Notes for Math 8301, Manifolds and Topology, Fall 2004
The Fundamental Group and Covering Spaces

Definition. Bs(z) = (x — d,z +6) CR.

Definition. A function f : R — R is continuous at x if, for all ¢ > 0, there exists § > 0
such that f(Bs(z)) € Be(f(2)), i.e., Bs(z) C f~H(Be(f(2))),

Note: For ¢ : A — B and By C B, we define ¢~ 1(By) = {a € A|$(a) € By}.

Definition. A function f : R — R is continuous if, for all z € R, we have: f is continuous
at x.

Question: How do we define continuity for f : R™ — R™? How about f : S — R™, where
S™ .= {x € R"*! | d(z,0) = 1}? How about f : S™ — S™? Let’s try to formulate a general
definition of continuity that will include all these definitions as special cases.

Definition. An N-space consists of

(1) aset X and

(2) a function z — N, : X — {subsets of {subsets of X }}
such that

(A) for all z € X, we have: N, # (); and

(B) for all x € X, for all N € N, we have: z € N.

Ezample. X =R, N, = {Bs(z)|d > 0}.
Definition. For all z € X, an “N-neighborhood” of z is an element of N.

Definition. Let X and Y be N-spaces and let f : X — Y be a function. For a point
x € X, we say that f : X — Y is N-continuous at z if, for any N-neighborhood V of
f(z), there exists an N-neighborhood U of z such that f(U) C V, i.e., U C f~1(V). We
say that f is N-continuous if f is N-continuous at every point z € X.

Definition. A category consists of
(1) a class C of objects;
(2) for all C,C" € C, a set Hom(C, C") of morphisms or arrows from C to C’;
(3) for all C,C’,C" € C, a composition function

Hom(C, C") x Hom(C’,C") — Hom(C,C"); and

(4) for all C € C, an identity arrow id¢ € Hom(C, C)
such that
(A) for all C,C’" € C, for all f € Hom(C,C"), we have f oidg =idgr o f = f;
(B) for all C,C",C",C" € C, for all f € Hom(C,C"), for all g € Hom(C"’,C"), for all
h € Hom(C",C""), we have (fog)oh = fo(goh);
and probably other properties.

EXERCISE 1A: Look up, and write out the defintion of a category.
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Ezample. NS := {N-spaces}. That is, NS is the category of N-spaces, together with
N-continuous maps, together with the usual composition of maps, together with the usual
identity maps.

EXERCISE 1B:
(1) For all X € NS, show that z — z : X — X is N-continuous.
(2) For all X,Y,Z € NS, for all N-continuous f : X — Y, for all N-continuous
g:Y — Z show that go f : X — Z is N-continuous.

Let {Sets} denote the category of sets (and functions). For any X € NS, let Xqe; be the
underlying set of X. For X,Y € NS, for f € Hom(X,Y), let fset : Xset — Yses be the
underlying set function of f. Then X — Xt : NS — {Sets} is an example of a functor.
(Really, we should say X +— X together with f — fget forms a functor.) Note that, for
X,Y,Z € NS, for f € Hom(X,Y), for g € Hom(Y, Z), we have (g o f)set = gset © fset-
This is one of the basic properties of a functor.

EXERCISE 1C: Look up, and write down the definition of a functor from one category to
another. Be sure to note that some functors are covariant, while others are contravariant.

FEzample. Let {Rings} denote the category of (not necessarily commutative) rings with
unit, together with unit-preserving ring homomorphisms. Let {Groups} denote the cat-
egory of groups, with group homomorphisms. Then (R,-,+) — (R,+) is a functor from
{Rings} to {Groups} (and even takes values in the subcategory of Abelian groups). Then
(R,-,+) — ({units in R}, ) is another functor from {Rings} to {Groups}.

Definition. Let C be any category. Then there is an identity functor Id¢ : C — C defined
by Id¢(C) = C. (Note: This defines the functor on objects, and it is left to you you to
guess what the functor does on arrows.) (Note: Well, okay, I’ll tell you this time — it leaves
each arrow fixed, i.e., for all f: C — C" in C, we define Id¢(f) = f. In general, though, it
is an expectation that you should be able to figure this kind of thing out, but always feel
free to ask if it’s unclear.)

Fix, until END OF DISCUSSION #1, some X € NS. Let’s say we've identified some
points of X that are “happy”.

Let 0 € X. If we say “points close to = are happy” or “points sufficiently close to
x are happy” or “all points sufficiently close to z are happy”, we mean that there
is an N-neighborhood U of z such that, for all u € U, we have: u is happy. Now suppose
that y is sufficiently close to x that it is guaranteed to be happy. That is, suppose that
y € U. Question: Does it automatically follow that all points sufficiently close to y are
guaranteed to be happy by being in U? In other words, can we conclude that there is a
neighborhoos V' of y such that V C U.

Answer: No. For example, let Xset = R, and for all z € X, let N, := {[x—6,z+6]|§ > 0}.
Then X = (Xget, z — N3) is an N-space.

Suppose that [—1,1] is exactly the set of happy points. Let x := 0,y := —1. Then
U = [-1,1] is an N-neighborhood of z and y € U, but there is no N-neighborhood V of y
such that V C U.



So even though y is happy, we have no “room to maneuver” because the kinds of
N-neigborhoods in X are, somehow, very unforgiving, in the sense that, if you have a
point that is in an N-neighborhood, and you then perturb it ever so slightly, you may find
yourself outside the N-neighborhood.

Definition. We say that an N-space X is forgiving if, for all z € X, for any N-
neighborhood U of «z, for any y € U, there is an N-neighborhood V of y such that V' C U.

END OF DISCUSSION #1

Fix, until END OF DISCUSSION #2, some X € NS. Let’s say we've identified some
points of X that are “happy” and some point that are “dull”. So X breaks up into happy
dull points, unhappy dull points, happy sharp points and unhappy sharp points.

Let x € X and assume that all points sufficiently close to z are happy. That is, there
is an N-neighborhood U of z such that every element of U is happy. Assume, furthermore
that all points sufficiently close to xz are dull. That is, there is an N-neighborhood V
of z such that every element of V' is happy. Does it automatically follow that there is a
neighborhood W of x such that W C U UV, which guarantees that all points sufficiently
close to x are both happy and dull?

The answer is no. It’s not an assigned problem, but you should think about construct-
ing a counterexample.

Definition. An N-space X is intersection-stable if, for all z € X, for any N-neighborhoods|j
U and V of z, there is an N-neighborhood W of = such that W CUNYV.

END OF DISCUSSION #2

Definition. An N-space is said to be topological if it is both forgiving and intersection-
stable.

Definition. Let TNS denote the category of topological N-spaces (with N-continuous
maps).

Definition. Let X be a set. A topology on X is a subset O of {subsets of X} such that
(A) 0,X € O;
(B) for all S C O, we have US € O; and
(C) for all finite F C O, we have NF € O.

Definition. A topological space consists of
(1) aset X; and
(2) a topology on X.

Definition. An open subset of X is an element of O. A subset of X is said to be open
or open in X if it is an open subset of X.

Definition. Let X and Y be topological spaces and let f : X — Y be a function defined
on their underlying sets. We say that f is continuous if, for any open V' C Y, we have
that f=1(V) is open in X.



What motivates the definition of topological space and of this definition of continuity?

Definition. Let TS denote the category of topological spaces, with continuous maps.

Definition. Define a functor F : TNS — TS by
F(( X,z Ng)) = (X, {US|S C UgexNz}).

Here, I leave it to you to guess what F does on arrows. Note that {open sets in FX} is
exactly the closure of { N-neighborhoods of points of X'} under union.
Define a functor G : TS — TN'S by

G((¥,0)) =Y,y = {U € Oy e U}).

EXERCISE 1D: Show, for all X € TN'S, that FX € TS. (You must show that the
open subsets of FX are closed under finite intersection and arbitrary union, and that both
) and X are open in FX.)

EXERCISE 1E: Show, for all Y € TS, that GY € TN'S.

EXERCISE 1F: Show, for all Y € TS, that FGY =Y. (You must show that a subset
of Y is open in FGY iff it is open in Y.)

The preceding exercise asks you to prove that G = Idrs.
We now show that GF X is not necessarily equal to X. That is, we show that FG #

ldrns:

Ezample. Let X := (Ryz — {(x —d,2+ J)|d > 0}). Then the set of open subsets of
FX is exactly the closure of {(z — d,z + J) |z € R, > 0} under union. In particular,
(—1,1) U (2,4) is open in FX. Then (—1,1) U (2,4) is an N-neighborhood of 0 in GFX.
However it is not an N-neighborhood of 0 in X.

Therefore GFX # X.

Definition. An arrow (or morphism) f : C — C' in a category C is an isomorphism if
there exists an arrow g : C' — C such that f o g = idgr and such that go f = id¢.

That is, an isomorphism is simply an invertible arrow.

Definition. In the category 7S, an isomorphism will be called a homeomorphism. In
the category TN S, an isomorphism will be called an N-homeomorphism.

Definition. Let A and B be functors from a category C to a category D. A natural
transformation 7 : A — B associates to each object C' € C an arrow 7¢ : AC — BC,
provided that this association has the property that: for any arrow f : C — C’ in C, we
have (Bf) o 7¢ = 1¢r o (Af).

Note that, for their to be a natural transformation from A to B, the domains of A
and B must agree. Moreover, their targets must agree as well.
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Let A and B be functors from a category C to a category D. It may be helpful to
picture AC as a subcategory inside of D. In some sense, A is a “parametric” subcategory
of D, where the objects are parametrized by objects in C. Similarly, BC is a parametric
subcategory of D. With this intution, a transformation 7 : A — B may be thought of
as a parametric family of arrows in D, one for each object in C. For each C' € C, the
corresponding arrow runs from AC to BC.

Moreover, for each arrow in C, we now get a diagram in D (with four objects and four
arrows). If these diagrams all commute, then we say that the transformation is “natural”.

Ezrample. Let V be the category of finite dimensional vector spaces, and linear transfor-
mations. Let Z : V — V be the (covariant) identity functor. Let D : V — V be the
(contravariant) functor defined by D(V) = V* := Hom(V,R). Let DD : V — V be the (co-
variant) functor DD := DoD obtained by composing D with itself. Then, for allV € V, we
have DD(V) = V**. For allV € V, let 7y : V — V** be defined by (ryv)(l) = I(v). (Note:
The map 7y v : V* — R is sometimes called the “evaluational at v”.) Then 7:Z — DD is
a natural tranformation, as Exercise 2B will verify. By contrast, the next exercise shows
that there is no natural transformation from 7 to D, even though, for all V' € V, the vector
spaces V and V* are isomorphic, since they have the same dimension.

EXERCISE 2A: Let V := R? and let f : V — V* be an isomorphism. For any linear
map g:V — V, let g* : V* — V* be defined by ¢g*(I) = [ o g. Show that there exists an
isomorphism g : V' — V such that f # g* o fog.

EXERCISE 2B: As in the example above, for any real vector space V, let 7y : V. — V**
be defined by (7yv)(l) = I(v). Let W and X be real vector spaces and let g : W — X be a
linear transformation. Define g* : X* — W* by ¢g*(I) =l o g and define g** : W** — X**
by ¢**(l) =l o g*. Show that g** oy =Tx 0g.

Definition. Let C be a category. Then the arrow category of C, Arr(C), is a category
whose objects are the arrows in C, and for which, for all pairs of arrows f : C; — Cs,
f':Cl — C} in C, we define Hom(f, f') to be the collection of all those

(91, 92) € Hom(C1, C7) x Hom(Cy, xC})
such that g o f = f' 0 g;.

We leave it as an exercise to guess what the definitions of compositions and identity
arrows in Arr(C).

Definition. Given a category C, we define two functors Domg, Tare : Arr(C) — C by: for
all f: D — T in C, we set Dom¢(f) = D and Tare(f) = T.

With this terminology in place, if A,B : C — D are two functors, then a natural
transformation p : A — B is equivalent to a functor M : C — Arr(D) satisfying both
Domp o M = A and Tarp o M = B.

Now recall the functors F : TNS — 7S and G : TS — TN S defined above. Recall
that F@ is the identity functor on 7S, but that GF is not the identity functor on TNS.
We will make clear next a sense in which F@G is “close” to the identity on TNS.

5



Definition. Let C and D be categories and let A : C — D be a functor. Define a natural
transformation 14 : A — A by 14 := id4c : AC — AC. This natural transformation is
called the identity on A.

Definition. Let C and D be categories, let P, Q,R : C — D be functors and let o : P — Q
and B : Q — R be natural transformations. We define a natural transformation Sa : P —

R by (Ba)c = Be o ac.

Definition. We say that two functors A,B : C — D are equivalent (and write A ~ B)
if there exist natural transformations 7 : A — B and p : B — A such that pur = ¢4 and
T = 5.

Intuitively, if two functors are equivalent, then they have the same “information” in
them. If I'm an expert on one of the functors and you're an expert on the other, then
we’ll probably spend our days quibbling over notation, but will be well aware that we both
know the same stuff.

EXERCISE 2C: Let A, B : C — D be functors. Let 7 : A — B be a natural transforma-
tion. Suppose, for all C' € C, that 7¢ : AC — BC is an isomorphism. Show that there is a
unique natural transformation p : B — A such that ur = ¢4 and 7 = /5.

EXERCISE 2D: Let A, B: C — D be functors. Let 7: A — B and u: B — A be natural
transformations such that ur = ¢4 and 7y = 8. Show, for all C € C, that 7¢ : AC — BC
is an isomorphism.

EXERCISE 2E: Recall the functors F: TN'S — TS and G : TS — TN S defined above.
Recall that G = Id7rs but that GF # Idyas. Prove that GF ~ Idrars.

Definition. A category C is said to be equivalent to a category D (write C ~ D) if there
are functors P :C — D and Q : D — C such that PQ ~ Idp and QP ~ Idc.

Intuitively, if two categories are equivalent, then they have the same “information” in
them. If 'm an expert on one of the categories and you’re an expert on the other, then
we’ll probably spend our days quibbling over notation, but will be well aware that we both
know the same stuff.

The preceding exercise asks you to demonstrate that TN'S is equivalent to 7S. Which
is better, TN'S or 78?7 In some sense, neither, since they’re equivalent.

On the other hand, with a little thought, you will readily see that F : TNS — TS
is not “one-to-one”. To almost any topological space Y, there are several topological N-
spaces whose images under F are all equal to Y. For example, (R,z — {(z — §,z + §)})
and (R,z — {(z — 26,2 + 0)}) have the same image under F.

So, in some sense, TN'S is redundant, with more copies of each space than one really
needs. From this perspective, 7S is better than TNS.

Finally, a few broad words about mathematics. Typically a working mathematician
develops expertise in a category, e.g., the category 7S of topological spaces. A funda-
mental question in topology is to determine, given two topological spaces, whether they
are homeomorphic, but, more generally, whatever your “category of choice” may be, you’ll
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want to be able to form many examples of objects in it, and, in many cases to show that
two such examples are not isomorphic in the category.

If one can form a functor F that goes from your category of choice C to some other
category D, and if tools are available for distinguishing objects in D, then, given C,C" € C,
if you are able to show that FC and FC’ are not isomorphic in D, then you can immediately
conclude that C' and C’ are not isomorphic in C. (See the next exercise.)

For example, there is a functor called “first homology”, and denoted H; which runs
from topological spaces to Abelian groups. Given two topological spaces, if one is able
to show that their first homology groups are not isomorphic, then the spaces are not
homeomorphic.

This kind of argument will be central to much of this course!

EXERCISE 2F: Show that functors carry isomorphisms to isomorphisms. That is, show
that, if 7 : C — D is a functor, if f : C — C’ is an isomorphism in C, then Ff : FC — FC'
is an isomorphism in D.

In the next definition, we make the convention that U} = (.

Definition. Let X be a set and let S C {subsets of X}. The union closure of S is
{UA| A C S}. The finite intersection closure in X of Sis {X}U{NA|AC §,0 <
|A| < oo}

Definition. Let X be a set and let O be a topology on X. Let B C {subsets of X}. We
say that B is a basis for O if the union closure of B is 0. We say that B is a subbasis
for O if the finite intersection closure in X of B is a basis for O.

Note that any basis for a topology is a subbasis.

EXERCISE 2G: Let X be a set and let S C {subsets of X }. Show that S is a subbasis
of a topology on X. (That is, show that the union closure of the finite intersection closure
in X of § is a topology on X.)

EXERCISE 2H: Let X be a set and let B C {subsets of X}. Show that B is a basis of
a topology on X if and only if, both of the following conditions hold:

(1) UB = X; and

(2) forall B, B’ € B, for allzz € BNB’, there exists B € Bsuch that z € B C BNB'.

Definition. Let O and O’ be topologies on a set X. We say that O is finer (or stronger)
than O’ if O D O'. We say that O is coarser (or weaker) than O’ if O C O'.

Remark. Let X and I be sets and, for all 2 € I, let O; be a topology on X. Then ﬂ O; is
iel
a topology on X.

The following is a restatement of the preceding remark.

Remark. Let 2 C {topologies on X }. Then NE is a topology on X.
The preceding two remarks are asserting that, given a collection of topologies on a
set, there exists a unique topology which is finest among:
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those topologies coarser than every topology in the collection.

Question: How about the other way around? That is, given a collection of topologies on
a set, does there there exist a unique topology which is coarsest among;:
those topologies finer than every topology in the collection.

Answer: We decided in class that the answer is yes. This can probably be argued using
Zorn’s lemma, but more directly, one can simply take the union of the topologies in the
collection and then take the intersection of all the topologies containing that union. By
the preceding two remarks, that intersection is again a topology. Yet another way to say
the same thing is that you take the union of the topologies in the collection, then take the
finite intersection closure of that union, then take the union closure of that.

Definition. Let X be a set and let
S C {subsets of X}.

Then the topology generated by S is the coarsest topology among those topologies
containing S.

Note that, if B is a basis or subbasis of a topology O on a set X, then O is the topology
generated by B.

Definition. Let X and Y be sets, let f: X — Y be a function and let
S C {subsets of Y'}.

Then we define f*S:={f~1(S5)|S € S}.

EXERCISE 2I: Let X and Y be sets, let f : X — Y be a function and let O be a
topology on Y. Show that f*QO is a topology on X.

Remark. Let X and Y be sets, let f: X — Y be a function and let O be a topology on
Y. Then f*O is the coarsest topology making f continuous.

