and is computable from f and g as the solution to an initial value problem
in ordinary differential equations. It follows from the estimates made in the proof of
Theorem 4.3 that the solution persists for all € I. (These estimates require that vy,
be sufficiently large.) We assume that the initial value W (0) e # satisfies

4.2) IWO) -wdlP=Ch?® ¥ hF T wolinn  2=ji(T)=sr+1.

TeT
(That is, (4.2) is supposed to hold for all integer valued functions T - j(T)€[2, r +1].)
Acceptable choices of W(0) are, for example, the interpolant $wo of wo, the L’
projection of wq into ., or the elliptic projection of w, defined by the linear system

B(W(O)1X)=B(w01X)’ Xe‘/ﬂ'

In the first two cases,
IW©O)-wdlP=C L hFPlwdlir.n  1=/(T)=r+1,

while the error estimate (4.2) will be shown for the elliptic projection in Theorem 4.5
below.

Let { = W —w. Below we derive estimates on ¢ which are extensions of those
stated in Theorem 3.1, Remark 3.2, and Theorem 3.3, respectively.

We begin with a coercivity result for the form B.

THEOREM 4.1. There exists a positive constant € such that if v, is sufficiently large,
then

B(p; ¢, &)z ellbll> +37 (&, ¢)

for all ¢ € M and p € H*(T).
Proof. For arbitrary § >0,

2

. Lo 103,

(o)
on
(o)
on

Using (2.8) and Lemmas 2.1 and 2.2 we see that the theorem results from a sufficiently
small choice of 6. O

Hereafter it is assumed that vy, is sufficiently large in the sense of Theorem 4.1.
The following lemma will be used repeatedly in the estimates. _

LEMMA 4.2. Let a, B1, B2, and y be real-valued functions on QXR each of

which satisfies a Lipschitz condition with respect to its second argument uniformly
over Q, with Lipschitz constant M. Let ¢ € C'(T) for each T € I and set ||¢||lwr =

Alp; ¢, ¢) = a|Vo|* -2a z
2
zg|Vol* -6 ¥ I —~

ec¥

Ccs' Y o

0,e ec¥
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supr ||¢||wm(r) Then there is a constant C = C(M, ||¢||lwia) such that, for all p1, pa,
veH (T),

|([a(p1) — @ (p2) IV, V)| +|(B(p1) = B(p2), Vo)

) +103(o1)~¥(e2), )| = Cllos =l .5
5 ([(tatoh -aton{32}.103) |+ 1o —BUoN n. [0D.])
(4.4) ° 1/2 1/2
sCloi=pal+( 3, Wilor-pifin) (LM
£ (o —om{Z). 1e3)
’ 1/2
(4.5) = CESEUI; (le H[‘b]“L""(e))["m —pofl+ (ng h7llos —Pz”ir) ]
2 1/2
(245

Proof. The inequality (4.3) is clear with C = M (||¢||wz ) +2). For (4.4), note that
[(tatto - a o {32}, 1¥1) | +84oH - Gpab]-n. (0D

=M(|lllwien+ 2 [{p1— Pz}”o,el;l/2 IE¥ o, e

(4.6)

Now, by (2.4)
Zig Lipr—o2}loe= ¥ % (o1 —p2)| 75,

TeT ecér
=C Y e "P2||<2),T+ h%‘”ﬂl —92”%,7'-
TeT

Thus (4.4) results from summing (4.6) over e € &,. Similarly one proves (4.5). O

We are now ready to prove the first energy estimate.

THEOREM 4.3. Assume that (4.2) holds for a selection of [(T), T € J, satisfying
2=j(T)=r+1. Then there exists a constant C depending on vy, such that the error
satisfies the inequality

2w+ [ DIEIF+(¢, 00 dr
(4.7) !

=C ng hzT[j(TH] (||Wt||2L‘(H"‘T‘*‘(T>> + ||W||2L2(H"‘T’(T» + h2||Wo||?(T>.T)'
€

Proof. Subtracting (2.7) from (4.1) yields
(o x)+B(W; , x)=—(b(W)—b(w),Vx)
(4.8) + Z BEWH—=bw)]- n, [xDe + (F(W)=f(w), x)

+Aw; w,x)—AW;w,x), xed.
Set u =Fw—w and v = $w — W, and substitute
(4.9) w—v={,



752 DOUGLAS N. ARNOLD

into (4.8) to obtain
(Vt’X)+B(W; V,X):(Mh X)+B(W5 ,LL,X)

+(b(W)=b(W),Vx)— T ([b(W}H—-bW)]n, [xD.

ecép

—(fW)—=f(w), x)+[A(W;w, x)—Aw;w,x)],  xeM.

