GÖDEL INCOMPLETENESS

Fix an alphabet containing
－uppercase Roman：A，B，C，．．．，Z
－digits： $0,1,2,3,4,5,6,7,8,9$
－some special characters：〈blank〉 and \langle return／line feed〉 and 〈comma〉
－other characters needed for Pascal， e．g．，()$<>: ;+-* /=$
－a＂delimiter＂character：\dashv and not containing
－lowercase Roman：a，b，c，．．．，z
－lowercase italic：a, b, c, \ldots, z
－lowercase Greek：$\alpha, \beta, \gamma, \ldots, \omega$
$\{\sqrt{ }\}$ A string is a sequence of characters from the alphabet which

- is finite
- does not contain -1 .
$m=2$
$\sigma=$ TIMES
$m \sigma m$ IS FOUR $=2$ TIMES 2 IS FOUR
Strings are never true or false. However, they may be "theorems".

Some strings are integers.

- 2 is.
- FOUR is not.
- 35 and -27 are.
- XXXV is not.

Extend Pascal: Include a command WRITE_DELIMITER;

which outputs:
$\{\sqrt{ }\}$ Write a Pascal program, our "string generator", which outputs:

$$
\sigma_{1} \dashv \sigma_{2} \dashv \sigma_{3} \dashv \cdots
$$

such that every possible string appears at least once among the strings

$$
\sigma_{1}, \sigma_{2}, \ldots
$$

The number of a string σ is

$$
\min \left\{n \mid \sigma=\sigma_{n}\right\}
$$

$\{\sqrt{ }\}$ If u is the number of a string σ, then $u \in \mathbb{Z}, u>0$ and $\sigma_{u}=\sigma$.
$\{\sqrt{ }\}$ A string σ is organized if there are strings ρ and μ such that μ has no parentheses and such that

$$
\sigma=(\rho)(\mu)
$$

In this case ρ and μ are called, respectively, the preface and the main body of σ. They are determined by σ.
$\{\sqrt{ }\}$ Example:
$((() \mathrm{X})(7 \mathrm{VQWZ}) \quad$ is organized.
The main body is: $\quad 7 \mathrm{VQWZ}$ The preface is:
(()X

Substitution notation: If

$$
\sigma=\mathrm{W})!\mathrm{W}
$$

and

$$
n=35
$$

then

$$
\sigma \mid \mathrm{W} \rightarrow n=35)!35
$$

and is obtained by replacing every occurrence of W in σ with the string 35 .

A P-function is the code for a Pascal function, written all in caps, such that:

- input is a single integer;
- output is a single integer; and
- no compile errors, no runtime errors, no infinite loops.

Some strings are P-functions.

Let α be the 55 -character string:
FUNCTION
OP(IP:INTEGER):INTEGER;
BEGIN
$\mathrm{OP}:=\mathrm{IP} * \mathrm{IP}$;
END;

Then α is a P-function.

For any P-function σ, for $n \in \mathbb{Z}$, let

$$
\sigma \llbracket n \rrbracket
$$

be the output from inputting n into the function σ; then $\sigma \llbracket n \rrbracket \in \mathbb{Z}$.

For example, with α defined above,

$$
\alpha \llbracket 2 \rrbracket=4 .
$$

Formal Theories

$\{\sqrt{ }\}$ A formal theory consists of two Pascal programs: A math string tester and a theorem generator.

Some strings are math, as determined by a math string tester, which has a string as input, and has only two possible outputs:
"This is math" or "This is not math".
$\{\sqrt{ }\}$ A theorem generator has output

$$
\pi_{1} \dashv \pi_{2} \dashv \pi_{3} \dashv \cdots
$$

where $\pi_{1}, \pi_{2}, \pi_{3}, \ldots$ are math strings called theorems.

Some math strings are theorems.

One typical assumption:
$\{\sqrt{ }\}$ I. Complete and consistent. Assume, for any math string σ, that either $\quad \sigma$ or $\operatorname{NOT}(\sigma)$
is a theorem, but not both.
By itself this is easily attained, if we forego the need that, in some form or another, statements like " $2 \times 2=4$ " appear in the list of theorems produced by the theorem generator.

So we typically would impose another condition:

A vague requirement: Assume that the formal theory "contains" arithmetic.