Definition. Let Y be a topological space and let X C Y. Then the inherited topology
on X (or relative topology on X or subspace topology on X) is:

{XNU|U is open in Y'}.

Remark. Let Y be a topological space and let X C Y. Let 1 : X — Y be the inclusion,
defined by i(x) = . Let O := {open subsets of Y'}. Then ¢*O is the inherited topology
on X. It is the coarsest topology making ¢ continuous.

Definition. Let I be a set and, for all 7 € I, let X; be a topological space. Let X := HXZ"
el
For all 2 € I, let p; : X — X; be the ith coordinate projection map. For all ¢ € I, let O;
be the set of all open subsets of X;. Then the product topology on X is the topology
generated by U p; O;.
i€l



Note that the product topology is the coarsest among those that make all the projec-
tion maps p; continuous.

In general, whenever a product of topological spaces is formed, we will give it the
product topology, unless otherwise specified. In particular, when X and Y are topological
spaces, X X Y is a topological space as well.

Definition. Let X be a topological space, let Y be a set and let f : X — Y be a function.
The quotient topology on Y is the finest making f continuous. (See Exercise 3A below.)

Now let’s start making some topological spaces!

Definition. Let n > 0 be an integer. The standard topology on R" is the topology
generated by {B,(z) |z € R",r > 0}.

Definition. Let n > 0 be an integer. We define S™ := {x € R*™! |d(z,0) = 1}. The
standard topology on S™ is the topology inherited from R"*1!,

Definition. 1If X is a topological space, and if x € X, then an open neighborhood of =
in X is an open subset U of X such that x € U. If X is a topological space, and if S C X,
then an open neighborhood of S in X is an open subset U of X such that S C U.

Definition. To say that a topological space X is Hausdorff means: for all z,2’ € X, if
x # ', then there are open neighborhoods U of  and U’ of ' in X such that UNU’ = {.

Definition. Let S be a subset of a topological space X. We say that S is closed in X if
X\S is open in X.

Note that {closed subsets of X} is closed under finite union and arbitrary intersection.

Definition. Let X be a topological space and assume, for all z € X, that {z} is closed in
X. We say that X is regular if the following condition holds: For all z¢ € X, for any
closed subset Cy of X, if g # Clp, then there exist open nieghborhoods U and V of xy and
Cp in X such that U NV = (). We say that X is normal if the following condition holds:
For any closed subsets C,C’ of X, if C N C’ = (), then there exist open nieghborhoods U
and U’ of C and C’ in X such that UNU' = .

Definition. Let X be a topological space and let S C X. The closure of S in X is the
intersection of all closed subsets of X that contain S, and is denoted S or Clx(S). The
interior of S in X is the union of all open subsets of X contained in S, and is denoted S°
or Intx (S). The boundary of S in X is S\S°, and is denoted 9. or Bdx(S).

Since an intersection of closed sets is closed and a union of open sets is open, it follows
that the closure of S is the smallest closed set containing S, while the interior of S is the
largest open set contained in S.

Let S be a subset of a topological space X. We say that S is dense in X if Clx(S) =
X.

Definition. We say that a topological space is discrete if all of its subsets are open. We
say that a topological space X is indiscrete if its only open sets are () and X.
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Definition. Let X be a Hausdorff topological space. We say X is compact if, for any
S C {open subsets of X}, we have:
(¥) if US = X, then there is a finite subset F of S such that UF = X.

That is, a Hausdorff topological space is said to be compact if every open cover has a
finite subcover, in the following terminology:

Definition. Let X be a topological space. An open cover of X is a subset U of
{open subsets of X} such that U/ = X. Given two covers U,V of X, we say that U
is a subcover of Vif U C V.

Question: Is S?2 homeomorphic to R??
Fact. S? is compact, whereas R? is not.
Answer to preceding question: No.

Definition. Let X be a Hausdorff topological space. Then X is said to be locally compact
if, for all z € X, there exists an open neighborhood U of x in X such that U is compact.

Ezample. R is locally compact, and any finite product of locally compact topological spaces
is again locally compact. Consequently, for all integers n > 1, R" is locally compact.
However infinite products of locally compact topological spaces are generally not locally

oo
compact, e.g., HR is not locally compact.
i=1

Next Question: Is R homeomorphic to R2?
EXERCISE 2J: For all p,q € R%, show that R2\{p} is homeomorphic to R?\{q}.

EXERCISE 2K: Let X and Y be topological spaces and let z € X. Assume that X is
homeomorphic to Y. Show that there exists y € Y such that X\{z} is homeomorphic to

Y\{y}.

Definition. Let S be a subset of a topological space X. We say that S is clopen in X if
S is both closed an open in X.

Definition. We say that a topological space X is connected if it has no clopen sets other
than ) and X. A topological space is disconnected if it is not connected.

Fact. R\{0} is disconnected, while R2\{(0,0)} is connected.
Remark. R is not homeomorphic to R2.

Proof: Assume, for a contradiction that R and R? are homeomorphic. By Exercise 2K,
choose y € R2\{(0,0)} such that R\{0} is homeomorphic to R?\{y}. By Exercise 2J,
R?\{y} is homeomorphic to R?\{(0,0)}. Then R\{0} is homeomorphic to R?\{(0,0)}.
However, by the fact above, R\{(0} is disconnected, while R?\{(0,0)} is connected. QED

In the above proof, we used, without comment, the fact that if two topological spaces
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are homeomorphic and if one is connected, than the other is as well. That is, “connect-
edness is a homeomorphism invariant”. In fact, for a property of topological spaces to
be useful, it is typically a homeomorphism invariant, and we will leave it as an implicit
exercise to verify that the properties we may introduce below are, in fact, homeomorphism
invariants. Typically, such arguments are straightforward.

Next Question: Is R? homeomorphic to R3?

Note that both R?\{(0,0)} and R3\{(0,0,0)} are connected. Nevertheless, some vari-
ant of the argument given above will work to show that the answer to the above question
is “no”.

Definition. A pointed topological space consists of
(1) a topological space X; and
(2) a point x € X.

We call = the basepoint of the pointed topological space (X, ).

Definition. The category of pointed topological spaces (with basepoint preserving contin-
uous maps) is denoted PTS. The forgetful functor (X, z) — XPTS — TS is denoted by
FB. An isomorphism in PTS is called a basepoint-preserving homeomorphism.

The next Fact is nontrivial, but we will assume it for now, and prove it in the next
few lectures.

Fact. There is a functor m; : PTS — {groups} such that:
(1) for all z € X := R?\{(0,0)}, we have that 71 (X, ) is isomorphic to the additive
group of integers; and
(2) for all y € Y := R3\{(0,0,0)}, we have that 7 (Y, y) is isomorphic to the trivial
group.

Remark. For all topological spaces X, Y, for all x € X, if X is homeomorphic to Y then
there exists y € Y such that (X, z) is basepoint-preserving homeomorphic to (Y, y).

Remark. Let X := R?\{(0,0)} and Y := R3\{(0,0,0)}. Then X and Y are not homeo-
morphic.

Proof: Say for a contradiction that X is homeomorphic to Y. Choose x € X. By the second
to last Remark, choose y € Y such that (X, z) is basepoint-preserving homeomorphic to
(Y,y). Let w1 : PTS — {groups} be the functor described in the preceding Fact.

Then, by Exercise 2F, 71 (X, z) is isomorpic to m1 (Y, y), in the category of groups. We
say that m1 (X, z) is the fundamental group of X (with respect to x). Then, by the pre-
ceding fact, the additive group of integers is isomorphic to the trivial group, contradiction.
QED

Corollary. R? is not homeomorphic to R3.

Given the preceding Remark, the preceding Corollary is argued exactly as in the proof
that R and R? are not homeomorphic.
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Our goal now becomes to define and study the functor m; : PTS — {groups} of the
preceding Fact.

Definition. A space X is locally compact if every point of X has an open neighborhood
whose closure in X is compact.

Definition. Let X and Y be topological spaces and assume that X locally compact.
Recall that Hom(X,Y) is the set of continuous maps from X to Y. Let K denote the
set of all compact subsets of X. Let O denote the set of all open subsets of Y. For
all K € K, for all U € O, let let W(K,U) := {f € Hom(X,Y) | f(K) C U}. The
topology on Hom(X,Y) generated by the subbasis {W(K,U) |K € K,U € O} is called
the compact-open topology on Hom(X,Y). We let C(X,Y’) denote the topological space
whose underlying set is Hom(X,Y") and whose topology is the compact-open topology.

One has the general feeling that a space is locally compact if it is “almost” finite
dimensional. In particular, if I is a set and, for all 7 € I, we have a Hausdorff topological
space X;, then HXi is locally compact iff {i € I|X; is noncompact} is finite. The

iel
topological space C(R,R) does not feel anywhere near finite dimensional, so one would
guess that it is not locally compact, and that is, in fact true:

Remark. C(R,R) is not locally compact.

Sketch of proof: Define f : R — R by f(z) = 0. Then f € C(R,R). Let U be an open
neighborhood of f in C(R,R). Assume, for a contradiction, that U is compact.
Choose € > 0 and a compact subset K C R such that

Up={9g€ CR,R)||g|] <eon K} CU.

(It is an unassigned exercise to prove existence of such an € and K.) For all integers j > 1,
let g; : R — R be defined by g;(z) = [¢/2][sin(jz)]; then g; € Uy, so g; € U. We leave
it as an unassigned exercise to show that g; has no convergent subsequence in C(R, R).
After all, to what could these functions possibly converge? (Recall that, in any compact
Hausdorff topological space, any sequence has a convergent subsequence.) QED

Fact. Let X and Y be locally compact topological spaces. For all f € C(X,C(Y, Z)), define
ar € C(X xY,Z) by af(z,y) = (f(z))(y). Then f— af: C(X,C(Y,Z)) - C(X xY, Z)

is a homeomorphism.

If X is a locally compact topological space and if (Y,d) is a metric space, then the
d-uniform on compacta topology on Hom(X,Y) is the topology generated by the basis
{f €e Hom(X,Y) |Vk € K,d(f(k), fo(k)) < €}, where fo ranges over Hom(X,Y), where K
ranges over compact subsets of X and where € ranges over the positive real numbers. It is
a fact that, for the topology on Y generated by the basis

{open balls with respect to the metric d},

the compact-open topology on Hom(X, Y') agrees with the d-uniform on compacta topology
on Hom(X,Y).
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Definition. Let X be a topological space and let I := [0,1]. Let 2,2’ € X. A path in X
from z to 2’ is an element v € C(I, X) such that both 4(0) = z and (1) = z’. A loop
in X at z is a path from z to z.

Definition. Let X be a topological space and let I := [0, 1]. Let g, 21 € X and let

Pry =1y € C(I, X) [7(0) = 0, 7(1) = 21}

be the topological space of paths in X from z¢ to ;. (Give PJ! the inherited topology
from C(1, X).) Let vp,71 € P2!. An endpoint fixed homotopy from ~, to 7 is a path
in Pyl from yp to 1. We say that 7o and v, are endpoint fixed homotopic if there is
an endpoint fixed homotopy from 7y to ;.

Following the preceding Fact, we may equivalently define an endpoint fixed homotopy
from 7y to 1 to be a continuous H : I x I — X such that

(1) for all s € I, we have H(s,0) = xo;

(2) for all s € I, we have H(s,1) = z1;

(3) for all ¢t € I, we have H(0,t) = vo(t); and

(4) for all t € I, we have H(1,t) = v1(¢).

We have some point set topology exercises:

EXERCISE 3A: Let X be a topological space, let Y be a set and let f: X — Y be a
function. Let O := {U C Y | f~}(U) is open in X }. Show that O is the finest topology on
Y making f continuous.

EXERCISE 3B: Let X be a topological space, let S C X and let xyp € X. Show that
xg € 0S8 iff the following condition holds: For all open neighborhoods U of zg in X, we
have UNS # () # U\S.

EXERCISE 3C: Let X be a topological space and let S C X. Show that X\(S°) = X\S.

EXERCISE 3D: Let X be a topological space and let U be an open subset of X. Show
that (OU)° = (). That is, show that Intx (Bdx (U)) = 0.

Definition. Let (X,x) be a pointed topological space. Define an equivalence relation ~
on P¥(X) by: For all 7,4 € P¥(X), v ~ %' means that v and 74’ are endpoint fixed
homotopic, i.e., that P) (P7(X)) # 0. We define (X, z) := (P7(X))/ ~.

Note that this defines a functor 7y : {pointed topological spaces} — {sets}. Eventu-
ally we’ll redefine 7y as a functor 71 : {pointed topological spaces} — {groups}, and the
current m; will be the compostion with that redefined 71, followed by the forgetful functor
{sets} — {groups}. For the moment, however, this definition will suffice for our purposes.

Recall that, in any topological space Z, if we define an equivalence relation = on Z
by z = 2/ iff Pj'(Z ) # 0, then the equivalence classes of = are called path components
of Z. With that terminology, 71 (X, z) is simply the set of path components in P7(X).

EXERCISE 3E: Given an arrow f: (X,z) — (Y,y) in the category

{pointed topological spaces},
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define an arrow 71 (f) : m (X, z) — 71 (Y, y) in {sets}.

As is typical with covariant functors, we use f. as an abbreviation for w1 (f). (For
contravariant functors, f* is typical as an abbreviation for the result of applying the functor
to an arrow f.)

Recall that we aim to prove that R? and R3 are not homeomorphic. We already
observed that it suffices to show that X := R?\{(0,0)} and Y := R3\{(0,0,0)} are not
homeomorphic. It now suffices to show, for all z € X and all y € Y, that |m (X, z)| > 2,
while |71(Y,y)| = 1.

Definition. We say that a topological space X is path connected if X has only one path
component, i.e., if the following condition holds: for all z,z’ € X, we have P (X)) # ().
We will argue, in Exercise 3G, that if X is path connected, then, for any z,z’ € X,
we have that 71 (X, z) and (X, z’) are bijective, i.e., isomorphic in the category {sets}.
Eventually this will be refined to saying that 71 (X, z) and 71 (X, z’) are isomorphic in the
category {groups}.
Definition. Let z,2',2" € X € TS. For all v € P (X), for all v/ € P% (X), we define
vl € Py (X) by

. 2t), if t €[0,1/2];
(v[A)(@) = {}((22_ 1), ifte {1/2,/1%.

The path ~||v is called the concatenation of v with +'.

Definition. Let z,2' € X € TS. For all v € P* (X), we let [y] denote the endpoint fixed
homotopy class of v, i.e., we define

] := {6 € Py (X) | Py(PY (X)) # 0}.

EXERCISE 3F: Let a,b,c,d € X € TS. Let v € P’(X), § € PS(X) and € € P4(X).
Show that [v][(0]l€)] = [(7[|0)lle]-

Exercise 3F asserts that concatenation is “associative up to homotopy”. Note that it
is not associative, i.e., note that it frequently happens that v||(d]|€) # (v]|9)]|e-

Definition. Let a,b € X € TS. For all v € P2(X), we define % € P#(X) by (%)(t) =
(1 —1).
EXERCISE 3G: Let a,b € X € TS and let v € P’(X). Show that

[0] = [ 116[1] : m1(X, @) — 71 (X, b)
is a well-defined bijection.

Part of the the preceding exercise is to show that, if [§] = [6’], then [5]|d||y] =
[%1|6'||y]. This is what is mean by proving “well-definedness”.

One summarizes Exercise 3G by saying that “m; is essentially independent of the
basepoint”. This will even be true after redefining m; in a group theoretic way.
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We can define a category of “pathed topological spaces”, each object of which consists
of a topological space X, together with a path [0,1] — X. Let

A, B : {pathed topological spaces} — {sets}

be defined by

A(X,7) = m (X, 7(0)), B(X,7) = m (X, v(1)).

Then the argument of Exercise 3G shows that A and B are equivalent functors, and this
is the key point of that exercise. So, for xp,z; € X, the bijection 71 (X, zo) — m1 (X, z1)
is “natural up to choosing a path connecting the basepoints xy and x1”.

Note that, since X := R?\{(0,0)} and Y := R3\{(0,0,0)} are both path-connected,
it now suffices to show that there exist € X and y € Y such that |7 (X, z)| > 2 and such
that |m1(Y,y)| = 1. (Before, we needed to show this for all z € X, y € Y, so the problem
is now formally easier.)

Definition. Let I := [0,1]. Let X,Y € TS and let f,g : X — Y be continuous. A
homotopy from f to g is a continuous map H : I x X — Y such that H(0,-) = f and
H(1,-) = g. We say that f is homotopic to g, if there exists a homotopy from f to g.

EXERCISE 3H: Let X, Y € TS, let f,g: X — Y be continuous and let x € X. Assume
that f is homotopic to g. As usual, let f, = 71 (f) : m(X,z) — 7 (Y, f(z)) and let
g« :=m1(9) : m (X, z) = 71 (Y, g(x)). Prove that there is a bijection

b:m (Y, f(z)) = m(Y,g9(x))

such that bo f, = g,. (Hint: If H is a homotopy from f to g, then H(-,x) is a path from
f(x) to g(z). The needed bijection then comes from Exercise 3G.)

One summarizes Exercise 3H by the buzzphrase: “Homotopic maps induce the same
map on m;.” However, to be technically precise one needs to remember that the two maps
on 71, namely f, and g,, yield different basepoints on Y, namely f(z) and g(x). A precise
interpretation of this buzzphrase must take this into account.

Definition. Let X,Y € TS. We say that X is homotopy equivalent to Y (or that X
and Y have the same homotopy type) if there are continuous maps f: X — Y and
g :' Y — X such that both of the following conditions hold:

(1) go f: X — X is homotopic to idx : X — X; and

(2) fog:Y —Y is homotopic to idy : Y — Y.

EXERCISE 3I: Let X,Y € TS and assume that both X and Y are path-connected.
Assume that X is homotopy equivalent to Y. Show, for any z € X and any y € Y, that
71 (X, x) is bijective to 71 (Y, y), i.e., that w1 (X, x) is isomorphic to 71 (Y, y) in the category

{sets}.

Once again, the preceding exercise will strengthen to saying that 71 (X, z) and 71(Y, y)
are isomorphic in the category {groups}, once we’ve redefined the functor .
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EXERCISE 3J: Let n > 2 be an integer. Show that S"~! := {z € R"|d(0,z) = 1}
is homotopy equivalent to @ := R™*\{0}. (Hint: Use the maps p — p : S"~! — @ and
g q/(d(0,9)): Q = S"1.

Given the last two exercises, our goal is now to show that there exist a € S' and
b € S? such that |w1(St,a)| > 2 and such that |r;(S?,b)| = 1.