Applying Lemma 4.2 and noting that [w]=0 on U &, we may bound the last four
of the six terms in this equation by

CAeP+ £ h3lelio) +3 Il
TeT

where ¢ is the value furnished by Theorem 4.1.
From the triangle inequality and an inverse inequality, we see that

@10) ¥ WeRas2( 3 mdRer 3 Rblin) SC(IPe 3 Abllin),
TeT TeT TeT TeT
SO

£
e x)+B(W; v, X) = (1o x) + B(W; , x)+ Clal + w1 + AT l3 D +5|||x|l|2

forall ye and te I
We now set y =v(t)e # and apply Theorem 4.1:

LYolP+ elloIP + 70, )

(4.11)
=2, v)+2B(W; u, v) + Clul + vl + X AZllelli.).

Dominating B(W; u, ») by C(y)llull’+(e/2)IvII° and integrating (4.11) over re
[0, to]= I, we get
'0 e
el + [ " [SIF +704) ] at

t,

Sl O + sy + (el + [ I e+ | P a).
As this holds for all #, € I, Gronwall’s lemma implies that

ol [ QIP+T0 ) dr
(4.12) !

= C(Iw O + el + | Nl ).

By (4.2),

Iy O =2(lu O+l O =Ch® T TP Plwillsr.

TeT

Since u, = $w, —w,,

ludP=C R Nw i -1.1
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Finally, by (2.9),
lulP=C T hE D Nw|im,r

Hence (4.12) implies the assertion of Theorem 4.3 with ¢ replaced by v. Since the
assertion is clear when ¢ is replaced by u, Theorem 4.3 is proven. 0

The bound for ||¢|| =2 provided by Theorem 4.3 is not of optimal order in .
To achieve an optimal order bound we use the technique introduced by Wheeler [11]
of comparing the approximate solution to an elliptic projection of the true solution.
This approach could also be used to produce optimal order estimates of ||/]| and
J (¢, {), but these results would not be as satisfactory as those of the last section for
two reasons. First, we shall have to impose restrictions on the growth of the penalty
function o as a function of time; second, the bounds derived through the projection
are not expressed entirely locally and hence are weaker in the case of a family of
meshes which is not quasi-uniform.

We begin with a lemma based on a duality argument.

LEMMA 4.4. Let t €1 be fixed and suppose that &€ H*(T) satisfies

B(®,x)=F(x), xedM,
where F: H*(T) >R is a linear map. Let M, and M, be constants for which
IF)=Millpll,  peH* (),
and
IFW)|=M,|[¥oo, WeH’NH,.
Then
[®ll= C Pl + M)A + Mo,

where C depends on vy,.
Proof. Define ¥ e H>N Hj by the relation

—V-(a(w)V¥) = ®.
Then, by regularity results found in [8],
(4.13) [¥|,0= Cll®|,
the constant depending on g, |a(t, -, -)|lwy and |w(t, - )|lwL. Now, by (2.9) and (4.13),

I9IF = (@, -7+ (a(»)V¥)) = ()T, V¥) - T (a(w)[@], %

ec¥ e

=B(®,¥)=B(®,¥V-4V)-FW¥-$V)+F(¥)
=|B(®, ¥ - $9)|+ My[|¥ — S| + M| ¥
= COI@I [¥ - Y|+ M| — $Y[|+ My | W],
=[Cy)(|Dll+ M)k + M@ o

The next theorem introduces the elliptic projection and contains the analysis of
the interior penalty method for an associated elliptic problem. It generalizes to our
situation [12, Thm. 1].

THEOREM 4.5. There exists a unique function Z: I > M satisfying

B(Z, x)=B(w, x), XEM.
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The error n = Z — w satisfies at each te I

(4.14) linlF+7 (. m=C ¥ 7" lwlicr.n
@15) e L 7

TeT
(4.16) limdP= [ Kl + ol |
@17) IndP = CH 5 W o ol )|

for 2=j(T)=r+1. The constants depend on vy, and y>.
Proof. The uniqueness of Z and therefore its existence follow from the positivity
of the form B, which was established in Theorem 4.1. Moreover, since

B(n, x)=0, X €M,

(4.15) is a consequence of (4.14) and Lemma 4.4. To prove (4.14) we apply
Theorem 4.1 to 8 = Z — $w. It follows that

ll6ll2+ 7 (6, 6) = CB (6, 6) = CB(w — Iw, 8) = C(v1)llw — Fwll ll6ll.
Thus, by (2.9)

1/2

@.18) linli=lioll+lbw —gwll=Cllw - owll= (£, B lwlfr,7)

Since J(n, n) = yil|nlli, (4.14) follows from (4.18).
To estimate 7, differentiate the defining equation for Z to obtain

B("]z,X)"‘B'(ﬂ,X):O, XE./”,

where
6= (Satwrsos¥)-  [(Zaied (2)) (oo (2} )
+ Zz 1. o d@, [¥D..
Note that

|B'(m, p)|=C(yllmlllllell, o H*(I).
Moreover, for y € H 2N H an integration by parts using (2.1) shows that

(=79 [£aon9u])| = Clnllvkho.