A little more precise: Assume that

- any basic assertion about arithmetic can be formulated as a string; that
- the resulting string is a math string; and that
- that math string is a theorem iff the original basic assertion is true.

A "basic assertion" is an assertion of the form: $\quad \alpha \llbracket 2 \rrbracket=4$

Convention:
The corresponding "basic assertion string" is:
$(\alpha)(2->4)$
$\{\sqrt{ }\}$ II. Contains arithmetic. Assume, for any P-function κ, for any $s, t \in \mathbb{Z}$, that

1. $(\kappa)(s->t)$ is a math string; and
2. $(\kappa)(s->t)$ is a theorem iff $\kappa \llbracket s \rrbracket=t$.

For example, with α being the squaring P-function defined above, we have $\alpha \llbracket 2 \rrbracket=4$. Then

$$
(\alpha)(2->4)
$$

is a theorem. On the other hand,

$$
(\alpha)(2->0)
$$

is math, but is not a theorem.

$\{\sqrt{ }\}$ Assuming I and II, we wish to obtain a contradiction.

This will prove:

Gödel's Theorem. No formal theory that contains arithmetic can be complete and consistent.

Write a "theorem tester" P-function τ such that, for any integer input u,

- $u \leq 0 \Longrightarrow$ o/p -1, stop;
- σ_{u} is not math $\Longrightarrow \mathrm{o} / \mathrm{p}-1$, stop;
- σ_{u} is a theorem $\Longrightarrow o / p 1$, stop;
$\bullet \operatorname{NOT}\left(\sigma_{u}\right)$ is a theorem $\Rightarrow \mathrm{o} / \mathrm{p} 0$, stop.
$\{\sqrt{ }\}$ For any integer $u>0$, we have: if σ_{u} is math, then $\tau \llbracket u \rrbracket \in\{0,1\}$.
$\{\sqrt{ }\}$ For any integer $u>0$, we have:

$$
\tau \llbracket u \rrbracket=1
$$

if and only if
σ_{u} is a theorem.

Write a "W replacer" P-function ω such that, for any integer input s,

- $s \leq 0 \Longrightarrow \mathrm{o} / \mathrm{p}-1$, stop;
- σ_{s} not organized $\Longrightarrow \mathrm{o} / \mathrm{p}-1$, stop;
- let $\mu:=$ the main body of σ_{s};
- let $\rho:=$ the preface of σ_{s};
- COMMENT: $\sigma_{s}=(\rho)(\mu)$
- let $\mu^{\prime}:=\mu \mid \mathrm{W} \rightarrow s$;
- let $\quad \sigma^{\prime}:=(\rho)\left(\mu^{\prime}\right)$;
- o/p the number of σ^{\prime}, stop.
$\{\sqrt{ }\} E . g .:$ If s is the number of
$(\mathrm{KBW} *)(\mathrm{ZVWX5W})$
then $\omega \llbracket s \rrbracket$ is the number of
$(\mathrm{KBW} *)(\mathrm{ZV} s \mathrm{X} 5 s)$

Write a "composite" P-function κ such that, \quad for all $s \in \mathbb{Z}, \quad \kappa \llbracket s \rrbracket=\tau \llbracket \omega \llbracket s \rrbracket \rrbracket$.

Let s be the number of

$$
(\kappa)(\mathrm{W}->0)
$$

Let $u:=\omega \llbracket s \rrbracket$. Then u is the number of

$$
(\kappa)(s->0)
$$

Then $u \in \mathbb{Z}, u>0$, and σ_{u} is equal to

$$
(\kappa)(s->0)
$$

By II, σ_{u} is a math string, and, also, σ_{u} is a theorem iff $\kappa \llbracket s \rrbracket=0$.

As σ_{u} is math, $\quad \tau \llbracket u \rrbracket \in\{0,1\}$.

$$
\tau \llbracket u \rrbracket=1
$$

if and only if

σ_{u} is a theorem

if and only if

$$
\kappa \llbracket s \rrbracket=0
$$

if and only if

$$
\tau \llbracket \omega \llbracket s \rrbracket \rrbracket=0
$$

if and only if

$$
\tau \llbracket u \rrbracket=0
$$

if and only if

$$
\tau \llbracket u \rrbracket \neq 1 .
$$

Contradiction.