Definition. Let X be a topological space and z € X. We say that X is z-avoidable if, for
all a,b € X\{x}, for all v € P?(X), there exists 4/ € P?(X\{z}) such that v is endpoint
fixed homotopic to v’.

EXERCISE 4A: Let n > 2 be an integer. Let U be an open, convex, nonempty subset
of R*. Let X be a topological space and assume that X is homeomorphic to U. Show,
for all z € X, that X is xz-avoidable. (Hint: Start by showing, for all a,b € U, for all
7,7 € P2(U), that v is endpoint fixed homotopic to v'.)

Lemma. Let X be a topological space and let z € X. Assume that {z} is a closed subset
of X. Let U be an open neighborhood of x in X. Assume that U is z-avoidable. Then X
is z-avoidable.

Proof: Let a,b € X\{z} and let v € P?(X). We wish to show, for some v € P’(X\{z}),
that v is endpoint fixed homotopic to «'.

Let V := X\{z}. Then {U,V} is an open cover of X. Let 6 > 0 be a Lebesgue
number for the open cover {y~1(U),y~1(V)} of [0,1]. Choose sq, ..., s, € [0,1] such that
0 =350< 581 < -+ < 81 < S, = 1 and such that, for all integers ¢ € [1,n], we have
$; —8i—1 < 6/2. Then, by definition of Lebesgue number, for all integers i € [1,n], we have
either v([si—1, s;]) C U or y([s;—1, si]) C V. For all integers i € [1,n], let a; := 7(s;—1) and
b; := 7(s;), and define ; € P2¢(X) by 7;(t) = v(si—1(1—1) +s;t); then ; € P2(U) or; €
PYi(V'). Moreover, v is endpoint fixed homotopic to 71| - - - ||vn. (You may parenthesize
this however you find convient.) For all integers ¢ € [1,n], choose v € PP (X\{«}) such
that -y; is endpoint fixed homotopic to 7. (Note that if v; € P%(V), then, as V = X\{«},
we may simply set 7, := ;. On the other hand, if v; € Pé’;‘(U), then we use that U is
z-avoidable.) Let 4" := ]| - - - ||7/,- (Again, parenthesize as you wish.) Then 7 is endpoint
fixed homotopic to 4’ and v/ € P?(X\{z}). QED

EXERCISE 4B: Show, for all p € S2, that S?\{p} is homeomorphic to R,
Remark. For all g € S%, S? is g-avoidable.

Proof: Fix p € §2\{q}. Note that {p} is closed in S2. Let U := S?\{p}. By Exercise 4A
and Exercise 4B, we see that U is g-avoidable. Then, by the preceding lemma, we conclude
that S? is g-avoidable, as well. QED

Corollary. Let g,y € S? and assume that ¢ # y. Then the inclusion map (S?\{q},y) —
(S2,y) induces a surjection 71 (S?\{q},y) — m1(S2%,v).

We can finally prove:
Fact. For all y € S?, we have |71(S%,y)| = 1.
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Proof: We have m1(S?,y) # 0 (why?), so |m1(S%,y)| > 1. It suffices to show that
(5%, )] < 1.

Fix ¢ € S?\{y}. By the preceding corollary, we see that |71(S?%,y)| < |71(S*\{¢}, )]
so it suffices to show that |m1(S%\{q},y)| = 1.

By Exercise 4B, it suffices to prove, for all z € R?, that |71 (R?,2)| = 1. Let Z := {z}.
Then |71(Z, z)| = 1, so, by Exercise 3L, it suffices to show that R? is homotopy equivalent
to Z.

Let i : Z — R? be the inclusion map and define j : R* — Z by j(z) = 2. Then 0 is
the identity on Z. Moreover, by convexity of R?, we see that any two maps R? — R? are
homotopic, so j o ¢ is homotopic to the identity on R2. QED

We now aim to show, for some z € S!, that |m (X, z)| > 2.
Let z := (1,0) € S' C R?. Define v,y € P*(S!) by v(t) = z and +/(t) =
(cos(2nt), sin(27t)). We wish to show that v is not endpoint fixed homotopic to 7'

Definition. Let X, Y and A be topological spaces. Let m : X — Y be continuous. Let
f:A—Y be continuous. A (full) =-lift of f is a continuous map f : A — X such that
o fz f. Let Ag C A. A (partial) n-lift of f on Ag is a continuous map ﬁ) :Ag— X
such that 7 o ﬁ) = f|A,.

Definition. Let X, Y and A be topological spaces. Let m : X — Y be continuous. Let
Aog C A. We say that 7 has unique (Ag, A) lifting if, for all continuous f: A — Y, for

any partial 7-lift ﬁ) of f on Ay, there is a unique full 7-lift fof f such that ﬂAO = fo.

One may think of ﬁ) as “initial data”, and the problem is to find a “solution” f of
the “lifting problem” given by (A, f, ), but the solution must fit the given initial data.

Definition. Let X, Y and A be topological spaces. Let m : X — Y be continuous. Let
Aog € A. We say that = has local unique (A4, 4) lifting if, for all y € Y, there exists an
open neighborhood V of y in Y such that «|[#=1(V)] : #7}(V) — V has unique (4o, A)
lifting.

A topological pair is a pair (Ag, A) such that A is a topological space and Ay is a
subset of A. These are the objects of a category. (Here, an arrow (Ap, A) — (B, B) is a
continuous map f : A — B such that f(Ag) C By.) If (Ag, A) and (By, B) are isomorphic
in the category of topological pairs (i.e., if there is a homeomorphism A — B which carries
A() to B()), then

(1) unique (Ag, A) lifting is equivalent to unique (By, B) lifting; and

(2) local unique (Ag, A) lifting is equivalent to local unique (By, B) lifting.

Unassigned exercise: Show that ({0}, [0, 1]) is isomorphic, in the category of topolog-
ical pairs, to ({5}, [5, 5.3]).

Definition. Let X, X’ and Y be topological spaces and let 7: X - Y and 7’ : X’ = Y be
continuous. We will say that m and 7’ are Y-homeomorphic if there is a homeomorphism
h:X — X’ such that 7’ o h = 7.

Fix a topological space Y. A topological space over Y consists of a topological
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space X and a continuous map X — Y. Then topological spaces over Y form the objects
of a category. (What are the arrows?) Then 7 and 7’/ are Y-homeomorphic iff we have:
(X, 7) and (X', 7) are isomorphic in the category of topological spaces over Y.

Remark. Let A, X, X’ and Y be topological spaces andlet 7: X - Y and ' : X' - Y
be Y-homeomorphic continuous maps. Let A9 C A. Then

(1) 7 has unique (Ap, A) lifting iff 7’ has unique (Ag, A) lifting; and

(2) 7 has locally unique (Ag, A) lifting iff 7’ has locally unique (Ao, A) lifting.

Definition. Let X, X', Y and Y’ be topological spaces andlet 7 : X - Y and 7’ : X' — Y’
be continuous. We say that 7 and 7’ are homeomorphic if there are homeomorphisms
a:X — X' and B:Y — Y’ such that ' oca = fo.

Note that m and 7’ are homeomorphic iff they are isomorphic objects in the category
Arr(TS).

The next remark generalizes the preceding one.

Remark. Let A, X, X', Y and Y’ be topological spacesandlet 7 : X - Y andn': X' - Y’
be homeomorphic continuous maps. Let Ay C A. Then

(1) 7 has unique (Ao, A) lifting iff 7’ has unique (Ag, A) lifting; and

(2) 7 has locally unique (Ag, A) lifting iff 7’ has locally unique (Ao, A) lifting.

Definition. Let X and Y be topological spaces and let 7 : X — Y be continuous. We say
that 7 is a trivial covering map if there exists a discrete topological space D such that
7 is Y-homeomorphic to (y,d) —y:Y x D =Y.

Unassigned exercise: Show that 7 : X — Y is a trivial covering map iff there exist
topological spaces D and Y’ such that D is discrete and such that 7 is homeomorphic to
(y,d)—y:Y' xD =Y

Suggestion for the next two exercises: Find a general result about lifting for trivial
covering maps that will imply both of the next two exercises, and you can do both at once.

EXERCISE 4C: Let X and Y be topological spaces. Let m: X — Y be a trivial covering
map. Show that = has unique ({0}, [0, 1]) lifting.

EXERCISE 4D: Let X and Y be topological spaces. Let w : X — Y be a trivial covering
map. Let I :=[0,1] and let L := (I x {0}) U ({0} x I). Show that 7 has unique (L, I?)
lifting.

Unassigned exercise: Show that any trivial covering map has unique ((1,0), S?) lifting.

Definition. Let X and Y be topological spaces. Let m : X — Y be continuous. We say
that 7 is a covering map if, for all y € Y, there exists an open neighborhood V of y in
Y such that «|[x=3(V)] : #=}(V) — V is a trivial covering map.

EXERCISE 4E: Show that t — (cos(27t),sin(27t)) : R — S! is a covering map.

Remark. Let X and Y be topological spaces. Let m : X — Y be a covering map. Let
I:=10,1] and let L := (I x {0})U ({0} x I). Then 7 has both local unique ({0}, I) lifting
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and local unique (L, I?) lifting.
Proof: This follows immediately from Exercise 4C and Exercise 4D. QED
Theorem. Let I := [0,1]. Then local unique ({0}, I) lifting implies unique ({0}, I) lifting.

This is an example of a “local to global” result, which puts it among a very important
class of theorems in mathematics.

Proof: We will prove existence, and leave uniqueness as an unassigned exercise.

Let 7 : X — Y have local unique ({0}, I) lifting. Let f : I — Y be continuous, and
let zo € 7~ 1(f(0)). We wish to show that there is a continuous map f:I— X such that
both 7o f = f and f(O) = Tp.

Fix an open cover V of Y such that, for all V' € V, we have that =|[z~ (V)] : 7= }(V) —
V of any element of the open cover has unique ({0}, I) lifting.

Let § be a Lebesgue number for the f-pullback {f~1(V)|V € V} of ¥V to I. Choose
a positive integer n such that 1/n < 6/2. For all integers ¢ € [1,n], let a; :== (i — 1)/n, let
b :=1i/n, let I; :=[a;, b;], and let f; := f|I;.

Let ¢ € [1,n] be an integer. Note that, in the category of topological pairs, defined
above, the topological pair ({0}, ) is isomorphic to the topological pair ({a;}, [as, b;]),
so that unique ({0}, I) lifting is equivalent to unique ({a;}, [as, b;]) lifting. By definition
of Lebesgue number, there is some V' € V such that f(I;) C V. Consequently, for all
r € n (f(a;)), there exists a unique b [a;,b;] = X such that both = od = f; and
¢(a;) = z.

Using this, choose fl : [a1, b1] — X such that both mo fl = f1 and fl(al) = x9. Then
let 1 := fl(bl).

Tlien choose fg : [ag, b2] — X such that both 7o fz = fo and f;(ag) = x1. Then let
To = fl (b2)

Next, choose I [as, b3] — X such that both 7o f3 = fs and ]/”:o,(ag) = x9. Then let
I3 = f1 (bg)

Continuing on, we obtain fl, cee ]/”; Finally, define f: I — X by: for all integers

Theorem. Let I := [0,1] and let L := (I x {0}) U ({0} x I). Then local unique (L, I?)
lifting implies unique (L, I?) lifting.

This is another local to global result. It is proved in a similar way to the theorem
preceding it, but instead of dividing I into small subintervals, we divide I2 into small
squares, and then, to begin, solve the lifting problem on the bottom row of squares, left
to right. Then we solve the lifting problem on the next row of squares up, again moving
from left to right. Continuing, we get a solution on all squares, and then piece the results
together to get a lift on all of I2.

Question: Let A be a topological space and let Ay be a subset of A. Is it automatically
true that local unique (Ag, A) lifting implies unique (Ao, A) lifting?
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Proposition. Let X and Y be topological spaces. Let m: X — Y be a covering map. Let
I:=10,1],1let I?2 :==1 x I and let L := (I x {0}) U ({0} x I). Then 7 has both unique
({0}, I) lifting and unique (L, I?) lifting.

Proof: This follows from the last two theorems, together with the last remark. QED

EXERCISE 4F: Let [ := [0,1]. Let X and Y be topological spaces and let 7 : X — Y be
a covering map. Let v: I — Y be constant and let 7 : I — X be a w-lift of y. Show that
v is also constant. (Hint: Use the fact that, by the preceding proposition, 7 has unique

({0}, [0, 1]) lifting.)

Theorem. Let I :=[0,1]. Let X and Y be topological spaces. Let 7 : X — Y be a covering
map. Let 7,7 : I — Y be continuous and assume that  and +’ are endpoint fixed
homotopic. Let 4,59’ : I — X be =-lifts of «y,v’, respectively. Assume that 5(0) = 7(0).
Then (1) =74(1), and ¥ is endpoint fixed homotopic to 7.

Proof: Let I? := I x I and L := (I x {0}) U ({0} x I). By the preceding proposition, m has
unique ({0}, I) lifting and also has unique (L, I?) lifting. Let zo := 7(0) = 5'(0). Since
and ~' are endpoint fixed homotopic, let h: I? — Y be a continuous map such that:

(1) A0,-) =;

(2) A1) =4

(3) h(-,0) is constant; and

(4) h(-,1) is constant.
We have 7(zg) = 7(5(0)) = v(0) = h(0,0). Then, by (3), for all s € I, we have h(s,0) =
7(x0). By unique (L, I2) lifting, choose a m-lift & : I2 — X of h : I2 — Y such that

(5) B(0,") =7; and

(6) for all s € I, we have h(s,0) = zo.
By (6), 1(1,0) = zo. By (2), h(1,-) is a 7-lift of 7. So, since 7’ is another =-lifts of ~/,
and since h(1,0) = zo = 7'(0), it follows, from unique ({0}, I) lifting, that h(1,-)=7". In
particular, we have (1,1) = 7(1).

By (4), h(-,1) is a m-lift of a constant, so, by Exercise 4F, we conclude that (-, 1) is
constant. In particular, we have (0,1) = h(1 1).

By (5), h(0,1) = 5(1). Then fy( ) = h(0,1) = h(1,1) = 7'(1). Moreover, h is an
endpoint fixed homotopy from 5 to ¥’ in X. QED

Alternate Proof: Let I? :=I xITand L := (I x{0})U({0} xI). Let U := LU({1}xI). B
the preceding proposition,  has unique ({0}, I) lifting and also has unique (L, I?) lifting.
It is an unassigned exercise to show that (L, I?) is isomorphic in the category of topological
pairs to (U, I?). Then 7 also has unique (U, I?) lifting.

Let 2o := 5(0) = 7'(0). Since v and «' are endpoint fixed homotopic, let h : [2 — Y
be a continuous map such that:

(1) A(0,-) = v

(2) h(1,-) =

(3) h(-,0)is constant and

(4) h(-,1) is constant.
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We have m(zg) = 7(5(0)) = v(0) = h(0,0). Then, by (3), for all s € I, we have h(s,0) =
(o). By unique (U, I?) lifting, choose a m-lift 7o : 12 — X of h: I2 — Y such that

(5) h(0,") =7

(6) h(1,) =7"; and

(7) for all s € I, we have h(s,0) = zo.
By (4), h(-,1) is a m-lift of a constant, so, by Exercise 4F, we conclude that h(-,1) is
constant. In particular, we have h(0,1) = h(1,1). Then, using (5) and (6), we get F(1) =
1(0,1) = h(1,1) =7'(1). QED

Recall that we asked the following question:

Question: Let A be a topological space and let Ay be a subset of A. Is it automatically
true that local unique (Ag, A) lifting implies unique (Ao, A) lifting?

We can now answer that question in the negative:

EXERCISE 5A: Define p : R — ST by mo(t) = (cos(2nt), sin(27t)). Let z := (1,0) € S*.
Show that mg has local unique ({x}, S?) lifting, but does not have unique ({z}, S?) lifting.

EXERCISE 5B: Let X be a topological space and let z,z',z” € X. Let 7,7 € P¥ (X)
and let 9,6’ € P% (X). Assume that v is endpoint fixed homotopic to v'. Assume that §
is endpoint fixed homotopic to ¢’. Show that «y||é is endpoint fixed homotompic to ~'||¢’.

Recall that, for all v € P*(X), we have defined [y] to be the endpoint fixed homotopy
class of 7, i.e., the set of all elements of PZ(X) which are endpoint fixed homotopic to +.
Recall that m (X, z) := {[y] |y € PF(X)} is the set of all endpoint fixed homotopy classes
of elements of P¥(X).

Definition. Let X be a topological space and let z € X. For all [y],[d] € m (X, x), we
define [y][0] := [~]|4].

Exercise 5B tells us that this multiplication on (X, z) is well-defined, i.e., that if
[v] = [7'] and if [6] = [6"], then [y]|6] = [[|&"].

EXERCISE 5C: Let X be a topological space and let z € X. Let I' := 71 (X, z). Show
that under the multiplication defined above, I' is a group. That is, show all of the following:
(1) For all a,b,c € T', we have (ab)c = a(bc).
(2) There exists a unique e € I" such that, for all a € T, we have ea = ae = a.
(3) For all a € T, there exists b € I" such that ab = ba = e.

In Exercise 3E, given an arrow f : (X,z) — (Y,y) in {pointed topological spaces},
you were asked to define f, = m1(f) : m(X,z) — m(Y,y). The definition remains the
same: (m1(f))([y]) = [f o~]- It is now an unassigned exercise to show that this map 71 (f)
is a homomorphism of groups, i.e., is an arrow in the category of groups.

Recall that we defined the functor m; : {pointed topological spaces} — {sets}. We
have now redefined it as a functor m; : {pointed topological spaces} — {groups}. From

now on, if we want to think of 7 as a functor into {sets}, then we will write wS€t.
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Define functors «,w : {pathed topological spaces} — {pointed topological spaces}
by a(X,v) = (X,7(0)) and w(X,vy) = (X,v(1)). The argument of Exercise 3G now
shows that the functors 71 o a : {pathed topological spaces} — {groups} and m ow :
{pathed topological spaces} — {groups} are equivalent functors. From this we conclude:

Corollary. Let X be a path-connected topological space. Let xz,z’ € X. Then the groups
m1(X, z) and 71 (X, z’) are isomorphic.