B, )] = .

Thus, Lemma 4.4 applies, and

Imdl= CLAImdl+[lmlDA +[nll]

Consequently, (4.14)—(4.16) imply (4.17), and it remains only to demonstrate (4.16).
Recall that
2

=Cc ¥ WO Nw |l  2=i(T)=r+1.
TeT

(4.19) l“%(w—fw)
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Also, by Theorem 4.1,
ll6lI* +7 (6., 6:) = CB(6, 6,)

= c[B([:—t(w —w), 9,) —B'(n, 0:)]

(|00 =] <)o+ 5, 1" 2. To

IA

C(Yl)

IA

2(lledIP + L le o 26.315.0)
3

(I
at

|||n,|||2§2(|||o,|n2+

and (4.16) follows from (4.19) and (4.14). O
In analogy with (4.9) we shall use the decomposition n—£&=¢ where
& =27 — W e M. Substituting this into (4.8) leads to the relation

M6 X)+B(W;m, x)=(& x)+B(W; & x)—(b(W)—b(w), Vx)

2
+linlP + 3 12 oo i),
ec¥

Therefore,
)

el + 35 )

ll/\

+ Zg bW}Y=bW)]- n, [xDe + (fF(W)—f(w), x)

+Aw; w, x)—AW;w, x).
Now,
B(W;n, x)—Aw; w,x)+A(W;w, x)=B(W;n,x)—B(w;w, x)+B(W;w, x)

=B(W;Z, x)-B(w; Z, x)
=AW;Z x)-Aw; Z, x).

Thus

(& X)+B(W; & x)=(n, x)+[AW; Z, x)+ A(w; Z, x)]+ (b(W)—b(w), Vx)
— X (WD —-bW)]- n, [xDe — (fF(W)—f(w), x).

ec8o

(4.20)

The last four of the five terms on the right-hand side of (4.20) can be estimated by
Lemma 4.2, and

(6 )+ BOW; £ )= (0 x)+ C(InlP+ 1P+ £ hlmlE.o) + 5P,
TeT

where C depends on ||Z|| w7 and sup.cs, l. ' [[Z]|c=c) and ¢ is derived from Theorem
4.1. Note also that the triangle inequality and an inverse inequality have been used
in the same manner as in (4.10). If the choice y = ¢ is made and the argument by
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which (4.12) was derived from (4.11) is adapted, then the inequality

lel e+ | DlEIP+7( £1ds

= C(l€O) +lmdlz @z + Inllz2es+X hEmllz 2 o)

=LA D (Iwollir.r+ IwllZ2i ey + w2 ericoery)

results from (4.2) and Theorem 4.5. This estimate together with (4.15) implies the
following theorem.

THEOREM 4.6. There exists a constant C depending on 1, y2, ||Z||t=>wi@) and
sUPec, 2 I[Z|L=w) such that the error { satisfies the inequality

Il =z = Ch[ ng R D (lwol 7, 7+ W E=ericoy + ”Wt"i‘(y"‘”(r)))}
€

for2=j(T)=r+1.

In certain cases the dependence on Z of the constant in this theorem can be
suppressed. This dependence was introduced in bounding |A(W; Z, x)—A(w; Z, x)|
via Lemma 4.2. Hence if the coefficient a is independent of w, then the constant can
be taken independent of Z. In particular, this is the case if the differential equation
is linear or even semilinear.

Also, in the case of a quasi-uniform family of edge-to-edge meshes the dependence
of the constant C of Theorem 4.6 on Z reduces to dependence on the solution.

