GÖDEL INCOMPLETENESS

Fix an alphabet containing

- uppercase Roman: A, B, C, \ldots , Z
- digits: 0,1,2,3,4,5,6,7,8,9
- some special characters: $\langle blank \rangle$ and $\langle return/line feed \rangle$ and $\langle comma \rangle$
- \bullet other characters needed for Pascal, e.g.,~(~)<> : ; + * / =
- \bullet a "delimiter" character: \dashv

and **not** containing

- lowercase Roman: a, b, c, ..., z
- lowercase italic: a, b, c, \ldots, z
- lowercase Greek: $\alpha, \beta, \gamma, \ldots, \omega$

 $\{\sqrt{\}}$ A **string** is a sequence of characters from the alphabet which

• is finite

 \bullet does not contain $\dashv.$

m = 2 $\sigma = \text{TIMES}$ $m \sigma m \text{ IS FOUR} = 2 \text{ TIMES } 2 \text{ IS FOUR}$

Strings are never true or false. However, they may be "theorems".

Some strings are **integers**.

• 2 is.

- FOUR is not.
- 35 and -27 are.
- XXXV is not.

Extend Pascal: Include a command WRITE_DELIMITER; which outputs: ⊢

 $\{\sqrt{\}}$ Write a Pascal program, our "string generator", which outputs:

$$\sigma_1 \dashv \sigma_2 \dashv \sigma_3 \dashv \cdots$$

such that every possible string appears at least once among the strings

 $\sigma_1, \sigma_2, \ldots$

The **number** of a string σ is

$$\min\{n \,|\, \sigma = \sigma_n\}.$$

 $\{\sqrt\}$ If u is the number of a string σ , then $u \in \mathbb{Z}, u > 0$ and $\sigma_u = \sigma$. $\{\sqrt{}\}$ A string σ is **organized** if there are strings ρ and μ such that μ has no parentheses and such that

$$\sigma = (\rho)(\mu)$$

In this case ρ and μ are called, respectively, the **preface** and the **main body** of σ . They are determined by σ .

 $\{\sqrt\}$ Example: ((()X)(7VQWZ) is organized. The main body is: 7VQWZ The preface is: (()X Substitution notation: If $\sigma = W$!W and

n = 35

then

 $\sigma | \mathbf{W} \to n \quad = \quad 35)!35$

and is obtained by replacing every occurrence of W in σ with the string 35.

A **P-function** is the code for a Pascal function, written all in caps, such that:

- input is a single integer;
- output is a single integer; and
- no compile errors, no runtime errors, no infinite loops.

Some strings are P-functions.

```
Let \alpha be the 55-character string:
```

```
FUNCTION
OP(IP:INTEGER):INTEGER;
BEGIN
OP:=IP*IP;
END;
```

Then α is a P-function.

For any P-function σ , for $n \in \mathbb{Z}$, let $\sigma[n]$ be the output from inputting n into the function σ ; then $\sigma[n] \in \mathbb{Z}$.

For example, with α defined above, $\alpha \llbracket 2 \rrbracket = 4.$

Formal Theories

 $\{\sqrt{}\}$ A formal theory consists of two Pascal programs: A math string tester and a theorem generator.

Some strings are **math**, as determined by a math string tester, which has a string as input, and has only two possible outputs:

"This is math" or "This is not math".

 $\{\sqrt{\}}$ A theorem generator has output

 $\pi_1 \dashv \pi_2 \dashv \pi_3 \dashv \cdots$

where $\pi_1, \pi_2, \pi_3, \ldots$ are math strings called **theorems**.

Some math strings are theorems.

One typical assumption:

 $\{\sqrt{\}}$ I. Complete and consistent. Assume, for any math string σ , that either σ or NOT (σ) is a theorem, but *not* both.

By itself this is easily attained, if we forego the need that, in some form or another, statements like " $2 \times 2 = 4$ " appear in the list of theorems produced by the theorem generator.

So we typically would impose another condition:

A vague requirement: Assume that the formal theory "contains" arithmetic.

A little more precise: Assume that

- any basic assertion about arithmetic can be formulated as a string; that
- the resulting string is a math string; and that
- that math string is a theorem iff the original basic assertion is true.

A "**basic assertion**" is an assertion of the form: $\alpha \llbracket 2 \rrbracket = 4$

Convention:

The corresponding "basic assertion string" is: $(\alpha)(2->4)$

 $\{\sqrt\}$ II. Contains arithmetic. Assume, for any P-function κ , for any $s, t \in \mathbb{Z}$, that

1. $(\kappa)(s \rightarrow t)$ is a math string; and

2. $(\kappa)(s \rightarrow t)$ is a theorem iff $\kappa \llbracket s \rrbracket = t$.

For example, with α being the squaring P-function defined above, we have $\alpha \llbracket 2 \rrbracket = 4$. Then

$$(\alpha)(2 \rightarrow 4)$$

is a theorem. On the other hand,

$$(\alpha)(2 - > 0)$$

is math, but is not a theorem.

$\{\sqrt{\}}$ Assuming I and II, we wish to obtain a **contradiction**.

This will prove:

Gödel's Theorem.

No formal theory that contains arithmetic can be complete and consistent.

Write a "theorem tester" P-function τ such that, for any integer input u,

• $u \le 0 \Longrightarrow o/p - 1$, stop;

• σ_u is not math \implies o/p -1, stop;

- σ_u is a theorem \implies o/p 1, stop;
- NOT(σ_u) is a theorem \Rightarrow o/p 0, stop.

 $\{\sqrt{}\}$ For any integer u > 0, we have: if σ_u is math, then $\tau[\![u]\!] \in \{0,1\}$.

 $\{\sqrt{}\}$ For any integer u > 0, we have:

$$\tau\llbracket u \rrbracket = 1$$

if and only if

 σ_u is a theorem.

Write a "W replacer" P-function ω such that, for any integer input s,

• $s \le 0 \Longrightarrow o/p - 1$, stop;

- σ_s not organized \implies o/p -1, stop;
- let $\mu :=$ the main body of σ_s ;
- let ρ := the preface of σ_s ;
- COMMENT: $\sigma_s = (\rho)(\mu)$

• let
$$\mu' := \mu | \mathbf{W} \to s;$$

- let $\sigma' := (\rho)(\mu');$
- o/p the number of σ' , stop.

 $\{\checkmark\} E.g.$: If s is the number of (KBW*)(ZVWX5W) then $\omega[s]$ is the number of (KBW*)(ZVsX5s) Write a "**composite**" P-function κ such that, for all $s \in \mathbb{Z}$, $\kappa[\![s]\!] = \tau[\![\omega[\![s]\!]]\!]$.

Let s be the number of $(\kappa)(W->0)$

Let $u := \omega[\![s]\!]$. Then u is the number of $(\kappa)(s -> 0)$

Then $u \in \mathbb{Z}$, u > 0, and σ_u is equal to $(\kappa)(s \rightarrow 0)$

By II, σ_u is a math string, and, also, σ_u is a theorem iff $\kappa[\![s]\!] = 0$.

As σ_u is math, $\tau \llbracket u \rrbracket \in \{0, 1\}$.

 $\tau\llbracket u\rrbracket = 1$ if and only if σ_u is a theorem if and only if $\kappa[\![s]\!]=0$ if and only if $\tau\llbracket\omega\llbracket s\rrbracket\rrbracket=0$ if and only if $\tau[\![u]\!]=0$ if and only if $\tau \llbracket u \rrbracket \neq 1.$ Contradiction.