The argument of Exercise 3H shows:

Lemma. Let X and Y be topological spaces, let z € X and let f,g: X — Y be continuous
maps. Assume that f and g are homotopic. Let f, : m1(X,z) — w1 (Y, f(x)) be the
group homomorphism induced by f and let g, : m(X,2) — 71(Y,g(z)) be the group
homomorphism induced by g. Then there is a group isomorphism o : m (Y, f(z)) —
71 (Y, g(z)) such that o o f, = g,.

Corollary. Let X and Y be topological spaces. Let f : X — Y and g : ¥ — X be
continuous maps. Assume that g o f is homomotopic to the identity idx : X — X. Let
z € X. Let f,: m(X,z) = m(Y, f(z)) be the group homomorphism induced by f. Let
9+« : (X, f(x)) = m1(Y,9(f(z))) be the group homomorphism induced by g. Then there
is a group isomorphism o : m (X, z) = m1(X, g(f(z))) such that fe 0y = 0.

Proof: This follows from the preceding lemma, with Y replaced by X, f replaced by go f
and g replaced by by idx. QED

Corollary. Let X and Y be topological spaces. Assume that X and Y are homotopy
equivalent. Then there exist o € X and yo € Y such that 71 (X, zo) is isomorphic to
1 (Ya yO) .

Proof: Let x € X. Define y := f(z), 2’ := g(y) and y' := f(z'). Let fo: m(X,z) —
m1(Y,y) be induced by f. Let g, : m(Y,y) — m(X,2z’) be induced by g. Let f; :
m1(X,z') = 71 (Y,y’) be induced by f. We will show that g, is an isomorphism.

By the preceding corollary, choose group isomorphisms o : m1 (X, z) — 7 (X, z’) and
T:m(Y,y) = m(Y,y’) such that g, o f* = o and such that f] og, = 7.

Then gy o (f.oo1) is the identity on (X, 2'). Moreover, (r~ 1o f!)og, is the identity
on m1(Y,y). We are now done, by applying the next remark, with C replaced by {groups},
with g replaced by g, with a replaced by 77! o f. and with b replaced by ﬁ oo~ l. QED

Remark. Let C be a category and let g : C — C’ be an arrow in C. Assume that there exist
arrows a,b : C' — C in C such that ag = id¢g and gb = idgr. Then g is an isomorphism.

We are saying that, if an arrow in a category has a left inverse and a right inverse,
then it has a two-sided inverse. In fact, we’ll show that the two one-sided inverses are
equal:

Proof: We have a = a(id¢) = a(gb) = (ag)b = (idg)b = b. Then ag = id¢ and ga = ider,
so a is an inverse for g, so g is an isomorphism. QED
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We will soon be spending quite a bit of time developing further our ability to compute
71 on (pointed) topological spaces, but we break off from that momentarily to make some
general comments.

We have now shown that R' and R? are not homeomorphic and that R? and R® are not
homeomorphic. Eventually we’ll develop enough algebraic topological tools to show that,
if m,n > 0 are integers then: R is homeomorphic to R™ iff m = n. There are, in fact, a
number of possible approaches to this, but they mostly rely on a good understanding of
homology theory, which is a major topic in the last half of this course.

Eventually, we’ll develop enough tools to show both of the following:

(o) For any C C R? if C is homeomorphic to S*, then R?\C is not connected. (This

is sometimes called the “Jordan Curve Theorem”.)

(e) For any C C R3, if C is homeomorphic to S!, then R3\C is connected.

This gives an alternative way to show that R? is not homeomorphic to R?, and is somehow
in the same spirit as our proof that R is not homeomorphic to R2.

We'll also be able to show:

(e) For any L C R? if L is closed in R? and if L is homeomorphic to R', then R?\L

is not connected.

(e) For any L C R3if L is closed in R and if L is homeomorphic to R, then R3\ L

is connected.
This also shows that R? is not homeomorphic to R3.

We'll also be able to show:

(o) For any S C R3 if S is homeomorphic to S2, then R?\S is not connected.

(o) For any S C R?*, if S is homeomorphic to S2, then R*\S is connected.

This gives an alternative way to show that R3 is not homeomorphic to R*.

Definition. A topological space X is said to be simply connected if it is path-connected,
and if, for all z € X, we have that |71(X,z)| = 1, i.e., if we have that 7;(X, ) is the
trivial group.

We’ll also be able to show:

(o) For any C' C R3 if C is homeomorphic to S, then R3\C is not simply connected.
Here’s a challenge: Show

(e) For any C C R? if C is homeomorphic to S1, then R*\C is simply connected.
Given the last two results, we get yet another proof that R? is not homeomorphic to R*.

To be efficient about it, much of this work needs to wait until the development of
homology theory, which comes later. For now, we return our focus to 7.

Our next goal is to show that 71(S!) is isomorphic to the additive group Z.

Sketch of Proof: Let I := [0,1] and let  := (1,0) € S'. Define myp : R — S! by
7o(t) = (cos(27t),sin(2wt)). Using that 7y has unique ({0}, I) lifting, for all v € P%(S1),
let ¥ : I — R be the unique my-lift of v such that 5(0) = 0. We now define a map
® : 1 (St,z) = Z by ®([y]) = 7(1). We leave it as an unassigned exercise to show that
® is well-defined. (Hint: Use the theorem following Exercise 4F.) We also leave it as an
unassigned exercise to show that ® is a group isomorphism. QED
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After filling in the details, one has the interesting situation where covering space
theory has been used to compute 7; of a pointed topological space.

It is our intention to generalize the above proof, in the hopes that we may be able to
use covering space theory as a general tool for computing ;.

Definition. A topological group is
(1) a group G; and
(2) a Hausdorff topology on G
such that (z,y) — zy : G x G — G and £ — ! : G — G are both continuous.

The arrows in the category of topological groups are continuous homomorphisms.

First example of a topological group is the additive group R. Another example is the
multiplicative group of matrices SL(2,R) := {g € R?**2 |det(g) # 0}. (This is given the
inherited topology from the vector space topology on the set R?*2 of 2 x 2 matrices with
real entries.

EXERCISE 5D: Let G be a topological group, let 1 denote the identity in G and let V'
be an open neighborhood of 1 in G. Show that there exists an open neighborhood U of 1
in G such that UU~! C V, i.e., such that, for all a,b € U, we have ab=! € V.

Note that we can replace UU ! in the above exercise by various similar expresssions,
and the result remains true, with much the same proof. For example, we could use UU,
often denoted U?. Or we could use U~U or U2U-'U-2UU 1. Or any product of postive
and negative powers of U.

In this course “action” will always mean “left action” unless otherwise specified.

Definition. Let G be a topological group acting on a topological space X. We say that
the action is continuous if the action map (g,z) — gz : G x X — X is continuous.

This is equivalent to saying that the “secondary” action map (g,z) — (g,9z) : G X
X — G x X is continuous. (The use of the word “secondary” there is my choice. Either
of these two maps is, at times, called the action map, but I want to distinguish between
them to avoid confusion.)

A simple example of a continuous action is obtained by taking a topological space G
and letting G act on itself by multiplication. That is, the action map is just multiplication
(9,2) = gx: G xG— G.

Another equally simple example is as follows: Given a topological group G and a
topological space Y, let G act on G x Y via the action g(a,y) = (ga, y).

Definition. Let G be a topological group. A topological G-space is a topological space X,
together with a continuous G-action on X.

Recall that if a group G acts on a set X then a subset Xg C X is said to be G-
invariant if GXy C Xy, i.e., if, for all g € G, for all z € X, we have gz € Xj.
In the category of topological G-spaces, the arrows are continuous G-equivariant maps.

That is, if X and Y are topological G-spaces, then an arrow from X to Y is a continuous
map f : X — Y such that, for all g € G, for all z € X, we have f(gz) = g(f(z)).
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Note that, if X is a topological G-space and if Xy C X is nonempty and G-invariant,
then X is a topological G-space (under the inherited topology and restricted G-action)
and the inclusion Xy — X is an arrow in the category of topological G-spaces.

I remark again that, if G is a topological group, and if Y is a topological space, then
G x Y is a topological G-space, where the action is given by g(a,y) = (ga,y).

Definition. Let G be a topological group and X a topological G-space. We say that X
is trivially principal if there is a topological space Y such that X is isomorphic, in the
category of topological G-spaces, to G x Y. We say that X is principal if, for all z € X,
there is a G-invariant open neighborhood Xy of  in X such that Xy is trivially principal.

So one might use “locally trivially principal” as a synonym for “principal”.

If G is a topological group acting continuously on a topological space X, then we’ll
say that the G action is principal if X is a principal G-space. Similarly, we’ll say that
the G action is trivially principal if X is a trivially principal G-space. By a principal
G-space, we mean a topological G-space that is principal. By a trivially principal
GG-space, we mean a topological G-space that is trivially principal.

Let the additive group Z act on R by: the action of n on t yields n + t. It is not
hard to show that, with this action, R becomes a principal Z-space which is not trivially
principal.

A discrete group is a topological group whose topology is discrete (which means that
every subset of the group is open). Note that there is a forgetful functor {discrete groups} —Jj
{groups}. Conversely, given any group, we can give it the discrete topology, making it into
a discrete group. This gives a functor {groups} — {discrete groups}. These two functors
are inverses of one another, and so the category {groups} is isomorphic to the category
{discrete groups}. That is, expertise in group theory is exactly the same as expertise in
discrete group theory.

Recall some terminology and notation from group theory. Given a group G acting on
a set X, we let G\X := {Gz |z € X} be the set of orbits of G on X. The canonical map
X — G\X is the map z — Gz.

When G is a topological group and X is a topological G-space, then G\ X automat-
ically has a topology, namely, the quotient topology, i.e., the finest topology making the
canonical map X — G\ X continuous.

EXERCISE 5E: Let I' be a discrete group, and let X be a principal I'-space. Show that
the canonical map X — I'\X is a covering map.

Theorem. Let I' be a discrete group and let X be a principal I'-space. Assume that X is
simply connected. Then, for all y € T'\ X, we have that the groups 71 (I'\X,y) and T" are
isomorphic.

Sketch of Proof: Let Y :=T'\X. We wish to show that = (Y, y) is isomoprhic to T.

Let I :=[0,1]. Let 7 : X — I'\ X be the canonical map. Then = is surjective. Choose
x € X such that 7(z) = y. By Exercise 5E, I" is a covering map, and therefor has unique
({0}, 1) lifting. For all @ € PY(Y), let @ : I — R be the unique 7-lift of a such that
a@(0) = z. Note that m(a(l)) = a(1) = y and that 7(@(0)) = n(z) = y, so there is a
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unique 7y, € I' such that a@(1) = v4(@(0)). (Unassigned exercise: Explain existence and
uniqueness in the last sentence.) We now define a map @ : m1(Y,y) — I' by ®([a]) = ;.
We leave it as an unassigned exercise to show that ® is well-defined. (Hint: Use the
theorem following Exercise 4F.) We also leave it as an unassigned exercise to show that ®
is a group isomorphism. (Note: Simple connectedness of X is needed in the proof that ®
is injective.) QED

A more colloquial way of saying the above theorem is: If a discrete group I' acts
principally on a simply connected topological space X, then 71 (I'\X) is isomorphic to T'.
Note that, since I'\ X is path-connected, the fundamental group does not depend on the
basepoint, up to isomorphism.

Question: Is the preceding theorem true if we drop the assumption that X be simply
connected?

Answer: No. Let I := Z /27 act on X := R/(2Z) by: the action of 1 on ¢ + (2Z) yields
t+1+4+(2/Z2). Let y € Y :=T\X. We have Y =R/Z, so m1(Y,y) = Z. So m1(Y,y) is not
isomorphic to I'.

Question: Is the preceding theorem true if we drop the assumption that the I'-action on
X is principal?
We will answer this last question below.

For any group G, we will let 15 denote the identity element of G.

EXERCISE 5F: Let I' be a discrete group acting continuously on a topological space
X. Show that the I'-action on X is principal iff: for every x € X, there exists an open
neighborhood U of z in X such that, for all v € T'\{1r}, we have (yU)NU = 0.

EXERCISE 5G: Let G be a topological group and let T" be a discrete subgroup of G.
Let T" act on G by left multiplication, i.e., the result of v acting on g is the product vg.
Show that this T'-action on G is principal. (Hint: Use Exercise 5F and Exercise 5D.)

Let the additive group Z act on R by the rule: n acting on ¢ yields n +t. By Exercise
5F (adapted for additive groups and with G replaced by R), we see that this Z-action on
R is principal. The quotient topological space Z\R is the same as the topological space
R/Z of cosets of Z in R. By the preceding theorem, we conclude that 71 (R/Z) = Z.

The next three exercises, taken togther, show that R/Z is homeomoprhic to S, so we
obtain another proof that m;(S') & Z.

EXERCISE 5H: Show that R/Z is compact.
EXERCISE 5I: Show that there is a continous bijection R/Z — S?.

EXERCISE 5J: Show that, if X and Y are topological spaces, if X is compact, and if
f: X — Y is a continuous bijection, then f : X — Y is a homeomorphism.

Definition. Let G be a group. Then a G-set is a set X, together with a G-action on X.

The arrows in the category of G-sets are G-equivariant functions. Note that, for every
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group homomorphism ¢ : G — H, we get a functor Fy{H—sets} — {G—sets}, given by:
For any H-set X, Fy(X) is the G-set whose underlying set is X and where the G-action
on X is given by: g acting on z yields (f(g))z. (Question: What is the effect of F, on
arrows?)

Some notation: When a group G acts on a set X and when x € X, we define
Stabg(z) = {9 € G| gz = x}. This subgroup of G is called the stabilizer of z in G.

A G-set X is transitive if |G\ X| = 1, i.e., if there is exactly one orbit in X. For any
subgroup Gy of G, we let G act on G/Gq by g acting on ¢'Gy yields gg'Gy. This action
is transitive. It is not hard to show that if X is a transitive G-space, if z € X and if
Gy := Stabg(z), then X is isomorphic to G/Gy in the category {G — sets}. This can be
thought of as a “classification of transitive G-sets”.

Note that any G-set breaks up into orbits, and the G-action on each orbit is transitive.
Thus any G-set is isomorphic (in the category {G — sets}) to a disjoint union of transitive
G-sets. Combined with the earlier classification of transitive G-sets, we have no classified
all G-sets, up to isomorphism.

Definition. Let G be a group acting on a set X. The G-action is said to be free if there is
a set Y such that, in the category of G-sets, X is isomorphic to G X Y, where the G-action
on G x Y is given by g(a,y) = (ga,y).

Fact. Let G be a group acting on a set X. Then the G-action on X is free iff, for all
x € X, we have Stabg(z) = {1g}-

More colloquially put, “an action is free iff all stabilizers are trivial”. Or: “an action
is free iff nothing stabilizes anything, except for the identity, which stabilizes everything”.

EXERCISE 5K: Show that any principal action is free. That is, if G is a topological
group acting continuously and principally on a topological space X, show that the G-action
on X is free.

Question: Is the converse true? That is, if G is a topological group acting continuously
and freely on a topological space X, does it follow that G-action on X is principal?

Answer: No. Let o € R\Q and let Z act on S! by: the action of 1 on (cos(27t), sin(27t))
yields (cos(27(t + «)),sin(2n(t + «))). This action is sometimes called the “irrational
rotation” action on the circle. We leave it as an unassigned exercise to show that this
action is free and that every orbit is dense. Since orbits are dense, it follows from Exercise
oF that the I'-action on X is not principal.

We are now in a position to answer an earlier question.

Question: Is the preceding theorem true if we drop the assumption that the I'-action on
X is principal?

Answer: Let I' :== Z act on X := S! by irrational rotation, as above. Let Y := I'\X and
let y € Y. Because every orbit is dense, it follows that Y is indiscrete, and therefore that
m1(Y,y) is trivial. Then 71(Y,y) is not isomorphic to T
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I don’t know a counterexample in which the quotient space is Hausdorff. That is, I
don’t know the answer to the following question:

Question: Let X be a simply connected topological space and let I be a discrete group.
Let T' act freely on X. Assume that Y := I'\ X is Hausdorff. Let y € Y. Does it follow
that w1 (Y, y) is isomorphic to I'?

As we have seen, principal implies free, but free does not always imply principal.
However, the next exercise gives one situation in which free does imply principal.

EXERCISE 5L: Let I'" be a finite discrete group acting continuously and freely on a
Hausdorff topological space X. Then show that the I'-action on X is principal. (Hint:
You may use, without proof, the fact that, for any integer n > 2, for any n distinct points
in a Hausdorff topological space, one may choose open neighborhoods of the n points which
are pairwise disjoint. Now use Exercise 5F.)

Let I' := Z/27Z. Then T is the additive cyclic group with two elements. We label the
identity element as 0 and the other as 1. Give I" the discrete topology, so that I is a finite
discrete group. Let n > 1 be an integer. Let " act on S™ by: 1 acting on p yields —p. We
define RP™ :=T'\S™.

By the preceding exercise, the I'-action on S™, being free, must be principal. We
already proved that S? is simply connected, and the same argument works to show that,

for all n > 2, S™ is simply connected. We can appeal to the preceding theorem to show
that, if n > 2, then 7 (RP™) 2T = Z/2Z.

Definition. Let ' be a group and let X be a I'-set. Let x € X. The orbit map at x is
the map y— vz : I' = X.

Let f : ' — X be the orbit map at x, defined by f(y) = yz. Note that the image
f(T) is the orbit T'z of x. Note that f~(z) = Stabr(z).

EXERCISE 6A: Let I be a group acting on a set X. Show that the I'-action on X is
free iff every orbit map is injective.

We now return back to the last theorem, and give a more detailed proof.

Theorem. Let T" be a discrete group and let X be a principal I'-space. Assume that X is
simply connected. Then, for all y € I'\ X, we have that the groups 71 (I'\X,y) and T" are
isomorphic.

Proof: Let Y := I'\X. Let m : X — Y be the canonical map. Fix x € 7~ (y). Then
Iz =7m"1(y).

Let f:I' — X be the orbit map at z, defined by f(y) = yz. By Exercise 6A, we see
that f is injective. Moreover, f(I') = I'z = 7~!(y). Then f : ' — 7~ !(y) is a bijection.
Let f~!: 77 1(y) — I be its inverse. (Intuitively, because the -action on X is free, every
I'-orbit “looks like” I'; moreover the orbits are exactly the fibers of the canonical map. So
7~ 1(y), being a fiber of the canonical map, must “look like” T, and f~! is the map that
makes this precise.)

28



For any o € PJ(Y), let [a] denote the endpoint fixed homotopy class of a. Then
m1(Y,y) = {[a] |a € PY(Y)}. Similarly, for any o € P7(X), let [a] denote the endpoint
fixed homotopy class of z, so that m (X, z) = {[o] |a € P*(X)}.