THEOREM 4.7. Suppose that $w is continuous. Let M =supreg h/hr. Then there
exists a constant C = C(M, ||wll.q) such that

IZwien+ sup 12 [Z M= = C, tel

ec 8o

Proof. Set § =Z — $w. From an inverse inequality, (4.14), and (2.3), we obtain
16llw (7 = sup |6llwcr = C sup h7'|6]l.r
TeT TeT
=CMh7 Y 6ll.7 = CMh (|l +|w —Iwll.2)
= CM||W||2,Q

Since |#wllw i = Clwllwi@, 1Zlwaen=C.
Finally, for e € &, a one-dimensional inverse inequality and (4.14) imply that

LNZ W= =12 101> = CI26o. = €12 Tlo. = Clwl.. O

It is also possible to prove a second energy estimate analogous to that proved in
Theorem 3.3 for the heat equation. In the nonlinear case the required estimates are
quite lengthy, and so we only state the result. Details may be found in [2].

It is necessary to assume that W(0) is chosen to satisfy

IW@©-wll=C % RO w2y 25j(T)=r+1.
€T
For example, the elliptic projection, the L? projection, and the interpolant of w, are

all satisfactory choices of W(0) [2].
THEOREM 4.8. There exists C = C(y1, 2, |{|c=w i) so that for h sufficiently
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small and any selection of integers j(T) € [2, r + 1], the error { satisfies the inequality

1272w +sup eIl + sup J (¢, ¢)

=C Y RO (IwillZ 21y Wl 2@ @y + Iwolli. ).

Moreover, if a(x,t,w) is independent of w, then the constant may be chosen
independent of {.

5. Extensions. The interior penalty method can be applied more generally than
indicated above. For example the analysis can be extended to handle an equation of
the form

ow 2 9 ow
c(x, t,w) o MZ=1 ox, Apg(x, t, w)axq =f(x, t, w, Vw).
Neumann boundary conditions are also permissible. Rectangular elements may be
used in place of triangular ones, and elements with curved sides may be used along
the boundary of a nonpolygonal domain. Most of the analysis applies also to three-
dimensional domains with brick elements. Details concerning all these extensions may
be found in [2].

We also mention two extensions of the method which exploit its flexibility. The
first simple extension allows the degree r to vary from element to element. In the
context of discontinuous elements this is an easy matter. This fact was exploited by
Percell and Wheeler [10] in their local residual finite element procedure, and they
proposed the strategy of using polynomials of low degree subordinate to a fine mesh
in regions where the solution is relatively rough and higher degree polynomials
subordinate to a coarse mesh in regions of smoothness of the solution.

There is no difficulty in adapting our analysis to allow for this possibility. Given
an integer-valued function Te J+—r(T)=1, set

M ={x € L Q)| x|r € Mr), T€ T}

The usual range 2 =<j(T)=r+1 should then be replaced with 2=j(T)=r(T)+1. All
the results previously stated remain valid.

Finally we discuss a multipenalty method. If the mesh 7 is to be changed from
time to time as the character of the solution w changes, it is necessary to interpolate
(or project, etc.) the approximate solution from one mesh to another, inevitably
introducing interpolation errors. Let us sketch briefly and heuristically how interior
penalties can be used to minimize such errors.

Let
oo 5, o 22,

where o € L*(U%&, x I) is a nonnegative function, and set B; = B +J,. Define whI->
A by the equations derived from (4.1) by replacing B with By. Then it is easy to
show, as is indicated below, that J(W', W')+J,(W", W') is bounded by the right-hand
side of (4.7). If o and o are large on some edge e € &y, this estimate tells us that the
discontinuities of W' and its normal derivative across e, are small and decrease with
h. Suppose now that r =1, so that W' is a piecewise linear function. Such a function
is determined by its values and those of its normal derivative along a line segment.
Hence, when o and o are large on e, W' is essentially the same function on both
sides of e. Therefore, if we interpolate W' into the mesh derived from by removing
the edge e, the error should be small.
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Conversely, to introduce a new edge into the mesh, we can begin with the penalties
at that edge large and reduce them to pass smoothly from the old mesh to the
refinement.

For r=1, the same heuristic considerations apply if we use the form B, =
B+J,+J,+: - +J, where

T 0)= L l3k_1<"k[§§]’ [%D .

Now, for all ¢ € H*(T) and e € &z,

8k¢ 2
pans =C(Mplhrt LoD

O,e
It follows that, if ¢ € H'(T) with k +1=j=r+1, then

2k—1
le

=C(2?|¢ — I |ir+ 12K|d — I liar D

2
O,e

ak
_an_k(¢_‘¢¢)

Thus, for ¢ € H'(7),

5.1 ¥ T

ec¥®

=¥ WOl  k+H1=i(T)=r+1.

2
0,e TeT

[a"jl—kk(qb—%)]

In the multipenalty method we define W* via the form By and let &, = W* —w.
THEOREM 5.1. There exists a constant depending on y1 and sup {|o:(x, 1|
xeU%&, tel, 1=i=k} such that

Iz + J; NZellP +T (Les &)+ T2 (& Gi) ++ =+ + Tk (L L)) dt

=C ng hzT[j(T)_u (||Wt||2L‘(H"‘T’“‘(T)) + ||W||?.2<H“T‘(T)) + hz”“’o“ir),r)
€

fork+1=J(T)=r+1.

The proof of Theorem 4.3, almost unchanged, gives Theorem 5.1. Since
J:(w, x)=0 for all i=1 and x €., the error equation (4.8) holds with By and &
replacing B and . Moreover, it is clear from Theorem 4.1 that

Bi(p; &, d) Z el +371(e, @) +T1(d, @)+ - + i, &).

Thus, the claimed bounds reduce to bounds on u, which hold by (5.1).

In a similar manner analogues of the L®(L?) and second energy estimates can
be shown for the multipenalty method.

We note that the form J; is exactly the one used by Douglas and Dupont [7] in
creating their conforming interior penalty method mentioned in the introduction.

6. The penalty function. In the previous section we suggested an application of
the interior penalty method to mesh refinement for which it is clearly valuable to be
able to choose the penalty functions with some degree of flexibility. In addition, one
of the initial motivations of this study was the possibility of using interior penalties
to adjust the smoothness of the approximation to the behavior of the solution. For
these reasons we have avoided placing undue restrictions on the penalty function o,
even when this would have simplified the analysis. Let us recall what restrictions have
been made. First we have assumed throughout that y,, a lower bound for o, is
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sufficiently large. This is necessary for the coercivity result of Theorem 4.1 and is
entirely to be expected. Our estimates also depend on v, an upper bound for o, and
the L°(L?) estimate of Theorem 4.6 and the second energy estimate of Theorem 4.8
depend on ¥, the least upper bound of o, as well.

Reasoning heuristically, we can understand the dependence of the estimates on
an upper bound for o as follows. If the constant C in (4.7) were to remain bounded
as we let o tend to infinity, then W would tend to a continuous optimal order
approximation of w in the subspace /. But if the subspaces are constructed over a
general family of meshes, the best approximation in the continuous subspace, 4 N
H'(Q), may not be of optimal order. Of course if  is an edge-to-edge mesh, then
J$w is a continuous optimal order approximation to w. In this case, or more generally
if the mesh permits continuous optimal order approximation, the restrictions on the
penalty function may be eased considerably.

More precisely, suppose that there is a linear operator $: H *(T)-> M such that

o —Fbllir=C(r, Kb |dli;, O0=isj=r+1, j=2, TedJ,

and for which $¢ is continuous if ¢ is continuous. We then say that the subspace
approximates smoothly. In this case it can be shown that the estimates holds with v,
replaced by

va=sup{o(x, t)|x€oQ, tel}.

This leads to a very mild restriction on o since our main interest is in adjusting the
interior penalties, and it is not unreasonable to fix o|snx; at some sufficiently large
constant value.

In the case of Theorem 4.8, which bounds ||| 2.2, some dependence of the
estimate on o is to be expected since a change in o causes a change in W. However
the dependence of the constant on y,=sup|o,| can be considerably weakened to
dependence on y4=sup |oc "o in case the subspace approximates smoothly. Thus
exponential growth of the penalty function is permitted. The same substitution of vy,
for y, can be made in Theorem 4.6, although it is not clear whether even the weakened
restriction is necessary. For proofs of the above claims see [2].

Finally, let us note that o need not be furnished as an explicit function of x
and t. For example, in the favorable case of smooth approximation the basic energy
estimate remains valid if o’|yg,x; is any function which is bounded below by 7y,. In
particular, o can depend on the approximate solution at an earlier time.

Note added in proof. Finite element computations incorporating interior penalties
as described here have been used to solve equations of multiphase flow through porous
media. Results of such computations have been reported in the following papers:
Self-adaptive finite element simulation of miscible displacement in porous media, by J.
Douglas, Jr., M. Wheeler, B. Darlow and R. Kendall, to appear in SIAM J. Sci. Stat.
Comput.; Finite elements with characteristics for two component incompressible miscible
displacement, by T. Russell, Soc. Pet. Eng. report SPE 10500, Dallas, 1982; Mixed
finite element methods for miscible displacement problems in porous media, by B. Darlow,
R. Ewing and M. Wheeler, Soc. Pet. Eng. report SPE 10501, Dallas, 1982. The
former paper includes experimental results on an adaptive grid refinement scheme
using penalties as discussed in § 5 above.
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