By Exercise 5E, we see that m# : X — Y is a covering map. Then, by an earlier
theorem, m has unique ({0}, I) lifting. For every o € PJ(Y), let @: I — X be the unique
m-lift of o such that @(0) = x. By an earlier theorem, for all o, 8 € PY(Y), if a is endpoint
fixed homotopic to 3, then a(1) = E(l) For all [a] € m1(Y,y), let to := @(1); then
7(tag) = 7(@(1)) = a(1) = y, 50 tia) € 7-1(y).

Define 9 : m1(Y,y) — T by ¢([e]) = f~'(t[]). We will show that this map is a
homomorphism of groups and that it is injective. We will leave the proof of surjectivity as
an unassigned exercise.

Proof that v is a homomorphism: Fix «, 8 € PJ(Y). We wish to show that

@ (D) (@([8]) = ¢ ([A[A])-

Let 7 = (), let & := ([8]). As [a][8] = [al|8], we must show that 75 = (¥([a]l8).
We have a(1) = t[o) = f(¥([a])) = f(v) = yz. Similarly, 8(1) = 6.

Define v : I — X by (vB)(t) = v(B(t)). Then (vB)(0) = v(B(0)) = vz = (1), so
a||(’y,8) is defined. We have 7 o (7,6) =mo ﬂ B, so mo (a||(’y,8)) = a||. Moreover,

(a||(%3))( ) = @(0) = z. Then all8 = @l|(vB). Then tiag = allB(1) = @lI(vB))(1) =
(vB)(1) = ¥(B(1)) = v(6z) = ¥6z = f(v6). Then ¢([a[|B]) = f~(tjays) = 73, End of
proof that v is a homomorphism.

Proof that v is injective: Let ¢, : I — X be defined by ¢, (t) = x andlet ¢, : I = Y be
defined by c,(t) = y. Then [c,] is the identity element of 71 (X, z) and [c,] is the identity
element of 71(Y,y). Let a € PY(Y) and assume that ¢ ([a]) = 1r. We wish to show that
o] = o)

We have @(0) = x, by definition of &@. We have (1) = t[) = f(¥([a])) = f(1r) =
Then @ € P*(X). However, X is simply connected, so 71 (X, z) is trivial. Then [@] = [cz]-
That is, @ is endpoint fixed homotopic to ¢,. Then 7 o @& is endpoint fixed homotopic to
mocg. That is, a is endpoint fixed homotopic to ¢,. That is, (o] = [¢y]. End of proof that
Y is injective. QED

So, given a path-connected topological space Y we have a strategy for computing its
fundamental group: Find a principal action of a discrete group I' on a simply connected
topological space whose quotient is (homeomorphic to) Y. If we can do this, then the
preceding result immediately gives us that m(Y) 2 I

This strategy worked for computing m1(S*) and m; (RP?).

A reasonable question is: Does it always work? That is:

Question: Given a path-connected topological space Y, can we always find a simply con-
nected topological space X, a discrete group I' and a principal action of I' on X such that
I'\ X is homeomorphic to Y?

We explore this question next.
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Definition. Let X and Y be topological spaces. Let 7 : X — Y be a covering map. A
deck transformation of 7 is an isomorphism (X, ) — (X, 7) in the category

{topological spaces over Y }.
That is, it is a homeomorphism A : X — X such that mo h = 7.

EXERCISE 6B: Let X and Y be topological spaces. Let 7 : X — Y be a covering map.
Let T' := {deck transformations of w}. Show that I" is a group under composition.

We will always consider {deck transformations of 7} to be a topological group: It is
a group under composition, and it is given the discrete topology.

EXERCISE 6C: Let X and Y be topological spaces. Let m : X — Y be a covering map.
Let I' := {deck transformations of 7}. Show, for all y € Y, that m—1(y) is [-invariant.

We give I' the discrete topology. Note that I', by construction, acts continuously on X.
Eventually we will show that I' acts principally on X.

Definition. Let X be a topological space. A topological space under X consists of
(1) a topological space Y; and
(2) a continuous map 7 : X — Y.

What are the arrows in the category {topological spaces under X }?

Note that, if X is a topological space, if I" is a group and if I" acts continuously on X,
then there is a canonical map ¢ : X — I'\ X, and therefore (I'\ X, ¢) is a topological space
under X. We will often just say that I'\X is a topological space under X, the canonical
map ¢ being understood.

Definition. Let X and Y be topological spaces. Let 7 : X — Y be a covering map. Let
I := {deck transformations of 7}. We say that 7 is regular or a regular covering map
if '\ X is isomorphic to (Y, 7) in the category {topological spaces under X }.

Are all covering maps regular? More starkly, if 7 : X — Y is a covering map and 7 is
not a homeomorphism, does it always follow that there is a deck transformation of 7 that
is not equal to the identity map idx : X — X7 The answer to both questions is no, and
we will get to this, but a full theory of covering spaces is needed to address these questions
properly.

For now, (2) in the following theorem asserts that, when the domain is simply con-
nected, the covering map is regular.

Lemma. Let X and Y be path-connected topological spaces. Let 7 : X — Y be a covering
map. Let I' := {deck transformations of w}. Then

(1) the I'-action on X is principal; and

(2) if X is simply connected and locally path-connected, then 7 is regular.

We defer the proof until later.

Definition. Let Y be a path-connected topological space. A universal cover of Y is a
simply connected topological space X, together with a covering map X — Y.
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By the preceding lemma, if the path-connected, locally path-connected topological
space Y has a universal cover (X,7), then there is a discrete group I' and a princi-
pal action of I' on X such that T'\X is homeomorphic to Y. One simply lets ' :=
{deck transformations of 7}, with the discrete topology. In fact, even more is true: T\ X
is isomorphic to (Y, 7) in the category of topological spaces under X.

Recall our earlier

Question: Given a path-connected topological space Y, can we always find a simply con-
nected topological space X, a discrete group I' and a principal action of I" on X such that
I\ X is homeomorphic to Y?

This is now transformed to:

Question: Does every path-connected topological space have a universal cover?

EXERCISE 6D: Let mp : R — S! be defined by my(t) = (cos(2nt),sin(27t)). Find all
deck transformations of .

EXERCISE 6E: Let X and Y be path-connected topological spaces. Let m : X — Y be
a covering map. Let I' := {deck transformations of w}. Show

(1) the I'-action on X is free; and

(2) if 7 is regular, then for all y € Y, the I-action on 7~1(y) is transitive.

Note: The proof of (1) of Exercise 6E actually appears later in these notes, and you
may simply copy what I’ve written, if you wish.

Definition. Let Y be a topological space. We say that Y is locally simply connected if,
for any y € Y, for any open neighborhood V of y in Y, there is a simply connected open
neighborhood U of y in Y such that U C V.

More concisely: Y is locally simply connected if every point has arbitrarily small
simply connected open neighborhoods.

EXERCISE 6F: Show that any locally simply connected topological space is locally
path-connected.

Let A and B be groups and let h: A — B be a homomorphism. Recall that h is said
to be trivial if h(A) = {1p}.

EXERCISE 6G: Let Y be a topological space and let U C Y. Assume that U is
path-connected. For all u € U, let 4, : (U,u) — (Y,u) be the arrow in the category
{pointed topological spaces} defined by the inclusion map U — Y. Assume, for some
ug € U, that the map (iy, )« : m1(U,up) — m1(Y, up) is trivial. Show, for all u € U, that
the map (iy )4 : 71 (U, u) — w1 (Y, u) is trivial.

Definition. Let Y be a topological space and let U C Y. Assume that U is path-connected.
Forallu € U, let iy : (U,u) — (Y, u) be the arrow in the category {pointed topological spaces}|]
defined by the inclusion map U — Y. We say that U is relatively simply connected in
Y if: for all uw € U, the map (4y)« : m1 (U, u) — m1(Y, w) is trivial. (Here, “trivial” means
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that its image consists of the identity alone.)

Example. Let o := (0,0) € R%. Let D := {p € R? | d(0,p) < 1} be the closed unit disk in
the plane. Then S' C D. Note that S! is not simply connected, but is relatively simply
connected in D. On the other hand, S is not relatively simply connected in D\{o}.

Definition. Let Y be a topological space. We say that Y is semi-locally simply con-
nected if: if, for any y € Y, for any open neighborhood V of y in Y, there is a path-
connected open neighborhood U of y in Y such that U C V and such that U is relatively
simply connected in Y.

More concisely: Y is semi-locally simply connected if every point has arbitrarily small
relatively simply connected (path-connected) open neighborhoods.

Theorem. Let Y be a connected, locally path-connected Hausdorff topological space. Then
Y has a universal cover iff Y is semi-locally simply connected.

We defer the proof until later. Recall our earlier
Question: Does every path-connected topological space have a universal cover?

Note that a locally path-connected topological space is connected iff it is path-connected.|j
So, for locally path-connected topological spaces, the above question is now transformed
to:

Question: Is every connected, locally path-connected topological space semi-locally simply
connected?

Exercise 7TA below asserts that most of the topological spaces that concern us are, in
fact, semi-locally simply connected. On the other hand, part of Exercise 7B below is to
show that there do exist topological spaces that are not.

EXERCISE 7A:
(1) Show that if a topological space is locally simply connected, then it is semi-locally
simply connected.
(2) Show that any locally path-connected, simply connected topological space is semi-
locally simply connected.

EXERCISE 7B:
(1) Show that a simply connected topological space is not necessarily locally simply-
connected.
(2) Show that there is a connected, locally path-connected topological space that is
not semi-locally simply connected.
(3) Show that a path-connected topological space that is semi-locally simply con-
nected need not be locally simply connected.
(Note: 1 do not require that you prove that your counterexamples work, but they must
be stated very carefully. You will probably not find these counterexamples without help.
Ask around, consult references. Think about the “Hawaiian earring” and the cone over
the Hawaiian earring.)
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By (2) of Exercise 7TA, your answer to (1) of Exercise 7B, if locally path-connected,
will also be an answer to (3) of Exercise 7B.

Note that, any semi-locally simply connected implies locally path-connected, which
implies locally connected. Note that, for locally path-connected topological spaces, all the
path components are open. Thus, if X is a locally path-connected topological space, then:
X 1is connected iff X is path-connected.

Remark. Let X be a path-connected topological space, let Y be a topological space and let
m: X — Y be a covering map. Let I' := {deck transformations of 7}. Then the I'-action
on X is free.

Proof: Fix g € X and v € I'. Assume that yzo = x¢o. We wish to show that v = 1p. Let
x € X. We wish to show that yx = .
Since v € I', we have m oy = 7. Since X is path-connected, let & € PJ (X). Let

I:=[0,1]. Let B:i=yoda:I—+X.Let a:=mod:1—Y. Then
7703:7‘(0(’)/0&):(7‘(’0’)/)0&:7'(0&:&.

Then both & and j are n-lifts of . Moreover, ,,B\(O) =v(@(0)) = yzo = zo = @(0).
Since 7 : X — Y is a covering map, it follows that 7 has unique ({0}, I) lifting. So,
as @ and [ are both =-lifts of o and as @(0) = (3(0), we conclude that & = . Then

z=a(1) = B(1) = ¥(@(1)) = yo. QED

EXERCISE 7C: Let D be a discrete topological space. Let V be a topological space.
Let dg € D. Let U :=V x {dp} CV x D. Let p: V x D — V be the projection defined
by p(v,d) = v. Let v : V. x D — V x D be a deck transformation of p. Show, for all
u € (YU)NU, that yu = u.

EXERCISE 7D: Let X and Y be topological spaces. Let m: X — Y be a trivial covering
map. Let I" be a subgroup of {deck transformations of 7}. Assume that I acts freely on X.
Show that I" acts principally on X. (Hint: Use Exercise 7C and Exercise 5F.)

Corollary. Let X be a path-connected topological space. Let Y be a topological space. Let
m: X — Y be a covering map. Let I' := {deck transformations of 7}. Then the I'-action
on X is principal.

Proof: Fix x € X. We will show that there is a I'-invariant open neighborhood X of =
in X such that the I'-action on X is principal.

Let Yy be an open neighborhood of 7(z) in Y such that «|[7=1(Y})] : 7~ 1(Ys) — Yo
is a trivial covering map.

Let Xy := 7 1(Yp) and let 7y := m|Xy. Then my : Xg — Y is a trivial covering
map. Let I'g := {deck transformations of mp}. Define R : I' — I'g by R(y) = v|Xo. Let
Iy := R(T"). By the preceding remark, the I'-action on X is free. Then R: ' — I'y is a
group isomorphism.

Then the I'g-action on X is free. Then, by Exercise 7D, the I'y-action on Xy is
principal. Then, as R: I' — I'y is a group isomorphism, it follows that the I'-action on Xj
is principal. QED
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EXERCISE 7E: Let X and Y be topological spaces and let 7 : X — Y be a trivial cover-
ing map. Assume that Y is connected. Let I" be a subgroup of {deck transformations of 7}.
Assume, for some yy € Y, that the I'-action on 7~ !(yy) is transitive. Show, for ally € Y,
that the [-action on 7~1(y) is transitive.

EXERCISE 7F: Let X and Y be topological spaces and let 7 : X — Y be a covering
map. Assume that Y is locally connected. Let I' := {deck transformations of 7}. Let
T be the set of all y € Y such that the I'-action on 7~1(y) is transitive. Show that
T is a clopen subset of Y. (Hint: Openness follows from Exercise 7E. Openness of the
complement follows from a variant of Exercise 7E, in which “transitive” is replaced by
“nontransitive”.)

Definition. Let X and Y be topological spaces and let f : X — Y be a function. We say
that f is open or that f : X — Y is an open mapping if: for every open subset U of X,
we have that f(U) is open in Y. We say that f is a local homeomorphism if, for any
point z € X, there is an open neighborhood U of z in X such that f|U : U — f(U) is a
homeomorphism.

EXERCISE 7G: Let I' be a topological group acting continuously on a topological
space X. Show that the canonical map X — I'\X is an open mapping.

EXERCISE 7H: Show that any covering map is an open mapping.

Lemma. Let X be a topological space. Let Y be a connected, locally connected topological
space. Let m : X — Y be a covering map and let I' := {deck transformations of 7}.
Assume, for some gy, € Y, that the I'-action on m~1(yp) is transitive. Then, for ally € Y,
the T-action on m~1(y) is transitive.

Proof: Let T denote the collection of all y € Y such that the -action on 7~ 1(Y) is
transitive. We wish to show that T =Y.

By Exercise 7F, T is clopen in Y. As Y is connected, we know that () and Y are the
only clopen subsets of Y. As yo € T, we see that T # (). Thus T =Y. QED

Lemma. Let X and Y be topological spaces. Let m : X — Y be a covering map. Let
I' := {deck transformations of 7}. Then = is regular iff, for all y € Y, the I'-action on
7w~ 1(y) is transitive.

Proof: “Only if” is (2) of Exercise 6E. Assume, for all y € Y, that the I'-action on 7 1(y)
is transitive. Let W := I'\X. Let p : X — W be the canonical map. We wish to show
that there is a homeomorphism h : W — Y such that hop = .

By transitivity on fibers of 7, we conclude that {w~1(y) |y € Y} is the set of ['-orbits
in X. Since {p~}(w) |w € W} is also the set of I-orbits in X, we see that

{m ')y e Y} ={p " (w) |lwe W},

which implies that there is a bijective map h : W — Y such that hop = w. We must show
that h is continuous and open.
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For any subset Yy C Y, we have h™!(Yy) = p(m~'(Yp)). So, since m : X — Y is
continuous and since (by Exercise 7G) p : X — W is open, we conclude that h: W — Y
is continuous.

For any subset Wy C W, we have h(Wy) = w(p~*(Wp)). So, since p : X — W is
continuous and since (by Exercise TH) 7 : X — Y is open, we conclude that h : W — Y
is open. QED

Theorem. Let X and Y be topological spaces. Let m: X — Y be a covering map. Let
Z be a simply connected, locally path-connected topological space. Let zy € Z. Then 7
has unique ({20}, Z) lifting.

Proof: Let f: Z — Y be a continuous map, let yo = f(20) and let To €M L(yo). We wish
to show that there is a continuous map f Z — X such that wo f f and such that
F(20) = mo.

Let I := [0,1]. For any z € Z, choose o, € P} (Z) Then (f o a;)(0) = f(20) = yo,
so zg € 7 H((f o ;)(0)). Since 7 is a covering map, it follows that 7 has unique ({0}, 1)
lifting. Let 8, : T — X be the r-lift of f o o, such that 8,(0) = zo. Define f: Z — X by
f(z) = B.(1). R N

Then, for all z € Z, we have 7(f(z)) = 7(8.(1)) = f(a,(1)) = f(2),s0o o f = f.

Claim: If z € Z, if o € PZ(Z), if B is a n-lift of foa and if B(0) = o, then f(2) = B(1).
Proof of Claim: Since Z is simply connected, for all p,o : I — Z, if p(0) = o(0) and if
p(1) = o(1), then p and o are endpoint fixed homotopic. (We leave this as an unassigned
exercise.) It follows that « is endpoint fixed homotopic to «,. Then f o« is endpoint fixed
homotopic to foca,. Then, by the theorem following Exercise 4F, we see that 5(1) = £,(1).
As f(z) = B,(1), we are done. End of proof of Claim.

Let oy : I — Z be the constant map at zp, defined by au(t) = zo. Let B, : I — X be
the constant map at o, defined by B.(t) = xo. Then o, € P2°(Z), B, is a m-lift of f o
and 8,(0) = zo. By the claim, we conclude that f(zo) = B,(1) = 0.

It remains to prove that f Z — X is continuous. Fix z € Z, let z := f (z) and let X,
be an open neighborhood of z in X. We wish to show that there is an open neighborhood
Z1 of z in Z such that f(Zl) C X;.

We leave it as an unassigned exercise to show that any covering map is a local home-
omorphism. Then, replacing X; by a smaller open neighborhood of x in X, we may
assume that = : X; — n(X;) is a homeomorphism. By Exercise TH, Y7 := 7(X3) is an
open neighborhood of y in Y. Let m; := #w|X; : X7 — ¥;. Then m; : X3 — Y; is a
homeomorphism.

Since f : Z — Y is continuous, since Z is locally path-connected and since f(z) =
w(f(z)) = n(z) € n(X1) = Y1, let Z; be a path-connected open neighborhood of z in Z
such that f(Z;) C Y;. We wish to show that f(Zl) C X;. Fix z; € Z;. We wish to show
that f(zl) € Xi.

Choose o € P?'(Zy). Let B:=n{ o foa: I — X;. Then g € P (X) is a =-lift of
foa. Recall that 8, € Py (X) is a n-lift of f o a,. Then 3,[|8 is a 7-lift of f o (a.||c)
and (a.||a)(0) = a,(0) = zp and (a;|la)(l) = a(l) = 2. so, by the claim, we have
f(zl) = (B.||8)(1) = B(1) € B(I). Since B : I — X3, we conclude that f(zl) € X, as
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desired. QED

Corollary. Let X be a simply connected, locally path-connected topological space. Let Y
be a topological space. Let m: X — Y be a covering map. Then = is regular.

Proof: Let I' := {deck transformations of 7}. Fix y € Y. By the preceding lemma, we
wish to show that the I'-action on 7~!(y) is transitive. Fix z,2’ € 7~ 1(y). We wish to
show that there exists v € I" such that yz = .

Let Z := X, let zp := x. By the preceding theorem, 7 has unique ({zo}, Z) lifting.
Let f:=m:7Z — X. Let 29 = /. Then f(zy) = f(z') = n(2') = y = w(z). Therefore
there is a unique m-lift f: Z — X of f:Z — Y such that f(zo) = Ip.

We have f: X — X and f(ac) = f(zo) = w9 = «'. Similarly, let f* : X - X be
the m-lift of f satisfying f*(:v’) = Let I := F*of. Then I: X — X is the unique
w-lift of f satisfying I(z) = x. Since the identity map X — X is another, we conclude
from uniqueness that I : X — X is the identity, i.e., that f* o f: X — X is the identity.
Similarly fo f*: X — X is the identity. Then f: X — X is a homeomorphism. R

We have mo f = f = . Then [ is a deck transformation of 7, i.e., f € I'. Let v := .
Then vz = f(z) = 2/. QED

EXERCISE T7I: Let Y be a connected, locally path-connected topological space. Assume,
for some simply connected topological space X, that there exists a covering map X — Y.
Show that Y is semi-locally simply connected.

We are now ready to prove:

Theorem. Let Y be a connected, locally path-connected topological space. Then: Y has a
universal cover iff Y is semi-locally simply connected.

Proof: “Only if” is given in Exercise 7I. Assume that Y is semi-locally simply connected.
We wish to show, for some simply connected topological space X, that there is a covering
map7w: X — Y.

For any topological space T, for any ¢t € T, let P,(T) := U Ptt’ (T).

t'eT

Fix yg € Y. Let X = P,,(Y). For any a € X , let [a] denote the endpoint fixed
homotopy class of o. Let X := {[o] | € X}. Define 7 : X — Y by n([e]) = a(1). Note
that, if o, € X and if « is endpoint fixed homotopic to o', then a(1) = o/(1), so 7 is
a well-defined function. We now wish to show that there is a simply connected topology
on X with respect to which 7 : X — Y is a covering map.

For any y € Y, let V, denote the collection of all open neighborhoods of y in Y that

are relatively simply connected in Y. For any a € X , for any V' € V, (1), let
Ny =A{[ellBl1 8 € Py1y(V)} € X;

note that [a] € N[‘;].

EXERCISE 7J: For any a € )/(:, for any V' € V,(1), show that 7r|N[Z] : N[‘é] — Y is

injective.
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EXERCISE 7K: Let & € X and let V € Vy). Let 8 € Py)(V) and let W € Vg,

Assume that W C V. Show that N% .. C NV..
[ellB] [@]

EXERCISE 7L: Show that {N[Z] la € )/(:, V € V,a)} is a basis of a topology on X.

(Hint: Use Exercise 7K and Exercise 2H.)

We now give X the topology described in Exercise 7L. R

Clatm 1: 7 : X — Y 1is continuous. Proof of Claim 1: Let o € X and let W be a
open neighborhood of 7([c]) in Y. We wish to show that there is a open neighborhood N
of [@] in X such that #(N) C W.

Since Y is semi-locally simply connected, choose V' € V(1) such that V' C W. Let
N = N[Z]. Then, by definition of N[‘;] and of 7, we have m(N) C V. Then n(N) C W.
End of proof of Claim 1. R

Claim 2: 7 : X — 'Y is open. Proof of Claim 2: Recall that {N[‘O/é] la€ X,V €Vyn}

is a basis for the topology on X. For all o € )?, for all V' € V4 (1), we have W(N[(‘;]) =V.
Thus, the image of every basic open set is open, and it follows that the image of every
open set is open. End of proof of Claim 2.

Claim 3: For all a« € X, for all V € V1), the map 7r|N[‘(/1] : N[‘o/z] — V 1s a homeo-

morphism. Proof of Claim 3: By Exercise 7J, W\N[X ] is injective. By Claim 1, this map is
continuous. By Claim 2, 7r|N[‘é : N[‘g] — V is open. So, as 7r|N[‘;] : N[Z] — V' is surjective,
we are done. End of proof of Claim 3.

EXERCISE 7M: Let y € Y and let a,o/ € PY(Y) C X. Let V € V,. Assume that

Ny N Ny # 0. Show that [a] = [o].

For any topological space A, a pairwise disjoint open covering of A, is a subset
U C {open subsets of A} such that U/ = A and such that, for any U,U’ € U, we have:
if UNU'" # 0, then U = U'. For any topological spaces A and B, for any continuous
p:A— B, wehave: p: A — B is a trivial covering map iff there is an pairwise disjoint
open covering U of A such that, for all U € U, p|U : U — B is a homemorphism. We leave
the proof of this last statement as an unassigned exercise.

Then, by Claim 3 and Exercise 7M, we see, for any y € Y, for any V € V,, that
7|[r7Y (V)] : #=1(V) — V is a trivial covering map; we use the pairwise disjoint open cover
{N[‘é] | € Py} of 7~ 1(V). We conclude that 7: X — Y is a covering map.

It remains to show that X is simply connected. Let ¢ : I — Y be the constant map
defined by c(t) = yo Let xg := [c]. We wish to show that m (X, ) is trivial. Let ¢: I — X
be the constant map defined by ¢(t) = z¢. Note that 7 oc = ¢. We wish to show that any
element of P°(X) is endpoint fixed homotopic to .

Claim 4: For allx € X, for all 0 € Pg (X), we have [roo] = z. Proof of Claim 4: Let
a:=moo. Let I :=[0,1]. For all s € I, let as: I — Y be defined by as(t) = a(st). Then
ap =cand a; = . Define @: I — X by @(s) = [as]. We leave it as an unassigned exercise
to show that @ is continuous. For all s € I, we have 7(a(s)) = 7([as]) = as(1) = a(s), so
ToQa = «. S0, since a = 7 o g, we conclude that both @ and o are =-lifts of a. Moreover,
we have a(0) = [ag] = [¢] = zo = 0(0). By the proposition preceding Exercise 4F, we
see that 7 has unique ({0}, I)-lifting. It follows that & = o. Then [r o o] = [a] = [a1] =
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a(l) =o(1) = z. End of proof of Claim 4.

Let 0 € P;°(X). We wish to show that o is endpoint fixed homotopic to .

By Claim 4, we see that [7 o 0] = 9. Then [roo] = [c] = [ro¢]. That is, mo o is
endpoint fixed homotopic to m o¢. We also have o(0) = 2o = ¢(0). It then follows, from
the theorem following Exercise 4F, that o is endpoint fixed homotopic to ¢. QED

We now return to the question we asked before: Are all covering maps are regular?
Our approach will be to develop, for any connected, semi-locally simply connected Y, a
“classification” of covering maps to Y, and to calculate for each one, its group of deck
transformations, and to analyze, for each one, whether it is regular. In the process, we will
discover many non-regular covering maps.

First, though, we need some basic results. The following is our main lifting theorem:

Theorem. Let X, Y and Z be topological spaces. Assume that Z is connected and locally
path-connected. Let 7 : X — Y be a covering map. Let f : Z — Y be continuous. Let
zo € X and zg € Z. Assume that 7(x9) = f(20). Then the following are equivalent:

(1) there is a unique =-lift fof f such that f(zo) = x¢; and
(2) fu(mi(Z,20)) C mi(m1(X, Xo)).

Proof: By Exercise 8A below, (1) implies (2).
EXERCISE 8A: Show: If there is a n-lift f of f such that f(z0) = o, then (2) is true.

Now assume that (2) is true. We wish to prove (1).

EXERCISE 8B: Let v € PZ°(Z). Let 7 be the m-lift of f o~ such that 5(0) = zo. Show
that ¥(1) = xo.

EXERCISE 8C: Let z € Z. Let o, 8 € PZ(Z). Let @ and j be the 7-lifts of foa, fof,
respectively, such that @(0) = zo = £(0). Show that a(1) = B(1).

By the axiom of choice, for all z € Z, let a, € P} (Z); then a,(0) = 2o and a,(1) = z.
For all z € Z, let @, be the unique 7-lift of foa, such that @,(0) = z¢. Then o, = foa,.
Define f: Z — X by f(z) = @,(1).

Let I := [0,1]. Let ¢ : I — Z be the constant loop at zy, defined by c¢(t) = z9. Let
¢: I — X be the constant loop at xg, defined by ¢(t) = zp. Then € is the unique m-lift of
f o c such that ¢(0) = zy. By Exercise 8C, we have a,,(1) =¢(1). Then Flzo) = @, ,(1) =
2(1) = zo. For all z € Z, we have (r o f)(2) = n(f(2)) = n(@,(1)) = (7o a,)(1) =
(foaz)(1) = f(a:(1)) = f(2).

EXERCISE 8D: Show that f is continuous. That is show the following: Let z € Z. Let
V be an open nelghborhood of f (z) in X. Show that there is an open neighborhood U of

z in Z such that f(U) C V.

It remains to prove uniqueness. Let g be a w-lift of f such that g(z0) = xo. We wish
to show that § = f. Fix z € Z. We wish to show that §(z) = f(2).
Because m o g = f, we see that mo (§o a,) = f o a,. Moreover, (§o a,)(0) =

38



9(az(0)) = g(20) = xo. Then, by definition of a,, we see that g o @, = @,. Then
9(z) = g(a=(1)) = (go a,)(1) = @,(1) = f(z), as desired. QED

EXERCISE 8E: Let Y be a path-connected, locally path-connected topological space
and let (W, p) be a universal cover of Y.
(1) Show that W is locally path-connected.
(2) Let (W',p') be another universal cover of Y. Show that (W, p) is isomorphic to
(W', p') in the category of topological spaces over Y. That is, show that there is
a homeomorphism h : W — W’ such that p’ o h = p.

Remark. Let I' be a group and let F' be a free, transitive I'-set. Let f € F. Then the
orbit map v — vf : I' — F based at f is a bijection. Consequently, there is a uniqe
group structure on F' such that v +— vf : ' — F' is a group isomorphism. With this group
structure on F', note that f becomes the identity element.

Corollary. Let X and Y be topological spaces. Let m : X — Y be a regular covering
map. Let I' := {deck transformations of 7}. Let yo € Y and let F := 7~ !(yo). Then, for
any xg € F', there is a unique group structure on F' such that v — vz : I' — F' is an
isomorphism.

Proof: Since I' acts freely on X, it follows that I' acts freely on F'. Since 7 is regular, it
follows that I' acts transitively on F'. The result then follows from the preceding remark.
QED

The preceding corollary is summarized by the statement: “In a regular covering, any
fiber with a chosen point has a unique group structure making the orbit map at that point
is an isomorphism with the group of deck transformations.” Note that, under that group
structure, the chosen point becomes the identity of the group. Thus we may think of the
fibers of a regular covering map as groups isomorphic to the group of deck transformations.
However, once again, obtaining the group structure requires first picking a particular point
in the fiber that you’ll make the identity.

Recall that we have proved

Fact. Let Y be a path-connected topological space and let (X, 7) be a universal cover of
Y. Let zp € X and let yo := m(zp). For all o € P°(Y), let & be the unique -lift of
satisfying @(0) = x¢. Then the map [a] — @(1) : (Y, y0) — 7 (o) is a well-defined
bijection.

Let Y be a connected, locally path-connected topological space. Let (X, ) be a uni-
versal cover of Y. Let 2o € X and let yg := m(zg). Let I' := {deck transformations of r}.
Define ¢ : m1(Y,y0) — 7 '(yo) as in the preceding fact. Let v : I' — 7 1(yo) be the
orbit map defined by ¥(v) = yxo. Then, by the preceding corollary and fact, we obtain
a bijection ¥t o ¢ : m(Y,99) — T, and it is an exercise to see that this map is a group
isomorphism. Thus we see that 71 (Y, yo) and I" are isomorphic (as we have noted before),
but the point we're making now is that this isomorphism is not “natural” until we have
picked a point in the fiber over yy.

To make this more precise, let C be the category whose objects are
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(1) a connected, locally path connected topological space Y'; together with
(2) a universal cover (X, ) of Y; together with
(3) a point xp € X.

(What are the arrows in C?) Let F,G : C — {groups} be functors defined by

F(Y, X, 7w, x0) = (Y, 7(x0))

and G(Y, X, 7, z9) = {deck transformations of 7}. Then the paragraph following the pre-
ceding fact asserts that F and G are equivalent functors.

We now return to classifying covering map and determining which covering maps are
regular.

Setup for covering maps: Let Y be a connected, locally path-connected topological space.
Let (X, p) be a universal cover of Y. Let I' := {deck transformations of p}. For all A <T,
let XA := A\X and let ca : X — XA be the canonical map and let pa : XA — Y be the
unique function such that p = pa o ca.

It is an unassigned exercise to show that such a function pa exists and is unqgiue. It
is a further unassigned exercise to show that it is a covering map.

Theorem. Assume the “Setup for covering maps”. Let Z be a connected topological space.
Let ¢ : Z — Y be a covering map. Then there exists A < I' such that (Z, g) is isomorphic
to (Xa,pa) in the category of topological spaces over Y.

We defer the proof momentarily.
The preceding theorem raises the question of whether (Xa,pa) and (Xu,pa) might
be isomorpic in the category of topological spacdes over Y for different A, A <T.

Remark. Let A;A < T. Then: (Xa,pa) is isomorphic to (Xa,pa) in the category of
topological spaces over Y iff there exists v € I' such that yAy~! = A.

We defer the proof momentarily.
Proof of the theorem:

EXERCISE 9A: Show that there is a covering map r : X — Z such that gor = p.
(Hint: First argue that Z is locally path-connected and semi-locally simply connected.
Let (Z, 7o) be a universal cover of Z. Fix yo € Y. Choose zo € p~ (o), 20 € ¢ ' (%0)
and Zy € 75 '(20). Using the lifthing theorem which precedes Exercise 8A to construct a
continuous map a : Z — X such that poa = qory and such that a(Zy) = xo. Using the
lifting theorem again, construct a continuous map 7 : X — Z such that gor = p and such
that 7(z¢) = 2z9. Using the lifting theorem again, construct a continuous map b: X — 7
such that ro o b = r and such that r(z¢) = zp. We have poaob=qorgob=qgor =p.
Then, by uniqueness in the lifting theorem, argue that a o b : X — X is the identity. We
have qoroa = poa = qorg. Then, by uniqueness in the lifting theorem, argue that
roa =r9. We have rooboa = roa = ro. Then, by uniqueness in the lifting theorem,
argue that boa : Z — Z is the identity. Since aob: X — X and boa : Z — Z are both
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identity maps, we conclude that a : Z — X and b: X — Z are both homeomorphisms.
Then, as rg is a covering map, so is rg o b. However rgob = r.)

Fix such a map r. Let A := {deck transformations of r}.
EXERCISE 9B: Show that A <T.

As X is simply connected and Z is locally path-connected, it follows that r is regular.
Then (Z,r) is isomorphic to (Xa, ca) in the category of topological spaces under X. That
is, there is a homeomorphism h : Z7 — XA such that hor = ca. We wish to show that
(Z, q) is isomorphic to (Xa,pa) in the category of topological spacaces over Y, so it suffices
to show that pa o h = ¢. Fix z € Z. We wish to show that pa(h(z)) = q(z)-

Choose = € X such that r(z) = z. Then h(z) = h(r(z)) = ca(x). So, since pp oca =
p = gor, we have pa(h(2)) = pa(ca(z)) = q(r(z)) = q(2). QED

Proof of the remark:

EXERCISE 9C: Show the easy “if” direction of the remark. That is, show that if there
is some v € T, such that yAy~! = A, then there is a homeomorphism h : Xa — X, such
that pp o h = pa.

We now prove “only if”. Let h : XA — XA be a homomorphism such that ppoh = pa.
We wish to show, for some y € T, that YAy~ = A.

By the theorem preceding Exercise 8A, let h : X — X be a cp-lift of hoca : X — Xj.
Then cyoh = hoca. Then ppo(cpoh) =ppo(hoca). Then (ppocp)oh = (paroh)oca.
Then po h= pa o ca = p. Then heT. Let = h. It remains to show that v Ay = A.

EXERCISE 9D: Show that A is the group of deck transformations of ca.
EXERCISE 9E: Show, for all § € A, that yvdy~! € A.

According to Exercise 9C, yAy~! C A, so it remains only to show that A C yAy—L.
A similar argument to that of Exercise 9C shows that y“!Ay C A. Then A =
Yy 'AyyTt CyAyTh QED

Recall that, for any group I', for any subgroup A of I', the normalizer in T" of A is
Nr(A) :={y e T|yAy~! = A}; it is the largest subgroup of T' in which A is contained as
a normal subgroup. In particular, Ny(A) = T" iff A is a normal subgroup of T'.

Recall that the kernel of an action of a group G on aset X is {g € G |Vx € X, gz = z};
it is the intersection of all the stabilizers of elements of X. Denoting this kernel by K, we
have that K is normal in G and that, if ¢ : G — G/K denotes the canonical homomorphism,
then there is a unique action of G/K on X such that, for all g € G, for all x € X, we
have gx = (¢(g))z. That is, any action induces an action of the group modulo this kernel.
Moreover, if X is a topological space and if the G-action on X is continuous, then the
resulting action of G/K on X is continuous as well.

We say that an action is faithful or effective if its kernel is trivial. Note that the
induced action of G/K on X is faithful. That is, “once you mod out by the kernel of the
action, the resulting action has no kernel”.
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Fact. Assume the “Setup for covering maps”. Then, for any subgroup A of I', the action
of Nr(A) on X factors to an action of Np(A) on Xa. (That is, there is a unique action
of Nr(A) on XA such that the map pa becomes (Nt (A))-equivariant.) The kernel of this
action of Ny(A) on Xa is exactly A. Thus (Np(A))/A acts continuously and faithfully
on XA. The resulting collection of maps

{z— 12: XA = Xa|7€ (Np(A))/A}

is the group of deck transformations of pa. In particular, the group of deck transformations
of pa is isomorphic to Np(A))/A.

We leave the proof of this fact as an exercise for the interested reader. Here’s another
unassigned exercise:

Unassigned exercise. Assume the “Setup for covering maps”. Let A be a subgroup of T'.
Then, for all y € Y, we have |(pa)~(y)| = [T/A.

Now define Sy := {1,2,3} and let I’y be the set of all bijections Sy — Sy. That
is, [’y is the set of all permutations of {1,2,3}, i.e., it is the symmetric group on three
letters. Let Ag := {y € Ty |v(1) = 1}. We leave it as an unassigned exercise to show that
NFO (Ao) = A(). Note that ‘F0| = 3! and ‘A0| = 2‘, SO |F0/A0| = (3')/(2') = 3.

In the theorem below, combined with Exercise 9F below, we will show that there
is a locally path-connected, contractible, principal topological I'p-space X := Ep,. Let
Y :=T\X. Then the group I' of deck transformations of the canonical mapp: X — Y
is, by covering space theory, isomorphic to Iy, and therefore contains a subgroup A such
that Na(I') = A and such that |[['/A| = 3. Note that (Na(I'))/A is the trivial group.

Define XA := A\X and define pa : XA — Y as in the “Setup for covering maps”.
Recall that the fibers of pa all have cardinalty |[T'/A|. So every fiber of pa has three
elements. By the fact stated above, the group of deck transformations of pa is isomorphic
to (Na(T'))/A, which is the trivial group. Thus the group of deck transformations of pa,
being trivial, cannot act transitively on the fibers of pa, as they all have three elements.
Thus, pa is not a regular covering, which answers a question posed long ago.

This entire discussion was based on:

Theorem. Let I :=[0,1]. Let I' be a discrete group. Then there is a locally path-connected,
principal topological I'-space Er and a continuous map hr : Er X Er x I — Ep such that:
(1) for all y € T, for all z,y € Er, we have hr(yz,vy,t) = v(hr(z,y,t)); and
(2) for all z,y € Er, we have hr(z,y,0) = z and hr(z,y,1) = y.

EXERCISE 9F: Show that Er is contractible.

We define Br := I'\ Er and note that, because of the covering space theory that we
have developed, 71 (Br) is isomorphic to I'. Thus, a consequence of the preceding theorem
and exercise is the fact that every discrete group is the fundamental group of some locally
path-connected, semi-locally simply connected topological space.

Proof of the preceding theorem: Let N :={0,1,2,...}. For any c € IV, let
supp(c) := {i € N| ¢; # 0}.
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Let Ep := {(c,v) e INxTN | Jsupp(c)| < oo, Y ¢; = 1}. We define an equivalence
relation ~ on Er by: (c,7y) ~ (c,v") iff, for all i € N, we have

(1) ¢; = c; and

(2) if ¢; # 0 # ¢, then v; = 7.

Let Er := E’p/ ~. Let q : E7 — FEr be the canonical map. For each (c¢,v) € Er‘, we
denote ¢(c,vy) by coyo + c1y1 + - --. (Warning: This + is not commutative. Moreover, for
any ¢ € N, if ¢; = 0, then we may and will replace the term c;y; by 0, since -; is irrelevant;
however, we cannot omit this term 0.) .

For all j € N, define t; : E; — I by t;j(coyo + 171+ --+) = ¢, let EL = tj_l((O, 1])
and define z; : E% — T by z;(coyo + 171 + ---) = ;. Give Er the coarsest topology
such that all these maps tg,%1,...,20,Z1,... are continuous. That is, give Er the topology
generated by

{tj_l(U) | j€N, Uopeninl} U {mj_l(V) | jeN, VCT}.
We leave it as an unassigned exercise to show that Er is locally path connected.
For any x = ) ¢;v; € Er and any o’ = ¢, € Er, if,
for all 7 € (supp(c)) N (supp(c’)), we have v; = v/,
then we define the straight path from z to 2’ to be the path Tgl € P;’(Ep) defined as
follows: Define 4" € TN by

(1) for all i € supp(c), v/ = vi;

(2) for all i € supp(c’), ) := ~.; and

(3) for all i € N\[(supp(c)) U (supp(c'))], 7' := 1r.

Finally, define 72" : I — Ep by 7% (t) = S.[(1 — t)e; + te}]yY.

Let

Er:={covo+0+c171+0+coy2+0+4--- |co,c1,¢2,... € I,79,71,72,--- € T}
For all x = coyo+ 0+ c171 + 0+ cay2a + 0+ - - - € Ef, let g := x5 let
z1:=coYo+c1y1+0+coy2 +0+c3y3+ -+
be obtained from z by dropping the second term (and no others); let
To:=cCopYo+c1y1+cay2+0+c3y3+0+---
be obtained from z by dropping the second and fourth terms (and no others); let
T3 = coYo + 171+ Cc2v2 + 33+ 0+ cava + - -

be obtained from x by dropping the second and fourth and sixth terms (and no others);
etc. Forall z = coyo + 04+ c171 + 0+ coya + 0+ --- € Ef, let

Too = CoYo + C171 + C2Y2 + C37Y3 + -+
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be obtained from z by dropping all even terms (and no odd terms). For all z € Ef,, for all
n €N, let a? := 7, be the straight path from z,, to 2, 1.

For alln € N, let s, :=1—27". For all n € N, let I, := [sy, Sn11]- For all n € N,
let 1,, : I, — I be the linear map such that ,,(s,) = 0 and ln(sn+1) = 1; it is defined by
ln(t) = (1 —1t)8, + tSpy1.

For all © € E}, define o : I — Er by the rules:

(1) for all m € N, for all t € I,,, a,(t) = a?(l,(t)); and

(2) az(1) = z0;
we leave it as an unassigned exercise to verify that « is continuous. Then, for all z € EJ,,
we have o € PF=(Er).

For all x = cpyp + c171 + -+ - € Er, define

¥ :=covo+0+c1v1+0+caya+0+--- € Ep;

note that (2*)oe = 2. For all z € Er, let 8, € P? (Er) be defined by S, (t) = ag- (1 —t).
For all x = cpyo + c171 + -+ - € Er, define

=0+covo+0+civ1i+0+coay2+0+--- € Er.

Note, for all z,y € Er, that (supp(z*)) N (supp(y#)) = 0.

For all integers k € [1,4], let Jg := [(k — 1)/4,k/4] and let r : Jy — I be the
linear map such that r;((k — 1)/4) = 0 and ri(k/4) = 1; then 7 : Ji — I is defined by
re(t) = (1 —1t)((k—1)/4) + t(k/4). For all z,y € Ep we define a path \Y € PY(Er) by
(1) fort € Jy, NY(t) = ,3 ( 1(1)); then /\y(1/4) =z*

(2) for t € Jo, NY(t) = (7'2( )); then AY(1/2) = y#,
(3) fort € J3, NU(t) =T, #(7'3( )); then \¥(3/4) = y*; and
(4) for t € Ju, AU(t) = ay=(r4(t)); then AY(1) = (¥*)oo = -

We now define hr : Er x Er x I — Er by h(z,y,t) = AY(t). Note, for all z,y € Er,
that h(z,y,0) = AY(0) = x and h(z,y,1) = AY(1) = y. We leave it as an unassigned
exercise to show that it has the required properties of continuity and equivariance, as
stated in the theorem. QED

— N N

For any arrow f : C — C’ in a category C, we will define dom(f) = C and tar(f) =
A diagram in C is a set D consisting of objects and arrows in C such that: for any arrow
f € D, we have dom(f) € D and tar(f) € D. We denote, by Obj(D), the set of all objects
in D. We denote, by Arr(D), the set of all arrows in D

Given a diagram D in a category C, given D, D' € Obj(D), a path in D from D to D’
in D is a finite sequence p = (f1,..., fm) of arrows in D such that

(1) dom(f1) = D, tar(fm) = D’'; and

(2) for any integer i € [2,m], we have: dom(f;) = tar(f;—1).
In this case, we define op := f, 0---0 f1: D — D’

Let D be a diagram in a category C. Then we say D is commutative if, for all
D, D' € Obj(D), for any two paths p, ¢ from D to D’ in D, we have: op = oq.

Definition. Let D be a commutative diagram in a category C. A “receiver” of D in C
consists of
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(1) an object R in C; and
(2) a set of arrows A in C
such that
(A) for all f € A, we have dom(f) € Obj(D) and tar(f) = R;
(B) for all D € Obj(D), there is a unique f € A such that dom(f) = D; and
(C) DU{R}U A is a commutative diagram in C.

Definition. Let D be a commutative diagram in a category C and let (R,.A) be a receiver
of D in C. Then (R, A) is a direct limit of D in C means that: for any receiver (S, B) of
D in C, there is a unique arrow h: R — S such that B={ho f| f € A}.

EXERCISE 10A: For all integers n > 1, let ¢, : S* — S™*! be the function defined by
tn(Zoy -y Tn) = (Toy ..., Zn,0). Let D := {S1,82%, ...} U {t1,t2,...}. Construct a direct
limit of D in the category {sets}. (Show that it is a direct limit.)

Definition. We say that a category C has direct limits if, for any commutative diagram
D in C, there exists a direct limit in C of D.

Fact. The following categories have direct limits: {sets}, {groups}, 7S = {topological spaces} ||
{pointed topological spaces}. Somehow, “most” basic categories do seem to have direct
limits.

To give some idea about this, let D be a diagram in the category {sets}, and we
will describe how to construct a direct limit of D. To simplify matters assume, for all
A, B € Obj(D), that either AN B = () or A = B; otherwise the construction is made
slightly more difficult. Let Ry := U[Obj(D)]. For all A, B € Obj(D), let Sap be the set of
all (a,b) € A x B such that, for some path p in D from A to B, we have (op)(a) = b. Let
~ be the smallest equivalence relation on Ry containing U{Sap| A, B € Obj(D)}. Then
Ry/ ~ is the direct limit:

EXERCISE 10B: Show that R := R/ ~ is a direct limit of D in {sets}.

In the other categories mentioned in the preceding fact, the construction of direct
limits is at a similar level of difficulty.
Be aware that there is some ambiguity in the meaning of the term “direct limit”:

Definition. Let D be a commutative diagram in a category C. An object R in C is said to
be a direct limit of D in C if: there exists a set of arrows A in C such that (R, A) is a
direct limit of D in C.

EXERCISE 10C: Let D be a commutative diagram in a category C. Let R and R’ be
direct limits of D in C. Show that R and R’ are isomorphic in C.

As a result of Exercise 10C, one sometimes talks about the direct limit of a diagram,
instead of a direct limit.

Given any set S, let (S) denote the free group on S. Let Sy be a two element set and
let a and b be the distinct elements of Sy. Define A := ({a}), B := ({b}) and G := ({a, b}).
Let f: {1} - A and g : {1} — B be the trivial maps. Let p: A - G and ¢: B —» G
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be the inclusion maps. We leave it as an unassigned exercise to show that (G, {p,q}) is a
direct limit of the diagram {{1}, A, B, f, g} in {groups}.

Incidentally, to save some writing, one often simply writes (a, b) instead of the more
technically correct ({a,b}).

The type of direct limit described in the preceding paragraph is sometimes called a
“pushout”:

Definition. Let D be a diagram in a category C. Suppose that
(1) there are two arrows and three objects in D;
(2) for all f,g € Arr(D), we have dom(f) = dom(g); and
(3) for all f,g € Arr(D), if f # g, then tar(f) # tar(g).
In this case, a direct limit of D in C is sometimes called a pushout of D in C.

Let I be a set. For all i € I, let S; be a set, and let R; C (S;) be a subset of the free
group generated by S;. For alli € I, let G; := (S; | R;) be the group with generators S; and
relations R;. (That is, G; is the quotient of (S;) by the smallest normal subgroup of (S;)
which contains R;. This “smallest normal subgroup” is exactly the subgroup generated by

U gRig™)
9E(Ss)

For a given 7 € I, the pair (S;, R;) is sometimes called a “presentation” of Gj; it
completely determines G;, up to isomorphism.

Let K be a set. For all £k € K, let 4, j, € I and let f; : G;, — G, be a group
homomorphism. Let D := {S;|i € I} U{fi |k € K}. Then D is a diagram in the category
{groups} and we set ourselves to the task of computing the direct limit of D.

To simplify matters, let’s assume, for all 4,5 € I, that: if 5 # j, then S; N S; = 0. For
all i € I, let ¢; : (S;) — G; be the canonical map. For all k € K, for all s € S;,, choose
ws € S, such that fi(c;, (5)) = ¢, (ws k)-

For a given k € K, the mapping s — ws,  : S;, — S;, is sometimes called a “presen-
tation” of fi; it completely determines fy.

Let S:=|JS; and let R:=| JR;. Forall k € K, let
el el

)

wi= {5 Twak |s € 8i,} € (Si, US;,) € (S).

Let R := U Rj.. Tt is an unassigned exercise to demonstrate that (S| RU R’) is a direct

keK
limit of D.

The point of the preceding is simply that, if a diagram in the category of groups is
presented completely in terms of generators and relations, then it is straightforward to
write down a presentation of its direct limit. Let’s refer to this as the “group direct
limit algorithm”.

If D is a set of groups (i.e., a diagram in {groups} with no arrows), then the direct
limit of D is often denoted *D and is called the free product of D. When D is finite, one
often writes down the elements of D with “x”s separating them. Thus, for example, the
free product of {A4, B} is denoted A x B, and is often referred to as “the free product of A
and B”.
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A notational comment: Consider the group

<{a’ b’ c’ p7 Q’ T’ S’ y7 z} | {a’_lbc’ pq,rs’ yzy_12_1}>'

It would be typical to write this in a different way: (a,b,c,z,y|a = be,pgrs = 1,yz = zy}.
On the left and right of the vertical bar (|), one removes the braces. On the right, for each
relator, one sets the relator to 1 and then tries to manipulate the resulting equation to be
more readable. For example, yzy~'2~! = 1 can be manipulated to yz = zy.

Let A, B and C be groups. Let f : C — A and g : C — B be group homomorphisms.
Then the pushout of {A, B, C, f, g} in {groups} is often denoted A xc B. Note that f and
g are suppressed from the notation, although they really should not be. One might write
A *é’g B if there were any confusion. This group is called the almagamated product of
A and B, with amalgamation over C. It can be described exactly in an algebraic way: It
is the quotient of the free product A * B modulo the smallest normal subroup of A x B
containing {(f(c))(g(c))"t|c € C}.

Consider the special case where C = {(c|c? = 1), where A = (a|a* = 1) and where
B = (b|b° =1). Let f: C — A be the homomorphism which sends (the image of) ¢ to
(the image of) a?. Let g : C — B be the homomorphism which sends (the image of) ¢ to
(the image of) b3. Then, according to group direct limit algorithm, one can immediately
write down a presentation of A x¢ B, namely:

(a,b,c| 2 =1,a*=1,0°=1,c=a? c=03).

The generator c is not really needed; we leave it to the interested reader to verify that
A x¢ B is isomorphic to
(a,b|a* =1,0% = 1,a% = b3).

Definition. Let P be the category of pointed topological spaces. Let (X, z), (Y,y) € P.
Let f,g : (X,z) — (Y,y) be arrows in P. Let fo,g90 : X — Y be the continuous maps
underlying f, g, respectively. (Then fo(z) = go(x) = y.) Let I := [0,1]. A pointed
homotopy from f to g is a continuous map h: I x X — Y such that

(1) h(oa ) = fO; h(17 ) = go; and

(2) for all s € I, h(s,z) =y.

Let X be a topological space. An open cover U of X is said to be locally finite if, for
any z € X, there is an open neighborhood V of z in X such that [{U e U |UNV # 0}| < oc.
A refinement of an open cover V of X is an open cover U of X with the property that:
for all U € U, there exists V € V such that U C V. We say that X is paracompact if
every open cover of X has a locally finite refinement.

Let 7 : C — D be a functor. Let S be a set of objects and arrows in C. Then, by
F(S), we mean {F(s)|s € S}.

Theorem (van Kampen’s Theorem). Let TS™ be the category of pointed, path-connected,
locally path-connected, semi-locally simply connected, Hausdorff, regular, second count-
able topological spaces whose arrows are pointed homotopy classes of pointed continuous
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maps. Then 7 : TS* — {countable groups} preserves direct limits. That is, if D is a com-
mutative diagram in 78 and if (R, A) is a direct limit of D in T7S8*, then (71 (R), w1(A))
is a direct limit of 71(D) in {countable groups}.

We defer the proof, and proceed to an application of van Kampen’s Theorem:

Let S be the genus two orientable surface obtained from a closed solid octagon K in
R? after the (a, b, @, <F, ¢, d, T, U)-identiﬁcation of boundary points. We set ourselves to
the task of computing 71 (S5).

Let K C S denote the interior in R? of K Let Uy be an open disk in R? such whose
closure is contained in K, i.e., Clg2(Up) € K. Let Dy be a closed disk in R? such that
Dy C Up. Let U and D be the images in S of Uy and Dy. Let V := S\D. Let s€ UNV.
For any two subsets P,QQ C S, if s € P C @, then we let Lg : (Pys) = (@, s) denote
pointed homotopy class of the pointed inclusion map.

Then (S, s) is a pushout in 78* of {(UNV,s),(U,s),(V,8), 5~y thay - Let

A:=mUnNYV,s), B :=m(U,s), C:=m(V,s).

Then, by van Kampen’s Theorem, we see that 71(S, s) = A ¢ B, where the maps A — B
and A — C are m1 (1Y) and 71 (1541 )- Consequently, if we can calculate A, B, C, f
and g, then the problem of calculating 71(S,s) is reduced to the algebraic problem of
understanding pushouts in the category {countable groups}.

We come back to this in a moment but pause now to note that, quite generally,

if X is a paracompact topological space,

if U is an open cover of X with nonempty intersection,

if z € NU and

if, for all U,V € U, we have that U NV is path-connected,
then one can form a diagram D in 78"

whose set of objects is {(UNV,z) |U,V € U},

whose arrows come from inclusions and

whose direct limit is (X, x).
Van Kampen’s Theorem then reduces the calculation of m(X, ) to the calculation of
71 (D) combined with the algebraic problem of computing the direct limit of 71 (D) in the
category {countable groups}.

Returning to the specific case of the genus two orientable surface S, we have a presen-
tation of the fundamental grou 71 (U NV, s) = (¢), where € is the endpoint fixed homotopy
class of a parameterized circle going once around the annulus U NV in the clockwise di-
rection. Let s’ be the image in S of a vertex on the boundary of the octagon. (Note that
the vertices all have the same image.) Let 0K be the boundary of the octagon K. Let a,
be a parametrization running along one of the sides of K labeled a. Let o/ € P% (S) be
the image of a, in S. Using sides b, ¢ and d, we similarly obtain loops 8',v', ¢’ € PSS,’ ().
Then a simple application of van Kampen’s theorem shows that 1 (V,s') = (¢, 5,7+, ).
That is, m1(V,s’) is a free group on four letters. Let p be a path in S from s to s’. Let
a = (p|la)||%p € P:(S). Similarly, define 8,7v,0 € P$(S). Then w1 (V,s) = (a, 3,7, 6).
The inclusion (U NV,s) — (V,s) induces the map g : m(UNV,s) — m1(V,s) defined
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by € = aBa B 1vdy 1671, According to standard notation, [, 8] := afa"1B7! and
[7, 0] := 40y~ 1671, s0 € = [, B[, 9]

As U is contractible, m(U,s) = (n|n = 1). The map f : m (U NV,s) - 71 (U,s)
induced by inclusion is then the trivial map, defined by € — 1.

Then (S, s) is the pushout in the category {countable groups} of the diagram

{7T1(U N ‘/’ 8)’ 7T1(U7 S)a 71—1(‘/a 8)) fa g}
We can therefore use the group direct limit algorithm to see that (S, s) is isomorphic to

(o, B,7,6,6,n|n=1,¢=[a,B][v,0],e=1).

It is then an unassigned group theory exercise to see that ¢ and 7 are not needed. In fact,
we have that 71 (S, s) is isomorphic to

(@, B,7,6 e, Blly, 6] = 1).

We now turn to preparations for the proof of van Kampen’s theorem. The fundamental
category theoretic notion we will need is that of an “adjoint pair”.

Given two categories C and &, define C x £ to be the category such that an object in
Cx€&is

(o) a pair (C, E), where C is an object in C and FE is an object in &;
and such that an arrow (C,E) — (C',E') in C x £ is

(B) a pair of arrows (f,g), where f : C’ — C is an arrow in C and g : E — FE' is an

arrow in &.

Note, above, that the arrow f goes from C’ to C, and not the other way around.

Definition. Let C and £ be categories and let 7 : C — £ and G : £ — C be functors. We say
that (F,G) is an adjoint pair the following two functors C x & — {sets} are equivalent:
(x) (C,E)~ Hom¢(C,GE); and
(xx) (C,FE)— Homg(FC,E).

Let  be an equivalence between the functors (%) and (**). Then, for any (C,E),
nN(c,E) is a bijection between Home (C, GE) and Homg (FC, E). This gives us four ways of
moving arrows between C and &:

(1) for any arrow a : C — C'" in C, Fa : FC — FC' is an arrow in &;

(2) for any arrow a: E — E'" in &, Ga: GE — GE' is an arrow in C;

(3) for any arrow C — GE in C; there is an n-corresponding arrow FC — FE in &;
(4) for any arrow FC — FE in &; there is an n-corresponding arrow C — GE in C.
Since 7 is an equivalence between (*) and (**), we have:

(A) for any objects C,C" in C, for any object F in &, for any arrows f : C' — C
and g: C — GE in C, if ¢’ : FC — FE corresponds to g under 7, then g’ o (Ff)
corresponds to g o f under 7.

Since 7 is an equivalence between (*) and (**), we also have:
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(B) for any objects E, E’ in &, for any object C in C, for any arrows f : FC — FE
and g: E — E'"in &, if f' : C — GFE corresponds to f under 7, then (Gg) o f’
corresponds to g o f under 7.

We now come to the main result we’ll be using on adjoint pairs:

Theorem. Let C and £ be categories. Let F : C — & and G : £ — C be functors. Assume
that (F,G) is an adjoint pair. Then F preserves direct limits. That is, if D is a diagram
in C and if (L, f) is a direct limit for D in C, then (FL, Ff) is a direct limit for FD in &.

Proof: Let (R,g) be a receiver of FD in £&. We wish to show that there is a unique
h:FL — R such that {ho (Ffo)|fo€ f} =g
Let 1 be an equivalence from

(C,E) = Hom¢(C,GE) : Cx & — {sets}

to
(C,E)— Homg(FC,E) : Cx& — {sets}.

For each D € Obj(D), let gp be the unique arrow in g N (Hom(FD,R)). Then set
g = {n([}’R) (9p) | D € Obj(D)}. Then (GR,g’) is a receiver for D.

Since (L, f) a direct limit of D in C, choose h' : L — GR such that ¢' = {h'ofy| fo € f}-
Now set h := 5z, ry(h') € Homg(FL, R). Then, by the naturality properties of n, we see
that g = {h o (Ffo)| fo € f}, as desired.

We leave the uniqueness of h as an exercise. QED

EXERCISE 11A: Let C and £ be categories. Let F:C — &£ and G : £ — C be functors.
Assume that (F,G) is an adjoint pair. Let D be a diagram in C. Let (L, f) be a direct
limit of D in C. Let (R,g) be a receiver of FD in G. Let h,h € Homg(FL, R). Assume
that {ho (Ffo)|fo € f} =g={ho(Ffo)|fo € f}. Show that h = h.

Recall, for any group I', that Er denotes the set of all
CoYo +C1v1+ -

such that cg,c1,... € [0,1], such that ~v9,7v1,... € T, such that |{i € N|¢; # 0} <
oo and such that cy 4+ ¢; + --- = 1, appropriately topologized. For any group I', let
1-1r+0+0+0+--- be the basepoint of Er. For any group I', we have that I' acts on Ep
via y(coyo + €171 + - - ) = co¥yo + c1yy1 + - - .. Recall, for any group I, that Br :=I'\ Er;
let the basepoint of Br be the I'-orbit of the basepoint 1 -1 +0+04+ 0+ --- of Ep.

Then T' — Br : {countable groups} — TS8™ is a functor, which, in the following
proposition, we will denote by B. (What does B do to arrows in {countable groups}?)

The functor 7y : TS — {groups} also induces a functor 7TS* — {countable groups},
which we will also denote by m; in the following proposition.

In view of the preceding theorem, van Kampen’s Theorem follows from:

Proposition. The pair (71, B) is an adjoint pair.
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Sketch of proof: Fix X € TS* and fix a group I'. We wish to construct functions
7 : Hom(X, Br) - Hom(m X, T)

and
¢ : Hom(m X,I') - Hom(X, Br).

After we complete this construction below, we then leave it as an unassigned exercise
to the reader to show that n and ( are inverses. We also leave it as an unassigned exercise
to prove the naturality requirements of  and (, as (X, I") varies.

Since we have a chosen basepoint in FEr, this determines an isomorphism between
w1 Br and the group of deck transformations of the canonical map Er — Br. However,
this group is exactly I', so we have an isomorphism 7 : 71 Bpr — I'. Similarly, we define an
isomorphism p : m By, x = mX.

We define

n : Hom(X, Br) — Hom(m X, T')

by n(f) = 7o (w1 f). It remains to construct (.

Claim: There is a unique a € Hom(X, By, x) such that p o (ma) € Hom(m X, m X)
is the identity. Proof of Claim: Let E := m1(X) and let I := [0, 1]. Let (55, q) be a pointed
universal cover of X. Let r : Ez — Bz be the canonical map.

For any pointed space S, let ps denote the basepoint of S. The underlying topological
space of S will also be denoted by S. Let e := pg_ be the basepoint of Ex.

We first prove uniqueness. Let «, 8 € Hom(X, Bz) and assume that both p o (m«)
and p o (m3) are equal to the identity arrow m X — m X. We wish to show that a = g.
Fix ap € v and Sy € 8. We wish to show that g is pointed homotopic to By.

Let X be a pointed universal cover of X. By lifting theory, there exist Z-equivariant
pointed maps &g, B : X — E= such that rody =apogand rofy = pfByoq

We wish to show that there exists a continuous map H : X X I — Eg such that

(1) for all z € X, we have H(z,0) = ap(z); and H(z,1) = Bo(x);

(2) for all € € E, for all z € X for all t € I, we have H(¢xz,t) = £(H(w,t)); and

(3) for all t € I, we have H(pz,t) =e.

EXERCISE 11B: Show that there exists a continuous map k : F= X EF=s X I — E= such
that
(A) for all z,y € E=, we have k(x,y,0) = z and k(z,y,1) = y;
(B) for all £ € E, for all z,y € Eg, for all t € I, we have k(éx,y,t) = £(k(x,y,t));
and
(C) for all t € I, we have k(e,e,t) = e.

Fix k : Ex x Ex x I — Ex as in Exercise 11B. Now define H : X x I — Ex= by H(z,t) =
k(ao(z), Bo(z),t). This ends the proof of uniqueness.

We now prove existence. It suffices to show that there exists a continuous Z-invariant
map do : X — Eg such that ap(pg) =e.
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Let Vo, V1,Va,... be alocally finite open cover of X such that, for all integers i > 0,
we have that V; := ¢~ !(V;) is a trivial principal topological Z-space. Reordering, if
ncessary, we may assume that px € V. For each integer i > 1, by, if necessary, replacing
Vi by Vi\{px}, we may assume that px ¢ V.

For all integers 7 > 0, choose a topological space U; and an isomorphism of topological
E-spaces ¢; : V; — Ex U;. We may assume that qﬁg(p;{«) € {1z} x U;. For all integers i > 0,
let 9; : 2 x U; — = be projection onto the first coordinate, and let A\; := ;0 ¢; : V; — =
then \; is E-equivariant, i.e., for all v € V;, for all £ € Z; we have \;(§v) = £(Ai(v)).

For all integers ¢ > 0, let &; : X — E be any function such that ;|V; = A;. Note that

Iﬂ?o(pkv) = 15.
B_); p_afa(i),mpactness, let VS,V;,V;, ... be a shrinking of Vo, V1,Vs,...; this means
that V,V{,V,,... is an open cover of X such that: for all integers 7 > 0, the closure in

X of V; is contained in V;.

For all integers ¢ > 0, by Urysohn’s Lemma, let 7; : X — [0,1] be a continuous map
(o0

such that f,(V;) = {1} and such that f,(X\V;) = {0}. Let f := Zfi For all integers
i=0
i >0, define f; := 7;/7 N B
For all integers i > 0, let f; := f, 0q: X — [0,1]. Now define @y : X — E= by:

ao(z) = [fo(@)][ko(2)] + [f1(2)][k1(2)] + [f2(2)][K2(z)] + - --
This ends the proof of existence. End of proof of claim.
Fix o € Hom(X, By, x) as in the claim. We now define

¢ : Hom(m X, I') - Hom(X, Br)

by ¢(f) = Bf o a. QED
For all integers n > 0, let ef,...,e" be the standard basis of R*"*1 let v, :=
{ef,--.,er} and let

On ::{Coeg+...+cn62|co,...,cnE[071],Co+-..+cn:1}

be the closed conved hull of v,,.
Let S be a finite set and let n := |S| — 1. A labeling of S is a bijective map S — v,.
Let S be a set and let R C S. Let m := |R|—1 and n:=|S|—1. Let ¢ : R — v,;, and

¥ : S — v, be labelings. Let x := 1 o (¢~!). Then we define I;f’ {0 — Op by
1Y (cocy' + -+ + emeim) = colx(ef")] + -+~ + cm[x(eR)].

Definition. An (abstract) simplicial complex consists of
(1) a nonempty set S; and
(2) F C {finite subsets of S}
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such that
(A) for all s € S, we have {s} € F; and
(B) for all f € F, for all f' C f, we have f' € F.

For any integer n > 0, an n-face of a simplicial complex (S, F') is an element f € F
such that |f| = n + 1. For any integer n > 0, a labeled n-face of a simplicial complex
(S, F) consists of

(o) an n-face f of (S, F); and

(B) a labeling of f.

We define the dimension, dim(S, F), of a simplicial complex (S, F') to be the supremum
of the set of integers n > 0 satisfying: there exists an n-face of (S, F'). This supremum
may equal oco.

Definition. Let (S, F) be a simplicial complex. For all integers n > 0, let F;, be the
set of all labeled n-faces of (S, F). Let X := U F,, x o,,. For each integer n > 0, give

n=0
F,, the discrete topology, give each o,, the inherited topology from the standard topology
on R**! and let 7,, denote the product topology on F, x o,. Let X have the topology

generated by U Tn. Define a relation — on X by: ((f,#),z) — ((9,%),y) iff both f C g
n=0

and I;f (z) = y. Let ~ be the equivalence relationg generated by —. Then the realization

of (S, F)is X/ ~.

Ezample. Let S := {1,2,3} and let F := {0,{1},{2},{3},{1,2},{1,3},{2,3}}. Then
(S, F) is a simplical complex. Its realization is a “triangle”, so that it is homeomorphic
to S'. Consequently, the fundamental group of its realization in isomorphic to Z. Let
F':= FU{{1,2,3}}. Then the realization of (S, F’) is a solid triangle, and is therefore
homeomorphic to a disk. It is therefore contractible and its fundamental group is trivial.

Definition. A tree is a simply connected topological space which is homeomorphic to the
realization of a simplicial complex of dimension < 1. A graph is a locally path-connected
topological space with a universal cover that is a tree.

Let z := (1,0) € S! be a point on the circle. Let K be a set. Give K the discrete
topology. Then a bouquet of K-many circles is the topological space

B:= (S x K)/({z} x K)

obtained by identifying {x} X K to a point in S x K. Then B is a graph. Van Kampen’s
theorem shows that the fundamental group of this space is homeomorphic to the free
group (K).

Proposition. Let G be a graph. Then there exists 7' C G such that T is a tree, such that
G/T is a bouquet of circles and such that m1(G) is isomorphic to 71 (G/T).

We omit proof except to comment that one takes, in GG, a so-called “maximal tree” T,
and the proposition follows.
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Corollary. For any graph G, we have: m1(G) is a free group.

Our next goal is to use topology to prove the algebraic fact that a subgroup of a free
group is free.

However, we need first to address the question of whether a composite of covering
maps is again a covering map. In fact, 'm unsure if this is true in complete generality, but
I can prove it when the spaces in question are connected and semi-locally simply connected.
For the moment, however, let’s make the following ad-hoc definition:

Definition. Let P and ) be topological spaces and let o : P — @ be a function. Then
we say that o is a composite covering map if there is an integer £ > 1 and there are
topological spaces Ry, ..., R; and there are covering maps

ﬂ11R0—>R1, ey ﬂkZRk_l%Rk
such that P = Ry, Q = Ry and a = g o---0 f31.
That is, a map is a compostite covering map if it is a composition of covering maps.

EXERCISE 12A: Let P, @ and X be connected, locally path-connected topological
spaces. Let o : P — () be a composite covering map. Let f : X — () be continuous. Let
g€ Q,let peal(q) and let z € f~1(q). Assume that f,(m1(X,z)) C a*(7r1(P p)). Show
that there exists a unique continuous map f X — P such that ao f f and such that

fz)=p.

Definition. Let Y be a path-connected topological space. A universal composite cover

of Y is a simply connected topological space X, together with a composite covering map
X Y.

EXERCISE 12B: Let Y be a connected, locally path-connected topological space. Let
(X, ¢) and (X', ¢’) be universal composite covers of Y. Show that (X, ¢) and (X', ¢') are
isomorphic in the category {topological spaces over Y }.

Fact. Let X and Y be connected, locally path-connected topological spaces. Let ¢ : X — Y
be a composite covering map. Let (X ¥) be a universal cover of X. Then (X po)isa
universal cover of Y.

Proof: Since X has a universal cover, X is semi-locally simply connected. Then Y is semi-
locally simply connected. Let (Y, x) be a universal cover of Y. Then, by Exercise 12B,
(X, ¢ o ¢) is isomorphic to (Y, ) in the category {topological spaces over Y}. So, since
()N/, X) is a universal cover of Y, ()Z', ¢ o 1) must be as well. QED

If X and Y are topological spaces, then we say that X is a covering of Y if there
exists a covering map X — Y. With this definition, the preceding fact asserts that a
universal cover of a cover of Y is a universal cover of Y.

Proposition. Let W, X and Y be connected, semi-locally simply connected topological
spacs. Let ¢ : W — X and ¢ : X — Y be covering maps. Then po¢p : W — Y is a
covering map.
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Proof: Let (W, X) be a universal cover of W. Then (W, ¢ o x) is a universal cover of X
and (W, ¥ o ¢ox) is a universal cover of Y. Then x, ¢ o x and ¢ o ¢ o x are all regular
covering maps.

Let T" be the group of deck transformations of x. Let A be the group of deck trans-
formations of ¢ o x. Let A be the group of deck transformations of 1) o ¢ o x. Note that
' CACA. Then W, X and Y are isomorphic to I\W, A\W and A\W, respectively, in
the category {topological spaces under W}

Let  : I‘\W — A\W be the canonical map. A short diagram chase then shows that
¥ o ¢ is isomorphic to 7 in the arrow category of {topological spaces}. Consequently, it
suffices to show that 7 : [\W — A\W is a covering map.

We leave this as an unassigned exercise. QED

Lemma. Any covering of a graph is a graph.

Proof: Let Y be a graph and let X be a covering of Y. Then, by the preceding fact, any
universal covering of X is a universal covering of Y, and is therefore a tree. We conclude
that X is a graph. QED

Theorem. Any subgroup of a free group is free.

Proof: Let S be a set. We wish to show that any subgroup of (S) is free.

Let Y be a bouquet of S-many circles. Then, by van Kampen’s Theorem, 7;(Y) is
isomporphic to (S). Let (X, ¢) be a universal cover of Y. Let I' be the group of deck
transformations of ¢. Then I' is isomorphic to 71(Y). Let I'y be a subgroup of I'. We wish
to show that I'y is free.

Since I'\ X is homeomorphic to Y, it follows that '\ X is a graph. Since I'p\X is a
covering of I'\ X, we see, from the preceding lemma, that T'g\ X is a graph. Then 71(To\X)
is free. However, m1(I'g\ X) is isomorphic to Iy, so we are done. QED
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